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During the past decade, several studies have identified electroencephalographic (EEG)
correlates of selective auditory attention to speech. In these studies, typically, listeners
are instructed to focus on one of two concurrent speech streams (the “target”), while
ignoring the other (the “masker”). EEG signals are recorded while participants are
performing this task, and subsequently analyzed to recover the attended stream. An
assumption often made in these studies is that the participant’s attention can remain
focused on the target throughout the test. To check this assumption, and assess when
a participant’s attention in a concurrent speech listening task was directed toward the
target, the masker, or neither, we designed a behavioral listen-then-recall task (the
Long-SWoRD test). After listening to two simultaneous short stories, participants had
to identify keywords from the target story, randomly interspersed among words from the
masker story and words from neither story, on a computer screen. To modulate task
difficulty, and hence, the likelihood of attentional switches, masker stories were originally
uttered by the same talker as the target stories. The masker voice parameters were
then manipulated to parametrically control the similarity of the two streams, from clearly
dissimilar to almost identical. While participants listened to the stories, EEG signals were
measured and subsequently, analyzed using a temporal response function (TRF) model
to reconstruct the speech stimuli. Responses in the behavioral recall task were used
to infer, retrospectively, when attention was directed toward the target, the masker,
or neither. During the model-training phase, the results of these behavioral-data-driven
inferences were used as inputs to the model in addition to the EEG signals, to determine
if this additional information would improve stimulus reconstruction accuracy, relative to
performance of models trained under the assumption that the listener’s attention was
unwaveringly focused on the target. Results from 21 participants show that information
regarding the actual – as opposed to, assumed – attentional focus can be used
advantageously during model training, to enhance subsequent (test phase) accuracy
of auditory stimulus-reconstruction based on EEG signals. This is the case, especially,
in challenging listening situations, where the participants’ attention is less likely to remain
focused entirely on the target talker. In situations where the two competing voices are
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clearly distinct and easily separated perceptually, the assumption that listeners are able
to stay focused on the target is reasonable. The behavioral recall protocol introduced
here provides experimenters with a means to behaviorally track fluctuations in auditory
selective attention, including, in combined behavioral/neurophysiological studies.

Keywords: neural tracking, attentional switches, temporal response function (TRF), speech-on-speech, vocal
cues

INTRODUCTION

Popularized by Cherry (1953) as the “cocktail-party problem”
over 60 years ago, the question of how human listeners
selectively attend a speaker amid one or several other concurrent
voices, has attracted considerable interest to this day. While
recent developments in machine-learning algorithms now allow
machines to compete with – and in some situations, overtake –
humans in this ability, a complete account of the psychological
and neurophysiological processes at play remains elusive.
Nonetheless, during the past decade, significant progress toward
elucidating brain-activity correlates of the perceptual experience
of listening selectively to one of two concurrent voices has
been achieved. In particular, researchers have been able to
identify features of electrically or magnetically recorded cortical
signals which, after mathematical transformation, exhibit greater
correlation with features of the target voice, than with features
of the competing, non-target voice (e.g., Ding and Simon, 2012;
Mesgarani and Chang, 2012; O’Sullivan et al., 2015).

One limitation of most earlier studies using the concurrent
voice paradigm to study neural correlates of selective auditory
attention, however, stems from their use of an experimental
design in which participants were asked to attend to the target
voice, and ignore the concurrent voice, over prolonged periods –
from a few minutes to several tens of minutes. The premise
that human listeners are able to unwaveringly maintain their
auditory attention focused on a single sound source, be it
a human voice, for such long time periods is at odds with
introspective experience while participating in such – somewhat
artificial – listening experiments involving concurrent voices.
Our own experience, and informal reports from participants,
strongly suggest that despite one’s best efforts to stay focused
on the target voice, the competing voice occasionally grabs
one’s attention. Unless such occasional attentional shifts can be
controlled for, they can adversely impact data-analysis methods
used to assess neural representations of the attended voice.
Specifically, temporal response functions (TRFs) are obtained by
relating temporal sequences of stimuli to the continuous brain
activity recorded in response to them, by means of machine
learning methods. Typically, for two competing speech streams,
the temporal envelope of either of the streams is used to either
predict the brain activity (forward TRF), or to be predicted by the
brain activity (backward TRF). One of the differences between
these two approaches is that forward TRFs treat each neural
response channel independently while backward TRFs exploit the
whole neural data in a multivariate context (Crosse et al., 2016).
In addition, backward approaches can predict or “decode” which
of the speakers the listener is attending. For this reason, backward

TRFs are often called “decoders” whereas the accuracy to classify
which speaker is attended is commonly referred as “decoding
accuracy.” Misestimating which of the competing streams is
actually attended can impact the accuracy of these decoding
algorithms in two ways. First, they can interfere with the training
of the algorithm, if the brain responses used for training span
epochs during which the participant was actually attending to the
non-target voice. Second, they can interfere with the measured
decoding accuracy of the algorithm at test-time, if the brain
responses on which the algorithm is tested are assumed to contain
only target-attend, or only non-target-attend, epochs.

To mitigate this issue, some investigators have made
attempts to assess the occurrence of attentional shifts during
the experiment. For instance, O’Sullivan et al. (2015) asked
their listeners multiple-choice questions following every 1-min
stimulus, to check that the listener had been paying attention to
the target story. One limitation of this approach, however, is that
listeners may have been able to answer the questions correctly,
even if they did not always pay close attention to the target stream.
Crosse et al. (2015) asked participants to press a button whenever
they were listening to the target voice. However, it is possible
that most listeners are unable to, simultaneously, perform the
demanding listening task, and to accurately report their auditory-
attention status accurately. Moreover, asking listeners to press
buttons according to their attention while they are listening
introduces a secondary task, which may perturb performance in
the primary, selective-attention task. The problem of attention
shifts has been acknowledged, and attempts to develop attention-
decoding algorithms that can cope with such shifts have been
developed (Akram et al., 2016, 2017; Miran et al., 2018; Jaeger
et al., 2020). However, except when a distraction was purposely
inserted (Holtze et al., 2021), most studies in the literature
seem to have remained limited by the almost complete lack
of detailed data regarding the timing of attentional shifts in
selective-listening experiments with concurrent voices.

The issue of attentional switching across two concurrent
auditory streams can hardly be approached without considering
how easy, or hard, it is for listeners to perceptually separate these
two streams. Previous studies have shown that two of the most
important cues used by human listeners to separate concurrent
voices are spatial separation and differences in the fundamental-
frequency (F0) or timbre of these voices (Bronkhorst, 2015;
Middlebrooks, 2017). Recently, two studies have investigated
attentional switching with spatial cues. Bednar and Lalor (2020)
showed that it was possible to reconstruct, with TRFs, the
trajectory of attended and unattended moving sound sources. In
the second paper, carried by Teoh and Lalor (2019), participants
had to focus on a target voice while both talkers (target and
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masker) were instantaneously alternated between the left and
right ears. The authors showed that it was possible to significantly
improve the auditory attention decoding accuracy with the
inclusion of spatial information.

In the present work, we investigate the assumption that
listeners are able to maintain their attention focused on the
target speech stream and assess when a participant’s attention was
directed toward the target, the masker, or neither with a test that
was designed to provide experimenters with a means of inferring
fluctuations in auditory selective attention: the Long-SWoRD test
(Huet et al., 2021). Here, participants’ answers are used to infer,
retrospectively, when they were listening to the target, or to the
masker. The difficulty of the task, and hence the likelihood of
an increase in attentional switch to occur during the course of
the stories, was modulated with vocal cues. The attention course
was modeled by combining the participants’ responses with three
different parameters. These parameters, described in section
“‘Inferred Stimuli,” depict the speed and duration of attentional
switches as well as the actual sound source that receives the focus
of attention. This better representation of actual attended speech
is expected to yield a better stimulus-reconstruction evaluation
since it takes into account attentional dynamics.

MATERIALS AND METHODS

Participants
Twenty-one participants, aged between 19 and 25 (µ = 21 years,
σ = 1.76), participated in the experiment. All of them were native
French speakers and had audiometric thresholds ≤ 30 dB HL
at audiometric test frequencies between 125 Hz and 8 kHz.
Participants gave informed consent before taking part in the
study and were paid an hourly wage for participation.

Procedure
The Long-SWoRD test (Huet et al., 2021) was used to obtain
estimates of the attended stream at different time points of the
stimulus. Two competing stories were presented diotically at the
same time to both ears. Participants were instructed to focus
on one of the two concurrent speech streams (the “target”),
while ignoring the other (the “masker”). At the end of the
trial, nine keywords, arranged in a three-by-three matrix, were
presented on a screen facing the participant. The three rows
corresponded, from top to bottom, to the beginning, middle
and end portions of the story. Each row included, in a random
order, one keyword from the target sentence, one keyword from
the “masker” sentence, and an “extraneous” keyword which was
contained neither in the target nor in the masker sentence.
Participants were instructed to select the three keywords in the
target story with the constraint that they could select only one
keyword in each row.

The difficulty of the task, and therefore the probability of
attentional switches occurring, was modulated by manipulating
the perceptual distance between the two competing stories
in terms of voice (see section “Voice Manipulation”). The
experiment was arranged into 12 blocks, randomly distributed
between three levels of difficulty. Within each block, there were

12 trials and the same distance between the target and the masker
voices was kept. The characteristics of these voices are described
in the next section.

Data collection lasted 60–100 min, and the entire procedure
was completed in a single session. Participants were instructed
to avoid eye movements to reduce potential noise in the
electroencephalographic (EEG) recording. Stimuli were
presented with OpenSesame (Mathôt et al., 2012). Participants
listened to stimuli diotically over Sennheiser HD250 Linear
II headphones in a sound-attenuated booth. The presentation
level was calibrated to 65 dB SPL using an AEC101 artificial
ear and sound level meter LD824 (Larson Davis, Depew,
NY, United States).

Stimuli
Material Content
This material was previously developed and used in two
behavioral studies (Huet et al., 2018, 2021). Short, interesting
and engaging stories, extracted from the French audiobook “Le
Charme discret de l’intestin” (The Inside Story of Our Body’s Most
Underrated Organ) (Enders et al., 2015), provided the stimulus
set for the target and masker streams. Each story was composed of
1–5 sentences. Each trial, composed of a target story and a masker
story of similar length, lasted between 11 and 18 s.

The three target keywords that participants would later have
to identify were selected at three different times within the story:
one keyword near the beginning of the story, one keyword toward
the middle of the story, and one keyword toward the end. The
same selection procedure was applied for the masker keywords,
whereas the extraneous keywords originate from other trials.
Further details and considerations about the choice of keywords
and statistical analyses of the linguistic features of the stimuli can
be found in Huet (2020) and Huet et al. (2021).

Voice Manipulation
Manipulating the parametric distance in semitones (st) between
the target and the masker voices and thus, varying the difficulty
level of the task is an approach used in previous experiments
(e.g., Darwin et al., 2003; Vestergaard et al., 2009; Ives et al.,
2010; Başkent and Gaudrain, 2016). The audio stimuli were
originally recorded by an adult female speaker. This original
voice, analyzed and resynthesized without modification (i.e., with
a voice distance of 0 st) with the STRAIGHT toolbox (Kawahara
et al., 1999) implemented in MATLAB, was chosen as the target
voice. For the creation of the three masker voices, the voice
pitch (F0) and vocal-tract length (VTL) were then manipulated
during the analysis-resynthesis. The total distance between the
target and the masker voices is then calculated, in semitones, as√
4F02

+4VTL2. Total distance values of 1.14 st, 3.42 st, and
5.13 st were chosen to constitute three levels of masking, difficult,
intermediate, and easy, respectively. In a previous experiment
(Huet et al., 2021), we were able to estimate that a difference
of 5.13 st is a good control condition since the participants
made almost no error as a result of the large voice difference.
In addition, participants did not make more masker errors than
extraneous errors, suggesting no target-masker confusions and
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TABLE 1 | Distance between the target and the masker voices, in semitones.

Condition 1F0 1VTL
√

4F02
+4VTL2

Difficult −1.6 0.4 1.14

Intermediate −3.2 1.21 3.42

Easy −4.8 1.82 5.13

no or almost no attentional switches. Parameter values for the
three masker voices are provided in Table 1.

“Inferred” Stimuli
“Inferred stimuli” are reconstructed stimuli derived from the
original stimuli and from the behavioral responses aiming at
estimating the actual attended stream, switching between target
and masker streams. Participants’ responses provide information
at three key moments in the story (beginning, middle, and ending
keywords). It is important to note that there are not just three
keywords that provide information, but six: three target and three
masker keywords. For each response, the participants cannot
choose both target and masker, but are faced with a choice. Thus,
if a participant selects the masker keyword in a line of the matrix,
it is possible to hypothesize that the subject was not listening
to the associated target keyword. The information is therefore
not limited in time to the chosen keyword, but also extended
to the associated non-selected keyword in the other stream, and
which may not be occurring exactly at the same time. Thus,
there are three key moments in the stories, bound by the time
limits of the target and the masker keywords, which provide

information. For convenience, these key moments will be named
“windows.” For instance, in Figure 1A, the first target and masker
keywords overlap while conversely, the second target and masker
keywords are separated by 1 s. Therefore, these key moments, or
windows, can have varying durations. In addition, the windows
duration started at the beginning of the keyword that appears
first, and ended at the end of the keyword that ended last. Based
on the participants’ answers, the inferred stimuli were modeled
following various strategies differing in how three aspects of
the task were handled: the duration and speed of attentional
switches (described respectively in sections “Extrapolation of
Attentional Scope” and “Attentional Switch Speed”) as well as the
sound source to which attention is focused (described in section
“Extraneous Keywords Fillers”).

Mathematically, the inferred stimulus can be expressed as
follows:

x̂ (t) =
{

f (xT, xM,Ri) (t) if t ∈ keyword window i
g (xT, xM) (t) otherwise

Where xT and xM are the target and masker stimuli,
respectively; Ri designates the response to keyword i; and f is the
following function:

f (xT, xM,Ri) =


xT if Ri is target keyword
xM if Ri is masker keyword
h (xT, xM) otherwise

The functions g and h are defined below.

FIGURE 1 | Creation steps of inferred stimuli. Panel (A) represents an example of a trial where the target is in black and the masker is in red. In this example, the
participant has answered the first target keyword (highlighted in purple), the second masker keyword and the third extraneous keyword. The unselected keywords
are shown with a hatched pattern. (B) The three segments are built according to the participant’s answer with an attention switch of 3 s and the extraneous
segments filled with the mixture of the target and masker (i.e., method h+, in yellow). The attention scopes are interpolated with the segment method gS. The three
segments are then added together. (C) The three attention scopes are built according to the participant’s answer with an attention switch of 1 s and the extraneous
sections filled with noise (hN ). When no behavioral information is known, the attention scope is filled with the target (i.e., gT ). The three parts are then added together.

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 674112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-674112 December 7, 2021 Time: 15:29 # 5

Huet et al. Behaviorally Enhanced TRFs

Extrapolation of Attentional Scope
Outside of the windows defined by the keyword positions, since
there is no behavioral data collected, the attentional locus is not
explicitly known and needs to be inferred. This situation occurs
for instance at the very beginning of the stories (before the first
keyword), at the end of the stories (after the last keyword), and
between consecutive windows. Two different approaches were
used to estimate attention outside of the windows, thereafter
referred to as attentional scopes.

In the first approach “segments,” illustrated in Figure 1B, the
stimulus duration was divided into three segments based on the
temporal positions of the keywords. The cut-out points between
segments were placed in time halfway between two consecutive
windows, or at the beginning and end of the stimulus. In this case,
we are making the assumption that the attention information
provided in the windows remains over a wider duration than
the window itself, dividing the unknown segments equally across
windows. This corresponds to a function g as follows:

gs (xT, xM) (t) = f (xT, xM,Ri) (t) ,

where Ri is the closest known response.
In the second approach “target windows,” illustrated in

Figure 1C, it is assumed that the information contained in the
window should be limited to the window itself only, which is the
opposite of the first approach, which extended the information to
an entire segment. Between windows, it then can be assumed that
the participant was always listening to the same stream (either
the target or the masker). Figure 1C illustrates a situation where
the participant listens to the target outside of the windows. The
cases where the listener always listens to the target in-between
keywords correspond to the following variant of the g function:

gT (xT, xM,Ri) = xT

This parameter will be referred to as “scope” with the function
gS “segments” and the function gT “target windows.”

Extraneous Keywords Fillers
In addition to attending to the target, or to the competing (non-
target) voice, participants in concurrent-voice experiments may
also, at times, not be attending to either. Thus, in addition
to inferring when attention was directed to the target or to
the masker, it is also important to try to infer when it is not.
To this aim, participants’ selection of displayed keywords that
belonged to neither of the two stories played during the trial,
i.e., the extraneous keywords, is instrumental. The selection of
an extraneous keyword over a keyword from either story may
be an indication that, when the keywords that the participant
failed to select were presented, the participant was not attending
to either of the two stories being played. In such a case, neither the
target nor the masker is more appropriate than the other stream
to represent the attended stimulus. One way of representing this
situation thus consists in using the mixture of the two streams as
attended stimulus (illustrated in Figure 1B). This, corresponds to
a function h as follows:

h+(xT ,xM) = xT+xM

FIGURE 2 | Electroencephalographic channel positions.

This might account for situations where the listeners were
actually dividing their attention between the two streams, which
led them to fail to recall the corresponding keyword at the end
of the trial. However, it is also possible that the listeners, in
these situations, were actually not attending any of the presented
streams. In these situations, the mixture does not seem the
most appropriate acoustic correlate of what the participant is
focusing on, and instead, a random noise signal (illustrated in
Figure 1C, noted hN) has been used to fill in the extraneous
keywords. Additionally, a target speech story from another trial
of the Long-SWoRD corpus (noted hS), randomly selected, was
also used as a control speech signal. The root-mean-square level
of the extraneous fillers have been adapted to match the root-
mean-square level of the target. Finally, for completeness, we also
considered the case where extraneous keyword responses would
be treated as the target (hT) or masker (hM) streams:

hT (xT, xM) = xT
hM (xT, xM) = xM

This parameter will be referred to as “filler.”

Attentional Switch Speed
The third parameter is the speed with which participants can
switch from one voice to another. The duration of this attentional
switch is modeled as the slope of the edges of the time windows.
Three values were used, 1, 2, and 3 s, implemented as raised-
cosine ramps. Those values were chosen as they could capture
attentional switches: slower than speech modulations, but shorter
than sentences to limit overlap across segments. This parameter
will be referred to as “speed.”
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FIGURE 3 | Percentage for target answers (in green), masker answers (in light yellow), and extraneous answers (in dark purple) in each level of difficulty. The points
represent each identified keywords percentage for every participant in each condition. The hinges of the boxplot represent the first and the third quartile. The middle
of the boxplot is the median. The whiskers extend up to 1.5 times the interquartile range.

Data Acquisition and Signal Processing
Electroencephalographic data were recorded using an ActiCap
(Brain Products, Munich, Germany) with a setup of 31 channels
at a sampling rate of 1000 Hz (see Figure 2 for more information).
A trigger was sent at each start of a new trial on a parallel port
with a precision of 1 ms. EEG data were then band-pass filtered
between 2 and 8 Hz. Finally, to decrease processing time, EEG
data were downsampled to 64 Hz.

The stimulus speech envelope was extracted with a
gammatone filterbank (Søndergaard et al., 2012; Søndergaard
and Majdak, 2013) followed by a power law according to
Biesmans et al. (2017). The gammatone filterbank was composed
of 28 bands centered on frequencies from 50 to 5000 Hz, equally
spaced on the ERBN scale (Glasberg and Moore, 1990). The
envelopes of each frequency band were extracted by taking the
absolute value and then raising it to the power of 0.6. A single
envelope for the stimulus was then computed by averaging the
28 envelopes. The speech envelope was then downsampled to
64 Hz and low-pass filtered below 8 Hz, following the method
described by O’Sullivan et al. (2015).

Backward Modeling and
Stimulus-Reconstruction
Regularized linear regression was employed to relate the neural
data to the envelopes and the decoders were calculated using the
MNE-Python library (Gramfort et al., 2014), using the backward
method, i.e., reconstructing the audio envelope from the EEG

recording. These decoders, equivalent to backward TRFs, are
composed of weights that can be estimated by a linear regression
for a set of N electrodes at different lags t. In this experiment,
we investigated time lags between −900 to 0 ms (meaning the
audio could precede the EEG up to 900 ms) by steps of 1 sample
of the EEG recording (15.6 ms). Therefore, the EEG data were
cut according to the duration of the trials added with the lags t.
As for speech envelopes, they were padded with zeros to match
the number of samples of EEG data. Finally, the reconstruction
of the speech envelope Ŝtcan be obtained as follows:

Ŝt =

N∑
n = 1

∑
τ

dτ,nRt−τ,n

Where R represents the matrix that contains the shifted
neural responses of each electrode n at time t = 1...T. A ridge
regression was used to obtain the weights of the decoder d as
follows:

d =
(

RRT
+ λI

)−1 (
RST

)
where λ is the regularization parameter, chosen to optimize
the stimulus-response reconstruction, I is the identity matrix,
and S is the envelope of the speech signal. The optimal ridge
parameter was fit with an adaptive procedure according to
Crosse et al. (2016) and set to 101/2. Decoders were estimated
per trial, for each subject in each condition. The stimulus-
reconstruction of a single trial was predicted in a leave-one-out

Frontiers in Neuroscience | www.frontiersin.org 6 December 2021 | Volume 15 | Article 674112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-674112 December 7, 2021 Time: 15:29 # 7

Huet et al. Behaviorally Enhanced TRFs

FIGURE 4 | Average reconstruction accuracy r for inferred envelopes per condition. The points represent the scores for every participant in each voice condition for
the extraneous keyword (in color) and the attentional scope (top and bottom). The hinges of the boxplot represent the first and the third quartile. The median is
represented as a bar in each boxplot. The whiskers extend over 1.5 times the interquartile range.

fashion. To be more precise, each subject had 48 trials per
condition. Each trial was reconstructed with the averaged decoder
trained on the 47 other trials. The stimulus-reconstruction was
evaluated with the Pearson’s correlation coefficient between the
reconstructed speech envelope and the original speech envelope.
This reconstruction accuracy is thereafter noted r. The temporal
resolution of the reconstructed envelope was the same as that of
the original envelope (64 Hz).

Statistical Analyses
All statistics were performed using R (R Core Team, 2017). All the
linear mixed models (LMMs) were implemented with the lme4
package (Bates et al., 2014). The models were implemented using
a top-down strategy on data (Zuur et al., 2009). The final model

is reported with the lme4 syntax such as Equation 1:

Score ∼ factorA × factorB +
(
factorA × factorB|subject

)
(1)

The full-factorial model is indicated by the fixed effect term
factorA × factorB and includes main effects and interactions
for these two main conditions. The last term of the equation
describes an individual random intercept and slope per subject
for factorA and factorB. FactorA, factorB, and Score will be
specified in section “Results” for each analysis.

For an easier interpretation, the afex package (Singmann et al.,
2019) was used to compute the statistics of main effects. To
do so, the final model was compared to restricted models in
which the effect estimated is fixed and equal to zero. Finally,
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post hoc analyses were computed with a false discovery rate (FDR)
correction (Benjamini and Hochberg, 1995).

RESULTS

Behavioral
Figure 3 shows the percentage of identified keywords (“target,”
“masker,” and “extraneous”) for each level of voice difficulty
(difficult: 1.14 st; intermediate: 3.42 st; and easy: 5.13 st).
A generalized linear mixed model (gLMM) was fitted on the
binary (correct/incorrect) scores. Such models are well suited
to preserve homoscedasticity and to minimize the effects of
saturation in binomial data. For each keyword within each trial, if
the participant selected the target keyword, the score was positive
(i.e., score correct = 1). On the other hand, if the participant
selected the masker keyword or the extraneous keyword, the
score was considered incorrect (i.e., score incorrect = 0).

Equation 2 shows the final model with a top-down strategy
modeling:

Score ∼ voice+
(
voice|subject

)
(2)

Participants had better scores when the distance
between the target and the masker voices was larger
(2.13, SE = 0.12, z = 18.02, p < 0.001). Post hoc analysis
showed that average scores in each voice condition were all
different from one another. In addition, there were significantly
more masker responses than extraneous responses when stimuli
were only presented with the 1.71 st voice (z = 13.06, p < 0.001),
but not for a voice distance of 3.42 st (z = 1.24, p = 0.22), or 5.13
st (z = 0.09, p = 0.93). These results indicate that participants
were listening, at least partially, to the masker voice instead
of the target voice only in the difficult condition whereas the
switches between target and masker were limited in the two
other conditions.

Stimulus-Reconstruction Evaluation
Modeling Parameters
Because the parameter space defining the possible inferred
stimuli is rather larger, before comparing it to the original
approach, we selected the set of parameters that gave the
best reconstruction.

Figure 4 shows stimulus reconstruction accuracy in each
voice condition as a function of extrapolation method (scope:
segments gS or target windows gT) and treatment method for the
extraneous keywords (filler : mixture h+, target hT , masker hM ,
and other speech stream hS or noise hN), averaged across speed of
attentional switch (speed: 1, 2, or 3 s). The influence of the three
modeling parameters (scope, filler, and speed) as well as the voice
distance (difficult: 1.14 st; intermediate: 3.42 st; and easy: 5.13 st)
was also analyzed with a LMM fitted to the Fisher transformed
Pearson’s correlation r values representing the reconstruction
accuracy. Equation 3 indicates the final model:

r ∼ voice× filler+ scope+
(
1| subject

)
(3)

Similarly to the analysis in the previous section, the distance
between voices had an effect on reconstruction performance

(χ2 (2) = 282.16, p < 0.001) but post-doc analyses with
a FDR correction did not identify any individual difference
between the conditions (see Table 2). Regarding the modeling
parameters, the filler for the extraneous keyword (hT , hM ,
h+, hN , or hS) had an effect on the reconstruction of
the inferred stimuli (χ2 (4) = 100.59, p < 0.001). Post
hoc analyses, detailed in Table 2, showed that when the
time segment corresponding to extraneous keyword responses
was filled-up with the mixture (h+), stimulus reconstruction
accuracy was the best. The target (hT) and masker (hM)
streams were second-best, followed by the noise (hN) and,
lastly, the other speech (hS) stream. The interaction between
the latter two factors (χ2 (8) = 25.17, p < 0.01) showed
an effect of the filler, only when the distance between the
two voices was 1.14 st (χ2 (3) = 78.04, p < 0.001) and
3.42 st (χ2 (3) = 38.38, p < 0.001) but not for 5.13 st
(χ2 (3) = 8.71, p = 0.07). Furthermore, in this easiest voice
condition (5.13 st), the reconstruction accuracy performed with
the target (hT) as the filler reached the reconstruction accuracy
performed with the mixture (h+)

[
t (20) = 0.29, p = 0.77

]
while the reconstruction accuracy performed with the masker
(hM) was equivalent to the reconstruction accuracy performed
with the noise (hN) (t (20) = − 0.39, p = 0.74). Finally,
the attentional scope (gT and gs) also had a significant effect
(χ2 (1) = 9.23, p < 0.01), with a better performance when
the target-windows approach (gT) was used over the three
segments (gs) (t (20) = − 3.13, p < 0.01). It is noteworthy
than the attentional switch (1, 2, or 3 s) speed had no effect on
reconstruction performance [χ2 (2) = 0.45, p = 0.50].

In conclusion, the best stimulus-reconstruction evaluation
was obtained when the behavioral response was used only at the
location of the keywords and the remaining segments were filled
with the target stream (gT), while the mixture was used in case of
extraneous keyword responses (h+), regardless of the attentional
switch duration. In the following section, the term “behavioral
decoder” denotes a decoder obtained using these best parameters
(gT , h+) and a 2-s attentional switch duration.

Target vs. Inferred Stimulus
In this section, the best behavioral decoder is compared with the
original target decoder. The evaluation of these two decoders was

TABLE 2 | Post hoc analyses for Equation 3.

Main effect Individual
comparison

Statistics

Difference between
voices

1.14 st vs. 3.42 st t (20) = − 1.82,p = 0.13

1.14 st vs. 5.13 st t (20) = − 2.52,p = 0.06

3.42 st vs. 5.13 st t (20) = − 1.17,p = 0.26

Extraneous
keyword filler

Mixture vs. target t (20) = 5.26,p < 0.001

Mixture vs. masker t (20) = 5.43,p < 0.001

Target vs. masker t (20) = 0.65,p = 0.53

Target vs. other
speech stream

t (20) = 8.11,p < 0.001

Target vs. noise t (20) = 6.54,p < 0.001

Other speech
stream vs. noise

t (20) = − 6.64,p < 0.001
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FIGURE 5 | Average reconstruction accuracy r per condition for the decoder based on original target stimuli (in dark blue), and for the decoder based on the best
inferred stimuli (in light yellow).

analyzed with a LMM fitted on the Fisher-transformed r values
representing reconstruction accuracy:

r ∼ voice× decoder+
(
voice| subject

)
(4)

Based on likelihood-ratio tests, stimulus reconstruction
accuracy depended significantly on the distance between
the two voices (χ2 (2) = 11.95, p < 0.01), on
whether the target or behavioral decoder was used
(χ2 (2) = 11.1, p < 0.001), and the interaction between
these two factors (χ2 (2) = 28.85, p < 0.001). In post hoc

TABLE 3 | Post hoc analyses for the Equation 4 interaction.

Individual comparison Statistics

1.14 st: target vs. behavioral decoder t (20) = − 4.6,p < 0.001

3.42 st: target vs. behavioral decoder t (20) = 0.76,p = 0.54

5.13 st: target vs. behavioral decoder t (20) = 0.62,p = 0.54

Target decoder: 1.14 st vs. 3.42 st t (20) = − 4.55,p < 0.01

Target decoder: 1.14 st vs. 5.13 st t (20) = − 4.04,p < 0.01

Target decoder: 3.42 st vs. 5.13 st t (20) = − 0.54,p = 0.6

Behavioral decoder: 1.14 st vs. 3.42 st t (20) = − 1.4,p = 0.27

Behavioral decoder: 1.14 st vs. 5.13 st t (20) = − 1.64,p = 0.23

Behavioral decoder: 3.42 st vs. 5.13 st t (20) = − 0.64,p = 0.6

comparisons, the behavioral decoder was significantly superior
to the original target decoder in the most challenging voice
condition, while there was no difference between decoders for
the two easier voice conditions (see Figure 5 and Table 3). In
addition, unlike reconstruction with the target decoder, there
was no difference in performance between the voice conditions
when reconstructing with inferred stimuli (see Table 3).

DISCUSSION AND CONCLUSION

In this work, we assessed whether the reconstruction accuracy
of attention-decoding algorithms in a selective-listening task can
be enhanced by making use of information regarding the time-
course of attentional shifts inferred using participants’ answers
in a keyword-recall task performed immediately after a selective-
listening task. The answer to this question was found to be
positive. Consistent with our hypotheses, an advantage of the new
decoding method, including estimates of the timing of attention
shifts, was only observed in challenging listening conditions,
where the participants’ attention was less likely to remain focused
on the target talker throughout the entire listening-trial duration;
no improvement over the simpler decoding algorithm, which did
not make use of information regarding the timing of attentional
shifts during the trial, was found for the easy listening conditions.
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These findings are particularly relevant for future applications
of the attention-decoding paradigm. While most experimental
work thus far has focused on normal-hearing (NH) listeners
attending to clearly separated speech streams (most often, two
speakers of different genders presented dichotically), one of the
ultimate goals of this line of research is to use attention decoding
to enhance speech perception for hearing impaired (HI) listeners
in challenging situations. However, HI listeners do not benefit
as much as NH listeners from voice differences in competing
speech (e.g., Festen and Plomp, 1990), and the situation seems
even more severe for cochlear implant (CI) users (e.g., Pyschny
et al., 2011; El Boghdady et al., 2019). In the present study,
we show that, not only can stimulus reconstruction accuracy
still be performed under conditions where voice cues are not
salient, but it can also be improved further, to the point that
decoding performance in difficult listening conditions can equal
performance in easy listening conditions – provided that the
decoder is trained with stimuli that account for the behavioral
responses of the participant that indicate attention switches.

Lack of Benefit in Less Challenging
Conditions
The lack of stimulus-reconstruction enhancements in easy
conditions can be explained by a reduced number of errors from
participants. Two to three times more errors were made in the
challenging condition than in the other conditions. Since inferred
stimuli are based on the participants’ answers, in a trial where
no error occurs in the behavioral task, the inferred stimulus is
identical to the original target. It is therefore not surprising that
under easy conditions, minimal differences between the inferred
stimuli and the original target reconstructions were observed.
However, it remains unclear whether this lack of errors truly
reflects a lack of attentional switch between competing speech
streams, or lack of sensitivity of the behavioral procedure used
here; specifically, the procedure may have failed to capture
momentary shifts in attention in-between keywords. Indeed,
in connected speech, perceptual, and cognitive compensation,
a process sometimes referred to as phonemic restoration, can
help a listener infer missing segments (Bashford et al., 1992).
It is possible that the participants’ attention sometimes wavered
away from the target, but that they still managed to infer the
correct response in the task nonetheless. However, the Long-
SWoRD test was designed such as to limit the possibility of such
restoration mechanisms. First, the target and masker sentences
both came from the same audiobook, and had largely overlapping
lexical fields. In addition, the extraneous keywords were chosen
to be equally likely to occur in the context of the target and
the masker – see Huet et al. (2021), for a detailed analysis of
the material. Given these methodological-design precautions, it
seems less likely that phonemic restoration played a major role in
compensating for momentary attention switches; it seems more
likely that attention switches remained very limited.

Optimal Parameters for Inferred Stimuli
Several parameters were used to model the inferred stimuli.
Extraneous keyword filling seems to be the most important factor,

with an improved reconstruction in a challenging condition
when the extraneous keyword is replaced by the mixture
(h+), the target (hT)

[
t (20) = − 3.84, p < 0.01

]
or the

masker (hM)
[
t (20) = − 3.88, p < 0.01

]
stream compared to

noise (hN)
[
t (20) = − 1.85, p = 0.08

]
or another story (hS)[

t (20) = − 0.85, p = 0.4
]
. These results suggest that when

participants failed to select the target keyword, or the masker
keyword (if they mistakenly switched to the masker stream),
they still listened to the presented speech streams. This could be
because the failure to choose the target or masker keyword was
caused by a failure to recall the correct word, rather than by a
failure to attend the speech streams. Alternatively, it could be
that, even when the listener’s attention was directed elsewhere
than to the target stream, primary automatic speech processes
induced large-enough synchronous EEG activity to support
reliable stimulus reconstruction accuracy. If so, using noise or
an unrelated speech stimulus would necessarily lead to lower
reconstruction accuracy. Further insight into this question may
be gained by considering that no difference in reconstruction
accuracy was noted, depending on whether extraneous keywords
were replaced with targets (hT) or with maskers (hM) in
challenging conditions. This result further suggests that, for
these segments for which extraneous keywords were selected by
participants, the participants were either dividing their attention
across the two streams or listening to the mixture; this provides
further justification for using the mixture as a filler (h+). In
addition, a difference in reconstruction was observed in the
easiest listening condition when the extraneous keywords were
filled with targets (hT) or maskers (hM): the reconstruction
was improved with targets (hT), to the point of matching a
reconstruction performed with mixtures (h+) as fillers. This
finding suggests that it is reasonable to consider that participants
have no (or nearly none) attentional switches when the difference
between the target and masker voices is large enough.

The attentional scope extrapolation method, which was used
to infer where the attention was directed in-between and around
keywords, also influenced reconstruction accuracy. Inferred
stimuli that modeled that the participant listens to the target even
outside the keyword windows achieved a better reconstruction;
this again suggests that it may be reasonable to assume that
listeners are able to stay focused on the target throughout the trial.

Effect Size of the Enhancement
Several studies have previously shown that it is possible to
improve reconstruction accuracy through different approaches.
For example, properly choosing a regularization method and
an adequate parameter for the decoders can lead to better
stimulus reconstruction accuracy of 10–20% (Crosse et al., 2016;
Wong et al., 2018). Similarly, Montoya-Martínez et al. (2021)
showed that by optimizing the number of electrodes used for
reconstruction, it was possible to improve a median score of 0.17–
0.22, which represents a gain of 29%. The improvement observed
in our results in the challenging condition enables to increase
the reconstruction accuracy from 0.09 to 0.11, which represents
a gain of 22%. Therefore, the approach we present here yields
an improvement in reconstruction accuracy comparable to other
techniques reported in the literature.
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Acoustic Cues and Attention Switch
Control
Spatial separation and voice differences are amongst the most
important cues for auditory speech segregation. Teoh and
Lalor (2019) improved auditory attention decoding accuracy
by incorporating spatial attentional focus whereas Bednar and
Lalor (2020) successfully reconstructed the spatial trajectory
of a moving attended speech stream. The comparison of our
results with the latter study is arduous due to methodological
differences. Indeed, Bednar and Lalor’s (2020) approach to
reconstructing the spatial trajectory of a constantly moving
attended speaker differs from our method in two ways.
First, they directly manipulated the spatial location of the
sources and this information is contained in the stimuli
themselves. In contrast, in our experiment, the speakers’
position was fixed and the attentional switches we captured
with the behavioral responses were spurious rather than
controlled. Second, Bednar and Lalor (2020) used a continuous
variation of the location over time, whereas our behavioral
account of attention is temporally restricted to three time
windows corresponding to the three keyword positions. Between
these keywords, we had to infer the participants’ focus
of attention. Finally, while spatial location translates into
continuous angles, our behavioral information is ternary
(target, masker, or extraneous). Therefore, transposing the
method introduced by Bednar and Lalor (2020) to our
behavioral account of attention does not seem straightforward.
Yet, such an approach would deserve further investigation,
perhaps combining it with potential acoustic and linguistic
correlates of attentional switches (such as fluctuations in local
target-to-masker ratio, or overlap in semantic context across
target and masker).

Further Considerations and Conclusion
Results presented in the present study show that an enhancement
of the stimuli reconstruction can be achieved in challenging
situations where attention is modulated by voice cues such as
F0 and VTL. By monitoring a participant’s attentional focus,
it is possible to obtain a better reconstruction of the real
attended speech and therefore a better cortical representation.
The advantage of parametric voice manipulation, as introduced
in this article, is that the listening difficulty can be controlled.
By generating extremely challenging conditions, it is possible to
approach listening situations that share similarities with those
experienced by people with hearing loss. For instance, CI users
do not seem to efficiently benefit from voice cues, such as
F0 and VTL, to discriminate two speech streams (Gaudrain
and Başkent, 2018; El Boghdady et al., 2019). This was also
the case for the participants of this present experiment, under
challenging listening conditions. However, to further understand
how voice-based speech segregation is hindered in listeners with
hearing loss, more studies need to be conducted either with
actual HI or CI listeners (e.g., Somers et al., 2018; Paul et al.,
2020), or using hearing loss or electrical stimulation simulations,
which can allow researchers to focus on specific aspects of
sensory degradation.

As mentioned earlier, our approach is based on a temporally
restricted measure of attention. In fact, results showing that
the shortest attentional scope (i.e., target windows) works
better than the longest scope (i.e., segments) underline the
need for a more precise temporal resolution. One way to
extend this temporal measurement would be to ask participants
to press a button whenever they listen to a target stimuli
within the target stream similarly to Crosse et al. (2015) with
a hit/false-alarm/miss scoring. This approach would provide
a better temporal resolution even though it introduces a
dual task. Furthermore, this approach would allow for a
greater comprehension of attentional bottom-up cues in speaker
reconstruction and decoding studies.

One of the major challenges in neural tracking studies is to
identify, based on brain activity, the speaker that the participant
is listening to in a cocktail party situation. Our results stress
the importance of incorporating attentional-switch tracking in
speech enhancement or noise-reduction algorithms in hearing-
aids.
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