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Autonomous flight for large aircraft appears to be within our reach. However, launching
autonomous systems for everyday missions still requires an immense interdisciplinary
research effort supported by pointed policies and funding. We believe that concerted
endeavors in the fields of neuroscience, mathematics, sensor physics, robotics, and
computer science are needed to address remaining crucial scientific challenges. In this
paper, we argue for a bio-inspired approach to solve autonomous flying challenges,
outline the frontier of sensing, data processing, and flight control within a neuromorphic
paradigm, and chart directions of research needed to achieve operational capabilities
comparable to those we observe in nature. One central problem of neuromorphic
computing is learning. In biological systems, learning is achieved by adaptive and
relativistic information acquisition characterized by near-continuous information retrieval
with variable rates and sparsity. This results in both energy and computational resource
savings being an inspiration for autonomous systems. We consider pertinent features
of insect, bat and bird flight behavior as examples to address various vital aspects
of autonomous flight. Insects exhibit sophisticated flight dynamics with comparatively
reduced complexity of the brain. They represent excellent objects for the study
of navigation and flight control. Bats and birds enable more complex models of
attention and point to the importance of active sensing for conducting more complex
missions. The implementation of neuromorphic paradigms for autonomous flight will
require fundamental changes in both traditional hardware and software. We provide
recommendations for sensor hardware and processing algorithm development to enable
energy efficient and computationally effective flight control.

Keywords: neuromorphic sensing, autonomous flight, bio-inspiration, flying animals, learning, flight control,
energy efficiency
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INTRODUCTION

Autonomous flying capability in aerospace is gathering
momentum with the needs for enhanced safety, sustainability,
and new missions. The latest developments in data science and
machine learning have accelerated the relevance of autonomy for
many areas, such as space operations, unmanned aerial vehicles
(UAVs), (passenger) transport, manned-unmanned teaming,
and air traffic management (National Research Council [NRC],
2014; Airbus, 2020a). In future scenarios, coordination of a vast
number of participants in contested air space is needed, which
can be answered by autonomous and self-organizing vehicles
only with unique sensing capabilities.

The latest (pilot-controlled) Airbus A350 has 50,000 sensors
on board collecting 2.5 terabytes of data every day (Airbus,
2020b). Processing the amount of sensory data needed for
autonomous flight by current processing technologies requires
high-performance computers consuming many kilowatts of
energy. In contrast, a bird has two eyes, two ears, two vestibular
organs, skin, several hundreds of olfactory receptors, 25–500
taste buds, and is capable of magneto reception (Wiltscho
and Wiltscho, 2019; Ornithology.com, 2020). Considering that
the largest bird brains weigh 20 g, have 3 billion neurons
and consume ∼0.2 W (Olkowicz et al., 2016), we need
a new paradigm in bio-inspired sensors and processing, to
overcome the computational and energy constraints required
for autonomous operation in complex three-dimensional high-
speed environments.

Neuromorphic engineering describes a large-scale system
of integrated circuits that mimic neurobiological architectures
present in the nervous system (Ma and Krings, 2009; Morabito
et al., 2013; Zhang et al., 2020). It aims to harness the efficiencies
of biological brains by developing essential computation analogs
of neuronal circuits. To explore the potential of neuromorphic
engineering for aviation sensors, a virtual workshop on the
topic of “Neuromorphic Sensing and Processing Paradigm”
was organized by Airbus, U.S. Office of Naval research Global
(ONRG) and the U.S. DEVCOM Army Research Laboratory
(ARL) in July 2020.

This perspective paper is one output of the workshop and aims
to describe the needs, current advances and provide directions for
future research related to neuromorphic sensing and processing
enablers for autonomous flight missions. The goal is to call upon
the scientific community and funding agencies to enable and
perform the required multidisciplinary research in this area.

MISSIONS AND NEEDS

Autonomous flight for passenger aircraft has the potential
to deliver increased fuel savings, reduce operating costs, and
allow pilots to focus on strategic decision-making and mission
management rather than aircraft management. This is enabled by
image-processing, decision-making support, speech processing
and interpretation, and mutual human-machine trust. Urban
air mobility (UAM) also requires new roles and capabilities,
such as safe ground control of multiple autonomous pilot-less

vehicles. Moreover, autonomy is extremely important for the next
generation of defense and security air systems, where one aim is
to connect manned and unmanned components in operations.
Another (part of this) system can be a “swarm” of unmanned
vehicles that independently coordinate to perform missions. This
requires robust navigation in potentially obscure conditions, for
potential missions such as reconnaissance, disaster management
after catastrophes, search and rescue at sea or on ground,
surveillance, automatic recognition of objects and/or people,
border security, imaging, and optimized air traffic control.

General vital capabilities to achieve autonomous flight are
attitude control (Goulard et al., 2016), height control and
landing (Srinivasan et al., 2000; Baird et al., 2013), collision
avoidance (Tammero and Dickinson, 2002; Rind et al., 2016),
and navigating between places of interest (Webb, 2019). For
search and rescue and security missions, high-speed vehicles
able to operate in complex environments require fast response
times. On the other end are long-term (>1 day) missions with
a great need for low energy consumption where swarms of
flying autonomous vehicles could bring benefits in terms of cost,
safety, and performance. A wide range of capabilities is required,
such as communication channels, predictive tracking, control
of own-drone space (situational awareness), mission-dependent
information, visual/spectral tracking, navigation and control. For
human-autonomy teaming missions, sharing of environmental
sensory information, including temperature, humidity, airflow,
and olfactory inputs (smoke, biohazards, explosives, etc.) is of
major importance. For space missions, autonomous navigation
and situational awareness are required in, for example, space-
debris collision prevention. These exquisite capabilities can be
enabled by a combination of multiple centralized and distributed
sensors, such as observed in biology. The multi-domain missions
as described above require simultaneous sensing modalities
where neuromorphic sensors may need to be combined with
conventional ones, such as hyperspectral imaging.

To enable sensing and efficient real-time processing
for future missions and to address real world challenges,
foundational advances in neuromorphic computing are needed
at the theoretical, computational, algorithmic, and hardware
implementation levels to overcome today’s scalability limit
of e.g. finite state machines. For example, just as insects
integrate information from vision and mechanoreceptors
to instantaneously correct for changes in e.g., airspeed
(Buckminster Fuller et al., 2014), autonomous flying vehicles also
require efficient and adaptive sensorimotor computations for
instantaneous flight correction. Another challenge is navigating
through complex dynamic environments with obstacle
avoidance, such as flying through treetops with wind blowing
through leaves and twigs. This requires luminance normalization
(Hung et al., 2020), coupled with contextual processing of higher
order features, environmental and task-related visual statistics, as
well as feedback and recurrent processing for visual prediction.
Whereas in biology such normalization, contextualization, and
prediction are interdependent processes, there still exists a major
gap in computational implementation today.

An ultimate task of autonomy, the ability to deal with
unexpected situations, requires the system to learn and
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act upon sensory inputs, which is the embodiment of
cognition. This requirement represents another computational
challenge that may be met by neuromorphic implementation.
A robust computational framework must be developed
to realize learning in autonomy that mimics, to some
degree, even simple animals. The inability to provide
training data for all scenarios poses a challenge for full
autonomous flight to meet commercial, defense, security
and space mission needs of the future. Given the vast
area of research in neuromorphic processing, we only treat
learning and decision-making in the context of sensing here
in our discussion.

CURRENT ADVANCES IN
NEUROMORPHIC SENSING

Neuromorphic sensing occurs through a device that perceives
changes in a certain parameter and outputs them into a
stream of events (“spikes”) (Morabito et al., 2013). Thus,
essentially any sensing modality can be converted into
an event-based (EB) detector. For example, pixels in EB
cameras can signal brightness changes exceeding some
threshold; microphones in EB audio sensors can react to
sound intensity variations in certain frequency ranges (Li
et al., 2012; Liu et al., 2014; Inilabs.com, 2020); EB chemical
or olfactory sensor arrays or bio-hybrid sensors can fire
as a result of chemical element concentration deviations
(Koickal et al., 2007; Chiu and Tang, 2013; Vanarse et al.,
2017; Anderson et al., 2020); EB tactile sensors respond
to changes in force and movement (Kim et al., 2018;
Baghaei Naeini et al., 2020).

The most prevalent example of EB sensors are video cameras
(Lichtsteiner et al., 2008; Posch et al., 2011; Chen et al., 2012;
Brandli et al., 2014; Son et al., 2017; Taverni et al., 2018;
Clarke, 2020), which despite their relatively recent birth have
already experienced significant evolution. Event based cameras
have the necessary properties to become the foundational
sensors for autonomous flight, solving the challenges of power,
computing, and timing requirements and enabling local decision-
making. In addition to being affordable and fast, they offer
independence from lighting conditions and a large dynamic
range. Event based sensors can process the equivalent of
several hundred kHz frames using conventional adaptive CPU
hardware for computations that are impossible to carry out
with classic frame-based sensors. Examples are: real-time optical
flow (Benosman et al., 2014), pose estimation (Reverter Valeiras
et al., 2016, 2018), time-based machine learning (Lagorce
et al., 2017), aperture free optical flow (Akolkar et al., 2020),
and many other applications that have been now developed
using pure temporal mechanisms performed at almost real-
time speeds.

Another neuromorphic approach to active sensing, includes
the world’s first spiking neural network-based chip that
was announced recently for radar signal processing. The
first application was reported to encompass the creation
of a low-power smart anti-collision radar system for

drone collision avoidance; future plans are to process a
variety of active sensor data including electrocardiogram,
speech, sonar, radar and LIDAR streams (Liu, 2020).
Reportedly, the chip consumes 100 times less power
than traditional implementations and provides 10X
reduction in latency.

The algorithmic and hardware transitions to EB sensing
platforms are driven by the desire to reduce latency, to achieve
orders of magnitude improvement in energy efficiency, dynamic
range, and sensitivity, to solve complex control problems
with limited computing resources and to attain autonomous
system’s capability of adapting to operation in unpredictable
dynamic environments. Hence recently, they have been applied
successfully in space surveillance applications (Roffe et al., 2021)
and for controlled landing of micro-air vehicles (Dupeyroux
et al., 2020). However, despite the progress achieved in the
last decade by state-of-the-art neuromorphic sensors, there
are several fundamental barriers separating them from real
life applications. For example, visual EB sensors have limited
ability to handle high focal plane array utilization due to
complex illumination or clutter as well as pixel response
inhomogeneity. In terms of sensor data processing, a major
current challenge is to develop spike neural network learning
principles, concurrently advancing both the algorithms and
hardware, to enable the disparate sensor data fusion inherent to
biological sensing.

BIO-INSPIRATION FROM FLYING
ANIMALS AND INSECTS

To address the challenges of energy-efficient real-time processing
of multiple sensing modalities, and the ability to deal with
unexpected situations as described above, we can look toward
flying animals and insects. For example, spatial navigation
builds upon a network of cognitive functions. Animals that
rely on active sensing present particularly powerful models
to guide the implementation of cognitive functions in the
design of autonomous navigation systems, as their actions
reflect cognitive states and directly influence signals used to
represent the environment, which, in turn, guide 3D movement.
Echolocating bats, for example, transmit sonar cries, and use
information carried by returning echoes to determine the 3D
position, size, and other features of objects in the environment
(Simmons and Vernon, 1971; Simmons, 1973; Griffin, 1974;
Busnel and Fish, 1980; Nachtigall and Moore, 1988; Moss
and Schnitzler, 1989; Thomas et al., 2004; Moss and Surlykke,
2010). Central to successful 3D navigation of autonomous
vehicles in cluttered environments is spatial attention. Attention
invokes mechanisms that allocate computational resources to
selectively process and enhance relevant information from the
environment (Broadbent, 1957). It has been demonstrated in bats
that sonarguided attention drives state-dependent processing
of echo returns in brain regions that play key roles in spatial
navigation. Specifically, attention invokes the sharpening of
auditory midbrain neurons that encode an object’s 3D location
in egocentric coordinates and hippocampal place cells that
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encode an animal’s 3D location in allocentric coordinates (Yartsev
and Ulanovsky, 2013; Kothari et al., 2018; Wohlgemuth et al.,
2018). Moreover, bats adjust the directional aim and temporal
patterning of echolocation signals to inspect objects in the
environment, which reveals adaptive sonar signal design, tailored
to the task at hand. Current sonar technologies do not yet
implement adaptive signal transmission and processing, which
may explain superior performance of animals over artificial
devices. New technologies that incorporate more complete

knowledge of animal echolocation systems pave the way for
advanced 3D sonar-guided navigation of autonomous vehicles in
dark and cluttered environments.

For barn owls, as efficient predators adapted for hunting
rodents in extremely low light conditions, attention is
also of key importance to prevent overload of information
processing capacity and for stable behavioral control in face
of multiple distractors in cluttered and noisy environments
(Posner, 2016). Neurons in the optic tectum of barn owls

FIGURE 1 | Schematic route from bio-inspired behaviors toward neuromorphic sensors for autonomous flight. Animal figures are all covered by copyright with
Creative Commons through https://www.pexels.com.

TABLE 1 | Neuromorphic sensing for autonomous capabilities – roadmap.

Desired functions Current challenges Bio-inspiration Estimated
timeline
(years)

High-speed in complex environment
(obstacle and collision avoidance, mission
performance)

Dynamic range and sensitivity, response
times, sensory fusion, multiple agents in
congested space

Fruit fly innate flight control and survival
capabilities, swarming

5 (UAM) – 20
(combat
systems)

Robust navigation Obscuration and glare conditions, GPS
denied environment

Visual and magnetoreceptive capabilities of
flying animals, spatial memory

5–10

Increasing complexity of flight control,
air/ground transition efficiency

Sensorimotor integration, translation between
small and large platforms and different
degrees of complexity

Resilience to wind gusts, innate
landing/perching/take-off, differences in brain
processing between insects and birds

5–10

Computing and sensing efficiency Scalability, power, weight Resource-limitation in biology (few neurons in
small low-weight brain), sensory fusion

10–15

Multi-sensory awareness Sensory fusion and energy consumption,
reliable automated object recognition

No distinction between neurons signalling in
different sensory processing systems,
learning, attention and recognition

5–15

Cognition / adaptability Deep understanding of brain learning
mechanism

Learning, attention, decision and reward
systems

30+

Please note that the mentioned challenges involve a mix of both algorithms and hardware.
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respond preferentially to visual and auditory stimuli that
break a regular pattern of their background (Zahar et al.,
2018) or that are categorically stronger from competing
stimuli (Mysore et al., 2011). Unique neural adaptation
(Netser et al., 2011), circuit motifs (Mysore and Knudsen,
2012) and top down modulation (Winkowski and Knudsen,
2008) that facilitate the stimulus selection process at the
neuronal level have been identified. Such insights on the
mechanisms of the barn owl’s neural activity may teach
us information-processing strategies that are efficient and
behaviorally useful.

The barn owl’s intriguing capability to avoid obstacles
in dark conditions seems to rely on spatial memory and
strong sense of self position in the memorized map of space
(Payne, 1971). Preliminary results have begun to reveal the
neural representation of the owl’s location and direction in
space and provide a promising avenue for new inspirations
about autonomous aviation in extreme light conditions
(Agarwal and Gutfreund, 2019).

Another entry point is to focus on insect brains that
are known to be of lesser complexity and therefore
more adapted to modeling. Insect brains are particularly
adapted to resource-constrained scenarios as in the case
of flying machines while showing amazing functionalities
that allow them to perform complicated tasks with great
ease such as (visual) collision avoidance, localization,
communication, navigation, odor source localization and
social interaction in unknown unpredictable environments
(Smith, 2007; Schneider and Levine, 2014; Weir and
Dickinson, 2015; Fu et al., 2019; Huang et al., 2019;
Hu et al., 2020).

For example, Drosophila melanogaster, or fruit fly, has a
small brain with ∼100,000 neurons that are highly efficient
in sensory processing. Although having an extremely poor
spatial resolution (only ∼800 pixels in each compound eye),
the visual system of fruit flies and other type of flies are
highly sensitive to movements (Borst et al., 2010; Borst,
2018), inspiring the development of EB cameras described
earlier. Moreover, there are several downstream layers of
neural circuits that compute and process optical flow (Weir
and Dickinson, 2015; Mauss and Borst, 2020). This innate
neural “computation” endows a fly with the abilities to detect
threats (high-speed moving objects), avoid obstacles, control
its flight course (Mauss and Borst, 2020), and estimate its
orientation (Su et al., 2017), which is exactly what we need
for our autonomous flying vehicles, without the need for
more than rudimentary object recognition and classification,
which are computationally expensive in today’s artificial neural
network architectures. Other examples are represented by
locusts and flies that can detect visual collisions by a
special neural structure (Fu et al., 2019). Recently, it has
been modified into bio-plausible neural models that were
applied on autonomous mobile robots and also UAVs with
constrained computational resources (Huang et al., 2019;
Hu et al., 2020).

OUTLOOK TOWARD ADVANCING
NEUROMORPHIC APPLICATIONS

So, how can we translate nature’s amazing capabilities into
autonomous flying vehicles with limited energy supply? For
example, flying nano-drones (Ma et al., 2013; Karásek et al.,
2018) mimicking capabilities of fruit flies will unlock novel
opportunities, such as development of nano-drone swarms
that can explore and monitor unknown indoor or outdoor
environments (Brambilla et al., 2013; McGuire et al., 2019).
Recently, a neuromorphic chip was used in the control loop of a
flying drone able to perform smooth optical flow landings, like
honeybees, which immediately illustrated the energy efficiency
and speed promised for such neuromorphic applications
(Dupeyroux et al., 2020). Computational principles of dynamic
vision of fruit flies or other insects can be implemented
together with EB cameras, and used in parallel with the slower
and energetically demanding computer vision systems that are
designed for object recognition. This way a UAV can detect
obstacles or potential threats even before they are recognized
while using low-powered passive vision. For larger aircraft,
advances in neuromorphic computing could lead to improved
sensing and sensory fusion, including real-world resilience and
prediction, inspired by the role of biological recurrent networks
in solving such challenges (Tang et al., 2018; Kubilius et al., 2019).

Autonomous flight with neuromorphic efficiency requires a
cross-disciplinary effort, and EB temporal computation requires
new thinking. One missing piece of the puzzle to create truly
neuromorphic systems is the computational hardware. It is
expected that such architecture will be extremely low power while
allowing to truly operate in real-time at the native resolution
of the sensor. An optimal solution would be to approach the
problem by considering the timing of events and developing
techniques where each event incrementally adds information to
what has already been computed (Benosman et al., 2014). This
idea of local computation is not new and has been described to be
present in most real neural networks where the layers of neurons
process information at their own independent time scales based
on the received sensory data rather than relying upon any form
of “global” clock or memory.

Potential advantages of neuromorphic computing for active
vs. passive imaging (e.g., bat echo-location vs. owl vision) should
also be explored. Active vision (e.g., dense LIDAR) can provide
limited 3D sensing but is challenged by objects such as trees,
poles, and traffic lights (Chauhan et al., 2014), whereas passive
imaging is preferred for maintaining stealth but is energetically
expensive. Both areas of research have been dominated by
convolutional approaches, and an open question is how to fuse
active and passive sensors, including antennae, and their data for
efficient, resilient, and adaptive sensory-decision-motor loops.
Sensory information in biological brains is represented in the
same way for all signals, there is occurrence and temporal
correlation, no distinction between inputs, and a generic way
of generating events triggered by the data. This saves a lot
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of time and energy and EB sensors could aid in emulating
biology in this sense.

Top-down (internal guidance – mission driven) and bottom-
up (externally driven) attention (Katsuki and Constantinidis,
2014) are the neural processes that may solve the bottleneck
issue in sensory information processing. With these two types of
attention mechanisms, our brain’s central executive unit is able
to focus on mission-relevant sensory signals while maintaining
flexibility in rapidly switching to other sensory signals that occur
unexpectedly. Predictive coding might play a crucial role here
because it generates and updates an internal representation (or
mental model) of the environment, and attention is required only
when a prediction error occurs, which causes the system to shift
to a high-power mode.

An additional layer of complexity is presented by
neuromorphic computing inspired by biological principles for
learning, which is needed for adaptive, resilient, and resource-
efficient distributed sensing and learning (i.e., by swarms
and other sensors) (Thomas, 1997; Abdelzaher et al., 2018),
e.g., of target signatures and harsh environmental conditions,
and for assured low-bandwidth communication. Progress on
these challenges would create a framework of foundational
principles, e.g., for predicting patterns and decisions from
complex dynamics.

We have identified a clear need to enhance understanding
of neurosensory systems in nature’s flying creatures, which
shall result in new and better mathematical models needed for
autonomous flying vehicles, see Figure 1. The long-term goal is
hardware and software design and prototyping for interacting
autonomous vehicles. Our target is neuromorphic hardware
that aims at mimicking the functions of neural cells in custom
synthetic hardware that is analog, digital, and asynchronous in
its nature of information processing and is vastly more energy-
efficient and lighter than classical silicon circuitry. It is expected
that such a neuromorphic technology will disrupt existing
solutions and be a key enabler for real-time processing of different
sensor modalities by lower cost, lower energy consumption,
lower weight, adaptable to changing missions, while providing
enhanced and resilient performance and saving human lives.

In Table 1, we have created an overview of the current
challenges toward autonomous flight and how the biology of
flying creatures can inspire us in the coming years to reach the
desired milestones. To summarize our recommendations:

1. Develop EB neuromorphic sensor hardware and
processing algorithms to support resilient and efficient
navigation and collision avoidance

2. Develop computationally efficient flight control with fast
sensor-to-actuator responses to support resilience

3. Develop neuromorphic attentional, sensory fusion, and
representational mechanisms to increase efficiency and
goal-directed performance in complex scenarios

4. Develop neuromorphic approaches to learning for adaptive
and predictive sensing and control

5. Develop principles to integrate neuromorphic and
convolutional approaches to harness their mutual
advantages
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