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Predicting brain age has become one of the most attractive challenges in computational

neuroscience due to the role of the predicted age as an effective biomarker for different

brain diseases and conditions. A great variety of machine learning (ML) approaches and

deep learning (DL) techniques have been proposed to predict age from brain magnetic

resonance imaging scans. If on one hand, DL models could improve performance

and reduce model bias compared to other less complex ML methods, on the other

hand, they are typically black boxes as do not provide an in-depth understanding of

the underlying mechanisms. Explainable Artificial Intelligence (XAI) methods have been

recently introduced to provide interpretable decisions of ML and DL algorithms both at

local and global level. In this work, we present an explainable DL framework to predict

the age of a healthy cohort of subjects from ABIDE I database by using the morphological

features extracted from their MRI scans. We embed the two local XAI methods SHAP and

LIME to explain the outcomes of the DL models, determine the contribution of each brain

morphological descriptor to the final predicted age of each subject and investigate the

reliability of the two methods. Our findings indicate that the SHAP method can provide

more reliable explanations for the morphological aging mechanisms and be exploited to

identify personalized age-related imaging biomarker.

Keywords: explainable artificial intelligence, XAI, brain aging, deep neural networks, machine learning, MRI,

FreeSurfer, morphological features

1. INTRODUCTION

Brain age prediction has become a challenging topic in computational neuroscience, due to the
strong link between aging processes and several brain disorders and diseases (Franke and Gaser,
2012; Gaser et al., 2013; Koutsouleris et al., 2014; Cole and Franke, 2017b; Wang et al., 2019).
Accordingly, accurate age prediction models measuring the difference between the chronological
age and the predicted brain age (i.e., the age gap) have been developed to help identifying novel
functional and structural biomarkers for such diseases and provide systems for early diagnosis
(Cole et al., 2015, 2019; Cole and Franke, 2017a). In particular, machine learning (ML) and deep
learning (DL) algorithms have been successfully applied to predict age from brain MRI scans. Two
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main approaches are largely adopted to perform brain age
prediction: on one hand, a number of selected features such as
morphological descriptors, graph-based or other imaging-related
features can be extracted from imaging to train different models
(Erus et al., 2015; Amoroso et al., 2018, 2019; Bellantuono et al.,
2020; Han et al., 2020); on the other hand, more complex models
such as convolutional neural networks directly exploiting raw
image as input have proven to be particularly effective in brain
age prediction even in broad age ranges (Cole et al., 2017, 2019;
Feng et al., 2020; Levakov et al., 2020; Peng et al., 2021). Although
convolutional neural networks offer undoubted advantages such
as reduced preprocessing time and high performance (Cole et al.,
2017), both ML and DL feature-based learning approaches based
on morphological features are still widely adopted by scientific
communities as they allow to investigate the morphological
age-related brain changes in a great variety of disorders and
conditions (Van Rooij et al., 2018; Corps and Rekik, 2019;
Boedhoe et al., 2020; Han et al., 2020).

Several works have shown that DL models improve
performance and reduce model bias compared to other less
complex ML methods (Couvy-Duchesne et al., 2020; Da Costa
et al., 2020; Lombardi et al., 2020c); however, current DL
approaches applied to neuroimaging typically do not provide
an in-depth understanding of the underlying mechanisms and
how they contributed to the outcome. Understanding how the
models affect the decisions and how each feature is related to the
outcomes can increase confidence in the models and broaden
their applications in the clinical setting (Carvalho et al., 2019;
Holzinger et al., 2019). In order to overcome these limitations,
new explainable methods have been introduced in the last 5
years. Explainable Artificial Intelligence (XAI) is a relatively new
field of Artificial Intelligence and it comprises a large amount
of techniques that combines ML algorithms with explanatory
techniques to develop explainable solutions that have been
extensively applied in different domains (Gunning, 2017; Adadi
and Berrada, 2018; Biecek, 2018; Guidotti et al., 2018; Miller,
2019; Arrieta et al., 2020; Bussmann et al., 2020). Recent work has
suggested that XAI methods constitute a fundamental pillar for
personalized medicine, including individualized interventions
and targeted treatments (Vu et al., 2018; Fellous et al., 2019;
Langlotz et al., 2019). Most widespread explainable techniques
comprise local model-agnostic methods that focus on explaining
individual predictions of any ML models, such as LIME (Ribeiro
et al., 2016, 2018) and SHAP (Lundberg and Lee, 2017). These
methods aim at estimating the contribution of individual features
toward a specific prediction by perturbing a given instance and
observing the effect of these perturbations on the output of
the model.

However, as far as we know, there has been little analysis
of the reliability and robustness of the explanation methods
in computational neuroscience, making their utility for critical
applications unclear. In this work, we present an explainable DL
framework to predict the age of a healthy cohort of subjects
from ABIDE I database (Di Martino et al., 2014) by using
morphological features extracted from their MRI scans. We
embed two local XAI methods to explain the outcomes of
the DL models and determine the contribution of each brain

morphological descriptor to the final predicted age of each
subject. We propose a complete architecture to compare the two
methods, determine their reliability and to extract information
on the importance of the most age-related morphological
descriptors in order to encourage the use of DL models in
clinical settings.

2. MATERIALS

2.1. Subjects
In this study, we exploited the same dataset used in our previous
work (Lombardi et al., 2020b). In particular, we selected T =

378 T1-weighted MRI publicly available scans of a cohort of
typically-developing individuals from the Autism Brain Imaging
Data Exchange (ABIDE I) collected from 17 international
sites. The T1-weighted MRI scans were collected with 3 Tesla
scanners with different characteristics such as manufacturers
and parameters (e.g., echo time, repetition time, flip angle,
and field of view). More details about images and acquisition
protocols from each site are available at the web page of the
initiative1. All participating sites received local Institutional
Review Board approval for acquisition of the contributed data.
Only male subjected were considered in our analysis due to
the high imbalance between male and female subjects in the
ABIDE data sample. Additionally, we used the full IQ (FIQ)
test scores from the phenotype information file and the Signal
to Noise Ratio (SNR) from the anatomical quality assessment
metrics provided by the publicly available ABIDE Preprocessed
repository (Craddock et al., 2013). The SNR was computed as
the mean intensity within gray matter divided by the standard
deviation of the values outside the brain (Magnotta et al., 2006).
The demographic and imaging-related characteristics of the
studied subjects are listed in Table 1 for each of the 17 sites.

2.2. Morphological Features
As in our previous work (Lombardi et al., 2020b), the T1 raw
scans were preprocessed by using the recon-all pipeline from the
software FreeSurfer v.5.3.0 (Dale et al., 1999; Fischl et al., 1999,
2002) on ReCaS datacenter2 (Lombardi et al., 2019). The recon-
all pipeline allows to segment the brain into 68 cortical regions
and 40 sub-cortical region bymeans of the Desikan–Killiany atlas
(Desikan et al., 2006) and Aseg Atlas (Fischl et al., 2002). The
output of the pipeline consists in several statistical morphological
features related to surface, curvature, thickness and white matter
volumes of the cortical regions and volumes of the sub-cortical
regions as well as some global brain metrics including surface
and volume statistics of each hemisphere, total cerebellar gray
and white matter volume, brainstem volume, corpus callosum
volume, white matter hypointensities. More details about the
steps performed can be found at the web page of the pipeline3 and
in our previous work (Lombardi et al., 2020b). We constructed
the matrix of the features of dimension T × P with T = 387, and

1http://fcon_1000.projects.nitrc.org/indi/abide
2https://www.recas-bari.it/index.php/en/
3https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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P = 1, 213, where each row represents a single subject described
by Pmorphological features.

3. METHODS

In this study, we developed a DL framework to:

• Predict the brain age of a healthy cohort of subjects by using
their morphological features and DNNmodels;

TABLE 1 | Demographic and imaging-related information of the subjects per site.

Site Samples Age range (years) FIQ (mean ± std) SNR (mean ± std)

CMU 2 21− 25 109.5± 0.7 42.5± 6.4

KKI 23 8− 13 112.9± 9.4 23.9± 7.8

Leuven 1 13 18− 29 116.5± 12.7 16± 1.7

Leuven 2 14 12− 17 NA 13.5± 1.7

MaxMun 24 7− 48 112.1± 8.8 20.2± 3.5

NYU 77 6− 32 113.7± 12.6 12.6± 1.6

Olin 13 10− 23 116.3± 17.0 18.3± 2.5

Pitt 22 12− 33 110.4± 8.3 9.4± 1.6

SBL 14 20− 42 NA 6.3± 1.2

SDSU 14 12− 17 110.5± 10.3 20.5± 4.6

Trinity 25 12− 25 110.8± 12.2 11.3± 2.9

UCLA 1 28 9− 18 104.6± 10.6 13.8± 1.9

UCLA 2 11 10− 14 113.1± 11.4 13.8± 2.1

UM 1 32 8− 19 109.8± 8.7 22.7± 6.5

UM 2 17 13− 29 110.3± 10.2 24.3± 5.0

USM 43 8− 40 115.1± 13.7 20.5± 2.0

Yale 6 8− 17 108.1± 13.3 21.5± 10.8

Total 378 6− 48 112.1± 11.7 16.6± 6.6

• Exploit two local XAI methods to extract personalized
age-related features;

• Investigate the reliability of these individual
age-related features;

• Compare the two XAI methods.

The overall proposed framework is shown in Figure 1. We
adopted a leave-one-site cross validation regression scheme:
the data from one site are used as a test set to evaluate the
performance of the model while the data from all the other sites
are used as training set. This cross-validation scheme has been
extensively used in multisite studies as it is possible to test the
generalization of the models to a new site, and to investigate
the correlation between the variability of the characteristics of
the different sites and the performance of the models (Abraham
et al., 2017; Bhaumik et al., 2018; Heinsfeld et al., 2018). Since
in general the ML algorithms can be sensitive with respect to
changes in the training set, returning both the performance and
the feature ranking varying from round to round, for each cross-
validation round, we randomly under-sampled the training set
N = 100 times by selecting the 80% of the samples to produce
small variations of the composition of the set and for each
iteration we trained a DNN model to predict the chronological
age of the subjects Y , using a fixed percentage of the samples
to perform the tuning of the parameters. We tested the DNN
models on each sample of the test set collecting N = 100
performance MAE values for each subject. Moreover, we applied
both SHAP and LIME algorithms to extract the age-related
feature importance vector for each subject collecting the two
matrix S and L of dimension [N × P], whose generic element
snk (lnk) indicates the SHAP (LIME) value for the k feature within
the n iteration. Accordingly, we analyzed the resulted matrices to

FIGURE 1 | Schematic overview of the Explainable DL framework for brain age prediction.
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investigate the effect of the variability of the training set on both
performance and age-related feature importance at subject-level
and across subjects. In the following sections, each step of the
algorithm is further explained.

3.1. Deep Neural Networks
We developed a fully connected DNN architecture. The model
and all the computation was implemented using Tensorflow 2.0
(Abadi et al., 2016), with the serial interface. The Input layer
shape was composed by 1, 213 units, i.e., the number of features
that characterize each subject.

It is well-known that there is no general rule to determine
the model hyper-parameters, so we tuned them with a series of
10-fold Grid Search cross validations on training sets, using the
left out site as a completely independent test set. In each training
the decrease of the loss was monitored using the Keras callback
functions EarlyStop, with patience = 20, and ModelCheckpoint,
in order to stop the training before overfitting. The parameters
determined with cross validations were: the activation function
(we checked ReLu and tanh), the dropout rate (0, 0.1, 0.2, 0.3),
the number of neurons (128, 256, 512, 1, 024), the net optimizer
(SGD, Adam), the loss function (Huber and MSE), the learning
rate (1e− 4, 5e− 5, 1e− 5), the number of layers (3, 4, 5) and the
batch size (20, 100, 400).We reached the final configurations with
4-layers with 512 units per layer, relu as activation function, the
SGD optimizer with learning rate 5e− 5 and momentum 0.9, the
loss functionHuber and dropout 0. The number of epochs of each
training round was controlled by the trend of the loss function
on the validation subset through the callbacks mentioned above.
The output layer had a single unit with no activation function, in
order to perform the required regression.

The performance of the models were evaluated by means of
the Mean Absolute Error (MAE):

MAE =
1

t

t
∑

i=1

|yi − ŷi|, (1)

with t being the sample size for the specific test site, yi the
chronological age, and ŷi the predicted brain age. The correlation
coefficient between the chronological age and the predicted age
of the subjects was also computed to assess the performance of
the models over the whole dataset:

R =

∑T
i=1(yi − ȳ)(ŷi − ¯̂y)

√

∑T
i=1(yi − ȳ)2

√

∑T
i=1(ŷi −

¯̂y)2
, (2)

where ȳ and ¯̂y denote the sample mean of the chronological
age and the predicted brain age, respectively. A non-parametric
permutation test was applied to assess the statistical significance
of above-chance predictive performance for the overall model
as suggested in Hilger et al. (2020). In details, we permuted
1, 000 times the age outcomes of the subjects and assessed
both performance values (MAE and R) within each permutation
round. Finally, a p-value for each performance metric was
assigned by dividing the number of times for which model

performance based on the true age was lower than the
performance for the permuted age outcomes by the number of
permutations, i.e., 1,000.

3.2. Explainable Algorithms
In this work, we adopted the most popular local explanation
algorithms: SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro
et al., 2016), to explain the decisions of the DNN models on
each test sample. These methods are local model-agnostic as
they explain predictions at individual level regardless the selected
models. Basically, the two methods learn an interpretable linear
model around each test instance and estimate feature importance
at local level. For a dataset D = [(x1, y1), (x2, y2), ..., (xT , yT)],
where xi ∈ R

P is the feature vector for the sample i and yi
the corresponding age, the generic pre-trained model f returns
a prediction f (xi) based on a single input sample xi. SHAP and
LIME aim at finding a linear model g to explain f by using
a simplified inputs x′ that map the original inputs through a
mapping function x = hx(x

′) trying to ensure g(z′) ≈ f (hx(z
′))

whenever z′ ≈ x′. Both methods minimize the following
objective function:

ξ = argmin
g∈G

L(f , g,πx′ )+ �(g), (3)

where G is the class of linear models, πx′ represents a proximity
metric between x and x′, �(g) denotes the complexity of the
explanation g and the loss function L is defined as:

L(f , g,πx′ ) =
∑

x′∈X′

[f (x′)− g(x′)]2πx′ , (4)

where X′ is the set of inputs within the neighborhood of x′. Both
methods try to generate an explanation for x that approximates
the behavior of the model accurately within the neighborhood of
x, while achieving lower complexity (Slack et al., 2020). In other
words, the methods explain the prediction of the instance x by
computing the contribution of each feature to the prediction, so
the absolute value of each SHAP and LIME value expresses how
much each feature contributes to the final prediction (Wang et al.,
2020). In LIME, �(g) and πx′ are defined heuristically, while in
SHAP they are determined by satisfying some equations from
the cooperative game theory. More details about the principles
underlying these methods and the mathematical definitions can
be found in the seminal works of Lundberg and Lee (2017) and
Ribeiro et al. (2016). In our analysis, we applied the python
implementation of the SHAP4 and LIME5 methods.

3.3. Reliability of Explainable Scores
Both SHAP and LIME are post-hoc local XAI methods as they
exploit a pre-trained ML model to compute approximations of
the model’s inner decision logic by producing understandable
representations in the form of feature importance scores for
each independent test sample that represent the contribution of

4https://anaconda.org/conda-forge/shap
5https://anaconda.org/conda-forge/lime
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FIGURE 2 | Analysis of intra-consistency and inter-similarity of both SHAP (blue) and LIME (orange) scores.

each feature to the final prediction of the ML model (Moradi
and Samwald, 2021). These methods greatly differ from feature
selection methods, which use the entire train set to determine
the impact of each feature on a performance metric: the output
of a feature selection scheme usually results in a single feature
importance vector, whereas local XAI methods output a feature
importance vector for each test sample. Therefore, a reliability
analysis of XAI scores was performed to quantify the variation
of the score values by slightly varying the composition of the
training set. Moreover, since cognitive phenotypic variables and
confounding factors related to the acquisition sites can affect
the morphological feature values (Frangou et al., 2004; Shaw
et al., 2006; Fortin et al., 2018), we investigated whether these
factors could also influence the values and the reliability of the
XAI scores.

An overview of the methodology is shown in Figure 2. We
collected N = 100 realizations of both SHAP and LIME vectors
forming the two matrices S and L for each subject. We also
averaged the N = 100 realizations of both values in order to
obtain a single representative SHAP vector (St = [st,A1, ..., st,AP])
and LIME vector (Lt = [lt,A1, ..., lt,AP]) for each subject t, where:

st,Ap =
1

N

N
∑

n=1

snp (5)

is the pth averaged SHAP value for the feature p.
In order to investigated the reliability of both SHAP and LIME

values, we computed:

• The intra-consistency coefficient of the scores, i.e., the
correlation between each couple of score vectors sk =

[sk1, sk2, ..., skP] and sz = [sz1, sz2, ..., szP], with k, z = 1, ...,N
within each subject:

ICkz =

∑P
p=1(skp − s̄k)(szp − s̄z)

√

∑P
p=1(skp − s̄k)2

√

∑P
p=1(szp − s̄z)2

, (6)

where s̄k and s̄z denote the sample means of the two vectors
and k and z denote the indices of different model training
iterations. We also computed ICkz for each couple of LIME

vectors obtaining a distribution of N (N−1)
2 intra-consistency

values for each XAI method. The intra-consistency coefficient
varies between 0 (zero) and 1 (one), hence we compared the
IC distributions by grouping the subjects according to their
site. In addition, the correlation between the mean IC value of
each subject and the variables age, FIQ and SNRwas computed
to verify if a possible association exists between the IC values
of the subjects and each of the phenotypic information and
imaging-related quality metric;

• The inter-subject similarity, i.e., the correlation between the
SHAP (LIME) score vectors St and Su (Lt and Lu) for each
couple of subjects u and t, with t, u = 1, ...,T:

ISut =

∑P
p=1(su,Ap − S̄u)(st,Ap − S̄t)

√

∑P
p=1(su,Ap − S̄u)2

√

∑P
p=1(st,Ap − S̄t)2

, (7)
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where S̄u and S̄t denote the sample means of the two vectors.
We then constructed an inter-similarity matrix IS, where
entry (u, t) = ISut indicates the similarity value between the
scores of subjects u and t for each of the two XAI methods
obtaining matrices ISSHAP and ISLIME. We applied the k-
medoid algorithm on each IS matrix to find the best partition
into clusters (more details on the algorithm are reported
in Supplementary section 3 of Supplementary Material).
The identified clusters of subjects were analyzed by using
different criteria:

1. The site membership to investigate a possible relationship
between the XAI scores and the site of the subjects;

2. The age, FIQ, and SNR distributions for comparing the
phenotipic and imaging-related values across clusters. To
analyze the differences between the identified clusters for
each of the three variables, Kruskal–Wallis tests were
conducted (α = 0.05 with Bonferroni corrections),
followed by post-hoc Tukey–Kramer tests in case of
significant group effects.

3.4. Comparison Between SHAP and LIME
We performed a direct comparison between the SHAP and LIME
scores of each subject t, by computing the correlation between the
SHAP and LIME vectors St and LT , with t = 1, ...,T:

RSL,t =

∑P
p=1(st,Ap − S̄t)(lt,Ap − L̄t)

√

∑P
p=1(st,Ap − S̄t)2

√

∑P
p=1(lt,Ap − L̄t)2

, (8)

where S̄t and L̄t denote the sample means of the two vectors.
In order to identify the set of morphological descriptors whose

importance is most likely to vary with age, a correlation analysis
was conducted between each of the SHAP and LIME averaged
values and the age of the subjects. We considered α = 0.05 with
Bonferroni corrections.

We also compared the set of most significant features between
the two methods to verify a possible overlap between the two sets
by means of the Jaccard coefficient:

J(A,B) =
|A ∩ B|

|A ∪ B|
, (9)

where A and B are two sets of significant features resulting
from SHAP and LIME, respectively. The overlapping analysis
was conducted by varying the threshold level between the 75th
and 99th upper percentile and 1st and 25th lower percentile of
the distributions of the correlation values with step 1 = 2. A
non-parametric permutation test was performed by randomly
permuting 1,000 times the correlation scores and assessing the
percentage of overlap between the two sets to determine the
statistical significance of the actual overlap for each threshold.

4. RESULTS

4.1. Performance of DNN Models
Figure 3 shows the performance of the DNN models for the
different sites and for each subject. In particular, Figure 3A shows

a bubble plot reporting information on the average MAE for each
site coded by colors, the number of samples along the y axis
and the average age of the subjects within each site coded by the
radius of each bubble. Figure 3B shows the violin plots of the age
distributions of the subjects within each site sorted by increasing
MAE coded by the same color map of Figure 3A. It is clearly
evident from both plots that the MAE values are related to age
range within each site: the higher the age range, the higher the
average MAE within a site. Notably, the sites MaxMun and SBL
which include subjects with age in the last percentile of the age
distribution of the whole data samples (age > 30 years) resulted
the sites with the worst performance highlighting a sample size
effect on this age range. This finding is better explained by
inspecting Figure 3C which shows the averaged MAE for each
subject in a scatter plot reporting also the chronological age
and the predicted age with their marginal distributions: the
chronological age distribution is highly right-skewed and the
performance of the DNN models dramatically worse in the most
sparse age range, i.e., the right tail of the distribution. For the
whole dataset, we found the overall performanceMAE = 2.7 and
the correlation between the chronological and predicted age of
the subjects R = 0.86. Both metrics were found to be significantly
different from the chance level, resulting p = 0 from the non-
parametric permutation test (see Supplementary Figure 1 for
more details).

4.2. Intra-consistency of Explainable
Scores
The intra-consistency coefficients of the XAI scores provide
indices of consistency of the feature importance as the training
set varies from round to round. Figure 4 shows the distributions
of these indices for the different sites for the SHAP scores
(Figure 4A) and for the LIME scores (Figure 4B). Apart from
a slight difference between the different sites for both scores,
the LIME scores show consistently lower intra-consistency values
(lower than 0.4 for all the sites) than those exhibited by the
SHAP scores (greater than 0.5 for all the sites). Please refer to
Supplementary Figure 2 for more details. We also evaluated the
correlation between the averaged intra-consistency values and
each of the age, FIQ and SNR variables to investigate whether
any link exists between the average intra-consistency coefficients
of both XAI methods and any of the biological, phenotypic
and image-related characteristics of the subjects. Figure 5 shows
the correlation between the averaged intra-consistency of the
subjects and their age, FIQ and SNR for the SHAP method
(Figures 5A–C) and LIME method (Figures 5D–F). Except for a
weak correlation between the averaged intra-consistency indices
of the SHAP values and the age of the subjects (R = 0.10,
P = 0.049, not significant after Bonferroni correction), no
significant correlations were observed for the other variables for
both XAI methods.

4.3. Inter-similarity of Explainable Scores
We obtained two inter-similarity matrices (ISSHAP and ISLIME) by
computing the inter-similarity coefficient between each couple
of average XAI score vectors of the subjects for each XAI
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FIGURE 3 | Performance of DNN models: (A) bubble plot where each bubble represents a site, the color codes the average MAE values of the subjects within each

site and the radius is proportional to the average age of the subjects within each site, the y position indicates the number of samples within each site; (B) violin plots of

the age distributions of the subjects within each site (the colors indicate the average MAE values for the subjects within each site); (C) scatter plot showing the

chronological age of the subjects vs. their predicted age with the marginal distributions (the black solid line indicates the ideal model and the color of each point codes

the average MAE for the corresponding subject). The performance for the whole dataset are also reported by means of the MAE and R-values.

method. The k-medoid method was used to assess the best
partition of each IS matrix into clusters. We found k = 10
for matrix ISSHAP and k = 5 for matrix ISLIME. More details
on the clustering algorithm can be found in Supplementary
section 3 of Supplementary Material. Figure 6 shows the pie
charts reporting the site membership of the subjects within
each of the 10 clusters for the SHAP values and five clusters
for the LIME values. The different clusters are composed of
individuals from different sites, apart from cluster 2 of the
ISSHAP matrix containing only individuals from the NYU site
and cluster 1 of matrix ISLIME composed mainly of subjects
from the NYU site. We analyzed also the age, FIQ and SNR
distributions of the subjects within each cluster of both inter-
similarity networks. Figure 7 highlights that the age effect is
greater in the ISSHAP network as the age distributions of the
different clusters differ more from each other (Kruskal–Wallis
test: p < 10−6, Bonferroni corrected). The imaging quality
was also detected as a strong effect in the ISSHAP network as

the SNR distributions of the clusters are significantly different
(Kruskal–Wallis test: p < 10−6, Bonferroni corrected). More
details on post-hoc tests are included in Supplementary section
4 of Supplementary Material.

4.4. Comparison Between SHAP and LIME
By directly comparing the SHAP and LIME vectors for each
subject we found the average value RSL = 0.52± 0.05, showing a
weak correlation value between the two XAI scores.

Figure 8 shows different results about the correlation analysis
between the XAI scores and the age of the subjects:

• The distribution of coefficient values between the SHAP scores
of the morphological features and the age of the subjects is
significantly higher than the distribution of coefficient values
between the LIME scores and the age (Wilcoxon test: p =

10−6; Cohen’s d = 1.61) (see Figure 8C);
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FIGURE 4 | Violin plots of the intra-consistency distributions of (A) SHAP values and (B) LIME values for each site.

• A higher number of features statistically related to the age
resulted from SHAP values than from the LIME values
as presented in Figures 8A,B, which show the Manhattan
plots representing the p-values resulting from the correlation
analysis between the XAI scores of the features and the age of
the subjects;

• The sets of age-related features for the two XAI methods
exhibit a remarkably low overlap. Indeed, Figure 8D shows
that for different threshold values of the two correlation
distributions, the overlap coefficient between the two sets
of features is below 0.02. This point is more obvious when
comparing the two sets of morphological features with the
most significant correlation between the XAI scores and the
chronological age (at the threshold 2 − 98 percentiles of
correlation distributions) for the two methods SHAP and
LIME, listed in Tables 2, 3, respectively. A significant overlap
was obtained for each threshold (p < 0.005). The brain
regions related to the two sets of features are also represented
in Figure 9. The two sets overlap only for one feature
(p < 0.002), i.e., the curvature index of the right precentral

ROI. Moreover, among the age-related features detected with
the SHAP method, a prevalence of positively age-associated
cortical features is reported, whereas a prevalence of negatively
age-associated volumetric WM features is observed for the
LIME method.

5. DISCUSSION

In this work, we developed a novel XAI framework to perform
brain age prediction with DNN and morphological features
and compare the local explanations of the two XAI methods:
SHAP and LIME. We adopted a cohort of healthy controls from
ABIDE I dataset, whose heterogeneity is related to the different
number of samples per site, the non-uniform age ranges per
site and the various acquisition protocols. Hence, a leave-one-
site cross validation strategy was chosen to investigate the site
effect. Indeed, both the imaging and phenotipic heterogeneity of
the data sample could affect the learning process and the final
accuracy of the ML algorithms. The results the DNN models
achieved compare favorably with the literature showing the
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FIGURE 5 | Correlation found between the averaged intra-consistency of SHAP values and (A) age, (B) FIQ and (C) SNR of the MRI of each subject; correlation

found between the averaged intra-consistency of LIME values and (D) age, (E) FIQ and (F) SNR of the MRI of each subject.

overall performance MAE = 2.7 and R = 0.86 (Ball et al.,
2019; Corps and Rekik, 2019,?; Zhao et al., 2019; Bellantuono
et al., 2020). However, as shown in Figure 3, our models exhibit
a systematic age under-estimation in the most extreme age-range
of the distribution, reporting worse performance (MAE > 4) at
sites with individuals with chronological age in that range. We
found similar results in our previous work in which more simple
ML models were applied on the same dataset (Lombardi et al.,
2020b).

Afterwards, we applied the two XAI methods to each sample
to derive the local explanations, i.e., a feature importance vector
that express the contributions of the morphological features
to the final prediction of the DNN models. We performed
a hierarchical analysis to compare the reliability of the XAI
scores both at subject-level and across subjects. Firstly, an intra-
consistency score was defined to objectively assess the stability of
the XAI methods for each subject with respect small variations
of the training set. Indeed, the feature importance at local
level should not vary significantly by slightly perturbing the
composition of the training set in order to define a reliable
personalized final ranking of the morphological features for the
age prediction task (Kalousis et al., 2005; Lombardi et al., 2020a).
We compared the intra-consistency values of both SHAP and
LIME scores across the sites to verify a possible site effect on
the feature importance. Figure 5, Supplementary Figure 2 and
Supplementary Table 1 clearly highlight that some significant
differences in intra-consistency values exist between some sites
for both methods. Moreover, it is worth noting that the two

XAI methods exhibit very different intra-consistency values as
the SHAP intra-consistency scores are significantly higher than
the LIME scores regardless the acquisition site. We computed
the correlation coefficient between the averaged intra-consistency
values of the subjects and each of the variables age, FIQ and SNR
for both XAI methods to investigate the relationship between
the feature importance and the phenotipic and imaging-related
information. Figure 5 outlines that none of this variables is
significantly related to the intra-consistency of both SHAP and
LIME scores, hence the reliability of the XAI scores at local level
does not depend on these characteristics of the subjects.

In order to compare the XAI scores across the subjects, we
defined an inter-similarity score. We computed a single vector
of SHAP and LIME scores for each subject by averaging the
vectors resulting from the N under-sampling rounds of the
training set. The purpose of this step was to obtain a single
consistent feature importance vector for each method as by
averaging the different realizations, the more stable scores are
enhanced, while the more fluctuating scores are de-emphasized.
We correlated the XAI vectors between each couple of subjects
to assess the similarity of XAI scores among the subjects, i.e.,
the inter-similarity score. Finally, an inter-similarity matrix IS
was constructed for each method and partitioned into clusters to
detect groups of subjects with similar XAI scores. The analysis
of the detected clusters show that except for a single cluster
composed only by subjects from site NYU for the SHAP method
and a cluster composed mainly of subjects from the NYU site
for the LIME method, the other clusters include subjects from
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FIGURE 6 | Pie charts showing the site membership of (A) the subjects belonging to each of the 10 clusters resulting from the partition of the inter-similarity network

of the SHAP values; (B) the subjects belonging to each of the 5 clusters resulting from the partition of the inter-similarity network of the LIME values.
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FIGURE 7 | Boxplots of the distribution of (A) the age, (B) the FIQ values, and (C) SNR values for the 10 clusters resulting from the partition of the inter-similarity

network of the SHAP values; boxplots of the distributions of (D) the age, (E) the FIQ values, and (F) SNR values for the five clusters resulting from the partition of the

inter-similarity network of the LIME values.

different sites (see Figure 6). This finding indicates that the
feature importance values extracted by the two XAI methods
also reflect the different characteristics of the NYU site with
respect to all the other sites that have been discussed in several
studies (Shehzad et al., 2015; Bhaumik et al., 2018). Similarly
to the subject-based analysis, we compared the phenotypic and
imaging quality-related variables between the different clusters
for the two XAI methods. From Figure 7, it can be noted that
only the clusters derived from the ISSHAP matrix reflect a partition
of the subjects into significantly different age ranges, whereas the
clusters extracted from the ISLIME matrix do not reveal a clear
age-related partition of the subjects. This finding confirms the
reliability of the SHAP scores with respect to the age prediction
problem. Moreover, both partitions are related to the SNR of the
subjects as the clusters also significantly differ for the imaging-
related quality metric, showing that the site heterogeneity also
affects the local XAI scores as well as the performance of the
predictive models.

We performed a direct comparison between the SHAP and
LIME vectors which highlighted a low correlation between the
XAI scores for each subject. Moreover, a correlation analysis
between each feature score vector and the age of the subjects
was performed to yield a set of morphometric descriptors
whose relevance for age prediction is most variable with age.
This step of the framework provides global explanations of
the DNN models since a set of age-related scores is extracted
from the whole population under investigation. As shown

in Figure 8C, the correlation distributions between the XAI
scores and the age are markedly different from each other
(p < 10−6, Cohen’s d = 1.61). We reported the most age-
related features for SHAP and LIME methods at the statistical
threshold of the 97th percentile of the correlation distributions
in Tables 2, 3, respectively. The brain regions corresponding to
the most age-related features for both XAI methods are shown
in Figure 9. Average thickness, folding, and curvature index
statistical attributes related to precentral gyrus and inferior and
lateral occipital cortex were detected as the most age correlated
for the SHAP method. Relevant morphological changes of these
regions have been reported both in neurodevelopment and aging
trajectories (Tamnes et al., 2010; McGinnis et al., 2011; Remer
et al., 2017). In addition, changes in cortical curvature and
folding of these regions have been extensively observed during
brain maturation (Meng et al., 2014; Lefèvre et al., 2015). We
also found CSF statistical descriptors as features significantly
correlated with age in line with several works where cerebrospinal
fluid biomarkers have been identified for normal aging process
as well as for brain atrophy characterization (Preul et al., 2006;
Baird et al., 2012; Vinke et al., 2018). In contrast, these regions
do not appear among the most age-related LIME scores. In this
set, features related to WM volumes of opercular and triangular
part of inferior frontal gyrus and inferior temporal gyrus were
detected as the most age-related descriptors. Notably, only the
SHAP method showed a significant correlation between the
importance of the cortical thickness of both hemispheres and
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FIGURE 8 | Comparison of SHAP and LIME scores. Manhattan plot representing the p values resulting from the correlation analysis between (A) the SHAP scores of

the features and the age of the subjects, (B) the LIME scores of the features and the age of the subjects; (C) distributions of correlation values found between the

SHAP/LIME scores of the features and the age of the subjects; (D) overlap between the most significant features for the two criteria (SHAP/LIME) selected by varying

the percentile threshold of the correlation distributions.

age (R = 0.38 for left and R = 0.36 for right). This finding is
highly consistent with several previous studies which, although
reporting non-linear and widespread regional variations of both
cortical and volume morphology with age, unequivocally agree
on cortical thinning as a pattern of neurodevelopment (Zielinski
et al., 2014; Fjell et al., 2015; Tamnes et al., 2017). In general,
the age-related feature sets for the two methods strongly differ
from each other as shown in Figure 8. Indeed, the overlapping
analysis between the two sets highlights a low overlap, regardless
the selected correlation threshold. In addition, a prevalence of
negative age correlation values can be observed for the LIME
scores. A significant negative correlation between the LIME
values of a givenmorphological feature and the age of the subjects
means that the LIME importance of that feature decreases as
age increases. However, it is not possible to claim that the
LIME scores better explain age in younger subjects than in older

subjects as in our analysis we found that the LIME scores showed
very low intra-consistency values regardless of the age of the
subjects (as shown in Figure 5D).

6. LIMITATIONS AND FUTURE
DIRECTIONS

Although this work shows some important implications of SHAP
and LIME XAI methods for the interpretations of brain age
predictions with DNN models, it presents some limitations. We
selected a cohort of typically neurodevelopment subjects from
the ABIDE I dataset to explore the effect of heterogeneity of
acquisition protocols and dataset composition on XAI scores.
Our analysis revealed that the site effect also influences the
XAI scores and therefore upstream harmonization techniques
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TABLE 2 | The most significant age-related morphological features resulting from the SHAP scores grouped by category (R, Right; L, Left; curv, mean curvature; thick,

thickness; vol, volume; the correlation coefficient for each feature is reported in brackets).

Sub-cortical volume Cortical features WM volumes Global features

(+0.34) CSF normStdDev (+0.35) L caudalmiddlefrontal CurvInd (+0.33) wm L cuneus Vol (+0.38) L mean thick

(+0.39) CSF normRange (+0.33) L inferiorparietal ThickAvg (+0.35) wm Rlateralorbitofrontal normMax (+0.36) R mean thick

(+0.34) Right Pallidum normMin (+0.34) L inferiorparietal CurvInd

(+0.35) L lateraloccipital ThickAvg

(+0.37) L lateraloccipital FoldInd

(+0.40) L precentral ThickAvg

(+0.37) L precentral FoldInd

(+0.35) L precentral CurvInd

(+0.34) L precuneus ThickAvg

(+0.38) R inferiorparietal ThickStd

(+0.37) R lateraloccipital ThickAvg

(+0.34) R lateraloccipital FoldInd

(+0.33) R lateraloccipital CurvInd

(+0.32) R lingual CurvInd

(+0.33) R posteriorcingulate ThickAvg

(+0.33) R precentral CurvInd

(+0.36) R precuneus ThickAvg

(+0.34) R superiorparietal CurvInd

TABLE 3 | The most significant age-related morphological features resulting from the LIME scores grouped by category (R, Right; L, Left; curv, curvature; thick, thickness;

vol, volume; the correlation coefficient for each feature is reported in brackets).

Sub-cortical volume Cortical features WM volumes

(−0.23) L Cerebellum WM normMax (−0.29) L entorhinal ThickAvg (−0.25) L caudalmiddlefrontal normRange

(−0.25) L VentralDC normMax (−0.25) L fusiform FoldInd (−0.24) L inferiortemporal normMean

(−0.25) L VentralDC normRange (−0.23) L parsorbitalis MeanCurv (−0.24) L inferiortemporal normMin

(−0.24) R Amygdala normRange (0.23) R precentral CurvInd (−0.24) L lateralorbitofrontal normStdDev

(−0.27) R VentralDC Vol (−0.23) R superiortemporal GrayVol (−0.23) L paracentral normRange

(−0.35) non-WM hypointensities normMean (−0.30) L parsopercularis normRange

(−0.30) non-WM hypointensities normMin (−0.29) L parsorbitalis normRange

(−0.23) CC Mid Anterior normMax (−0.25) L insula normStdDev

(−0.28) CC Anterior normMean (−0.26) R lateralorbitofrontal normStdDev

(−0.32) R parsorbitalis normRange

(−0.22) R parstriangularis normRange

should be applied to the morphological features to reduce the
batch effects (Fortin et al., 2018). Another important aspect
concerning the selected cohort is its sample size and age range,
indeed in our study morphological features are analyzed to
predict the age of 378 subjects in the limited age range 6–
48. Previous works have widely demonstrated that both the
sample size and the age range could affect the performance
of age prediction models (Amoroso et al., 2018; Peng et al.,
2021). Moreover, currently the best state-of-the-art results have
been achieved with datasets larger than 2,000 samples (Levakov
et al., 2020; Peng et al., 2021). The reliability of the XAI values
is closely related to the accuracy of the predictive models, so
future developments will focus on training predictive models on
larger cohorts with broader age range to extend the validity of
our findings.

In this work we exploited a feature-based DNN age
regression approach, therefore, we adopted SHAP and LIME
to produce feature relevance morphological vectors as these
two algorithms represent the two most established local model-
agnostic XAI techniques. However, different XAI techniques
have been developed to quantify the interpretability of the latent
representations of CNNs: layer-wise Relevance Propagation
(LRP) technique, saliency maps, and Gradient-weighted Class
Activation Mapping (Grad-CAM) can be potentially used to
produce coarse localization maps (Selvaraju et al., 2017; Eitel
et al., 2019; Arrieta et al., 2020), highlighting the important
regions in each MRI scan by exploiting the information at
voxel level.

Finally, it is important to note that we performed a
correlation analysis to identify the morphological descriptors

Frontiers in Neuroscience | www.frontiersin.org 13 May 2021 | Volume 15 | Article 674055

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lombardi et al. Explainable Deep Learning for Personalized Age

FIGURE 9 | Brain regions resulting from the morphological features with the most significant correlation between the XAI scores and the chronological age for SHAP

and LIME (the color of each ROI codes the average correlation value between the XAI scores of the features related to that ROI and the age of the subjects).

whose importance most significantly varies with age. Hence,
we compared the set of descriptors with the most significant
correlation between the XAI scores and the age of the subjects
to assess the overlap between the two XAI methods. However,
a targeted and quantitative analysis is needed to compare the
regions with significant impact on age prediction with the age-
related regions reported in other studies. In future work, we will
address a deeper comparison between the XAI scores of subjects
grouped by age to existing meta-analysis.

7. CONCLUSION

In this work, we proposed a novel XAI framework to provide
accurate explanations of both performance of DL algorithms and
feature importance at subject level for age prediction with brain
morphology. We extensively evaluated the reliability of the two
XAI methods for the age prediction task both at subject level
by assessing the intra-consistency of the XAI scores and across
subjects by analyzing the inter-similarity of the scores. Our results
reveal that the SHAP values showed significantly higher intra-
consistency values than the LIME scores. This finding highlights
that the SHAP scores are less influenced by small variations of the
training set showing greater consistency of their values by varying
the composition of the training set. Another interesting result
concerns the analysis of the inter-similarity of the XAI scores

between the subjects, which showed that the SHAP values more
consistently reflect a partition of the subjects into different age
ranges, proving therefore, a higher reliability of the SHAP scores
for the age prediction task. The correlation analysis between the
feature importance values and the age of the subjects showed that
the two XAI methods detect totally different age-related features.
In particular, the SHAP values exhibited a greater number of
features statistically associated with age with higher absolute
correlation values than those shown by the LIME method. Our
findings indicate that the SHAP method could provide more
reliable explanations for the morphological aging mechanisms
that could be also exploited to identify personalized age-related
imaging biomarkers.
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