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Editorial on the Research Topic

Spatial and Temporal Perception in Sensory Deprivation

The Research Topic aimed at providing new insights into the impact of sensory deprivation on
spatio-temporal abilities and their subtending cortical circuits. The Research Topic attracted a wide
range of submissions across the spectrum of this theme, and overall, all the submitted papers fall
within one of the following topic contributions: (a) papers identifying impaired/preserved abilities
after a sensory loss/deprivation; (b) papers investigating cortical plasticity and reorganization
mechanisms following sensory loss/deprivation; (c) papers presenting newly developed tools to
assess and/or train spatial impairments resulting from sensory loss/deprivation. With this editorial,
we intend to discuss the findings of the submitted contributions within the broader context of the
literature on the theme by considering the three above-mentioned main contribution categories.

IMPAIRED VS. PRESERVED PERCEPTUAL FUNCTIONS AFTER

SENSORY LOSS/DEPRIVATION

Overall, five out of the six papers in this category demonstrated that sensory loss/deprivation
leads to perceptual and sensorimotor impairments rather than preserved abilities. Wu et al.
demonstrated that long-term abnormal binocular visual experience causing intermittent but
recurrent eye misalignment (intermittent exotropia) alters distance stereoscopic acuity (Hatt
et al., 2007; Zhou et al., 2019), thus impairs three-dimensional depth perception. The Authors
demonstrated that patients with intermittent exotropia require longer times for optimal
stereoacuity, arguing that more extended temporal integration might be caused by a longer
time needed for binocular cells to integrate the signals from two eyes. This new finding sheds
light on the importance of including the temporal dimension of stimulus presentation in
stereopsis assessment and rehabilitation training. Luo et al. demonstrated that a clinical condition
characterized by progressive visual acuity decrease and progressive peripheral visual field loss
(retinitis pigmentosa) affects general visual information processing and specific visuo-spatial and
visuo-attentional capabilities.

Similarly, Martolini et al. demonstrated that children with impoverished visual experience from
birth (low vision) acquire the ability to represent space based on external frames of reference
(“allocentric”) rather than on body-centered cues (“egocentric”) much later compared to sighted
peers. Such finding is in line with previous evidence showing that vision is necessary to guide
the development of spatial abilities (Thinus-Blanc and Gaunet, 1997; Eimer, 2004; Iachini and
Ruggiero, 2010; Pasqualotto and Proulx, 2012; Cappagli and Gori, 2016; Voss, 2016; Cappagli et al.,
2017) and that long-term early-onset visual impairment might compromise such development.
Scotto et al. reported that short-term sensorimotor deprivation causes impairments in motor
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control by disrupting the spatiotemporal structure of the pointing
movements performed after the deprivation. More specifically,
they showed that when healthy individuals immobilize their
right limb for 24 h, not only their overall motor performance
decreases as previously shown (Huber et al., 2006; Moisello
et al., 2008; Bassolino et al., 2012; Bolzoni et al., 2012), but
also both early and late kinematic parameters (corresponding
to feedforward and feedback processes of motor control,
respectively) are altered. This evidence indicates that short-
term sensorimotor deprivation alters motor control both at
an early step (feedforward control), impairing the ability to
predict future actions’ sensory consequences, and at a later step
(feedback control), and the ability to correct reachingmovements
toward the target. Since visual cues strongly influence feedback
control of movements (Sarlegna et al., 2004, 2007; Saunders
and Knill, 2004; Sarlegna and Sainburg, 2009), future research
should investigate whether visual feedback during movement
can overcome the motor impairments observed after prolonged
limb immobilization.

Sharp et al. demonstrated that congenital deafness impairs
the development and maintenance of overt oculomotor behavior,
suggesting that a hearing impairment can affect the non-
deprived visuo-motor domain. Contrary to the other studies
presented above, which investigated intra-modal consequences
of sensory loss/deprivation, this study directly assessed the
link between auditory experience and the development of
visual functions. Such evidence corroborates recent hypotheses
suggesting the existence of cross-sensory integration and
calibration mechanisms (Gori et al., 2010; Morrone, 2010; Gori,
2015; Dekker and Lisi, 2020), thanks to which the most accurate
sensory modality for a specific task (e.g., hearing for temporal
discrimination) dominates and guides the development of the
others. According to this view, it might be hypothesized that
hearing would have a role in the control of eye movements.
This finding fits well within the literature demonstrating altered
eye movement control in the deaf (Bottari et al., 2012). Further
studies should investigate how auditory loss impacts crossmodal

reorganization in terms of functional change (Cardin et al., 2020).
The only study that revealed preserved abilities after sensory

deprivation is the one by Chen et al., showing that short-term
visual deprivation in one eye does not impair the ability to judge
the temporal synchrony of visual stimuli presented after the
deprivation in dichoptic and monocular conditions. Contrarily
to previous behavioral and electrophysiological/neuroimaging
studies showing that monocular deprivation causes a shift in
perceptual ocular dominance (Lunghi et al., 2011; Zhou et al.,
2013, 2014; Kim et al., 2017; Başgöze et al., 2018; Min et al.,
2018) and increased response of the deprived eye vs. a decreased
response of the non-deprived eye (Lunghi et al., 2015a,b; Zhou
et al., 2015; Chadnova et al., 2017; Binda et al., 2018), this
study indicates that such kind of visual deprivation does not
influence the temporal processing of visual information. Factors
such as the type of task (e.g., binocular rivalry vs. phase
combination), the assessed perceptual domain (e.g., spatial vs.
temporal processing), and the duration of visual deprivation
might underlie such discrepancy.

CORTICAL PLASTICITY AFTER SENSORY

LOSS/DEPRIVATION

Sensory loss or deprivation typically induces significant
reorganization in sensory cortices (Rauschecker, 1995; Bavelier
and Neville, 2002; Merabet and Pascual-Leone, 2010; Ricciardi
and Pietrini, 2011). It has been argued that crossmodal plasticity
may take the form of functional preservation, where cortical
regions preserve their function but adapt to process sensory
input in a different modality. Or it can result in functional
change, where cortical regions change also their function,
typically switching from sensory processing to higher order
cognition (Cardin et al., 2020). Such plastic reorganization
often subtends compensatory mechanisms, which can enable
even normal or close-to-normal perceptual abilities. Scurry
et al. investigated possible differences between early deaf and
typical hearing individuals in a visual-tactile temporal judgment
task. Differences in performance were expected, since audition
is believed to provide a necessary framework for developing
sensitivity to temporal information (Burr et al., 2009; Conway
et al., 2009). Surprisingly, the two groups did not differ in
their temporal order perceptual performance. However, deaf
participants showed enhanced EEG signal strength in both visual
and tactile components compared to sighted controls, which
indicates compensatory recruitment of auditory and visual areas
for visuo-tactile temporal processing. Scurry et al. reported
that multisensory areas, such as the right posterior superior
temporal sulcus (pSTS), undergo compensatory plasticity. In
particular, early deaf individuals showed larger activation of
the pSTS compared to healthy controls during tactile motion
processing. This activation, which is not accompanied by
increased directional tuning, suggests the presence of a more
distributed network of neuronal populations involved in
tactile motion processing as a consequence of early auditory
deprivation. However, in line with the principle of functional
preservation, no greater activation of the primary auditory
cortex (PAC) was found: audition is predominant in processing
temporal features, and visual and tactile temporal tasks lead to
PAC activations in the blind (Auer et al., 2007; Bola et al., 2017).
This study shows that PAC maintains its temporal processing
involvement after a sensory loss without being involved in
processing spatial–rather than temporal–tactile aspects. Glick
and Sharma demonstrated that early stage mild-moderate age-
related hearing loss is associated with cross-modal recruitment
of auditory, frontal and prefrontal cortices during visual
tasks, suggesting functional changes induced by hearing loss.
Significantly, more extensive recruitment of the auditory cortex
by vision correlates with more significant hearing loss and lower
perceptual and cognitive performance. Moro et al. showed that
partial visual deprivation, such as the early loss of one eye, can
induce a neuronal reorganization of circuits typically dedicated
to binocular vision, resulting in increased brain activation for
audio-visual stimuli.

Unfortunately, such cross-modal cortical reorganization can
also result in maladaptive outcomes. This process can happen
either due to early-onset sensory deprivation or when sensory
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deprivation or decline occurs later in life. Maladaptive changes
led by long-term plasticity are reported by Amadeo et al., who
showed that late blind individuals with long time blindness
duration present behavioral performance and cortical activations
analogous to those shown by early blind individuals. In these
participants, temporal cues activate circuits typically responding
to spatial cues in both sighted individuals and blind participants
with shorter blindness duration. In other words, after many years
of blindness, late blind participants start relying on temporal
information to build spatial representations, as it happens in
early blind individuals (Gori et al., 2013). The fact that many
years of late sensory deprivation/decline can lead to maladaptive
outcomes highlights the importance of introducing rehabilitation
strategies soon after the onset of sensory loss/decline. Notably,
the research from Glick and Sharma demonstrates that few
months of clinical treatment with hearing aids at an early stage
of hearing loss can induce a reversal in the observed cross-
modal reorganization of the cortex, accompanied by improved
behavioral performance.

NEW TOOLS TO ASSESS AND TRAIN

SENSORIMOTOR FUNCTIONS AFTER

SENSORY LOSS/DEPRIVATION

Perceptual impairments following sensory loss/deprivation, such
as spatial deficits resulting from visual deprivation, posit the
necessity to develop and adapt clinical assessment and training
tools to meet the sensory loss population’s needs. Specifically,
specific tools for visually impaired children are less systematically
used and spread than those designed for adults (Gori et al.,
2016; Elsman et al., 2019). The need for such solutions has been
extensively reported in the literature, but the communication
between scientific findings and technological development can
still benefit from investigations aiming at developing clinical
settings and training strategies. Aprile et al. provided a review of
standardized and non-standardized tools in use to assess spatial
cognition in visually impaired children by employing other
sensory modalities than vision, such as haptic/proprioception
and audition. By highlighting the limitation in visual impairment
dedicated tools, the Authors mainly focused on the lack of formal
and informal assessment methods, and promoted the validation
of large-scale application of newly developed tools in the context
of pediatric visual impairment.

Tivadar et al. investigated mental rotation abilities in
blind participants with a digital haptic technology, which
was previously tested with sighted participants. In contrast to
sighted participants, visually impaired participants generalized
training among letters suggesting the involvement of supramodal
processes. In the case of visual loss, such functions can be trained
to allow blind participants to make better use of more conceptual
than sensory-specific encoding strategies to solve tasks requiring
the spatial manipulation of mental representations. Morelli
et al. presented a longitudinal study reporting a detailed
example of a multisensory rehabilitation intervention leading to
improved spatial cognition in a visually impaired child (from
9 months to 11 years of age). The Authors highlighted how
early and timely intervention is fundamental to sustain and

promote neuropsychomotor development in visual impairment.
Rehabilitation is often aided by technological solutions that may
improve spatial perception and cognition based on the remaining
senses. In this context, sensory substitution devices (SSDs)
can effectively enhance spatial competence, such as navigating
through space independently. As pointed out in this research
topic and in the literature (Cuturi et al., 2016), assessing the
blind population is often neglected in technological development.
Jicol et al. scrupulously tested potential improvements in spatial
navigation tasks with two SSDs: the vOICe (Meijer, 1992),
which exploits auditory information and the BrainPort (Bach-y-
Rita and Kercel, 2003), which provides participants with tactile
information on their tongue about the navigated environment.
In one experiment, results from sighted participants showed
that the combined use of both SSDs provides no improvement,
likely because of task difficulty and sensory overload. In another
experiment focusing on integrating auditory and self-motion
information in sighted and blind participants, only the latter
takes advantage of the vOICe device while navigating on the basis
of egocentric and allocentric information.

Chebat et al. provided a comprehensive review on the use
of SSDs in the acquisition of spatial competence and brain
reorganization in case of blindness. The Authors discuss the
brain correlates of spatial navigation strategies and support
the notion that a modal processing of space can aid spatial
navigation in blind individuals. Regarding future research
directions on SSDs, the Authors suggest deepening the study
of SSDs employment during the first years of development
when brain plasticity is most and great improvement may be
expected (Röder et al., 2020; Röder and Kekunnaya, 2021).
However, not only SSDs but also everyday technologies might
foster spatial cognition in the context of sensory deprivation.
Holmer et al. tested whether gaming habit with computer
and console games influences visuo-spatial control in deaf
individuals. Although gaming experience did not influence
hearing individuals performance, deaf individuals benefitted
from gaming experience compared to deaf non-gamers, likely
by improving visuo-spatial attentional control in the peripheral
visual field.
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