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Introduction: The brainstem is an important component in the pathology of
amyotrophic lateral sclerosis (ALS). Although neuroimaging studies have shown multiple
structural changes in ALS patients, few studies have investigated structural alterations
in the brainstem. Herein, we compared the brainstem structure between patients with
ALS and healthy controls.

Methods: A total of 33 patients with ALS and 33 healthy controls were recruited
in this study. T1-weighted and diffusion tensor imaging (DTI) were acquired on
a 3 Tesla magnetic resonance imaging (3T MRI) scanner. Volumetric and vertex-
wised approaches were implemented to assess the differences in the brainstem’s
morphological features between the two groups. An atlas-based region of interest (ROI)
analysis was performed to compare the white matter integrity of the brainstem between
the two groups. Additionally, a correlation analysis was used to evaluate the relationship
between ALS clinical characteristics and structural features.

Results: Volumetric analyses showed no significant difference in the subregion volume
of the brainstem between ALS patients and healthy controls. In the shape analyses, ALS
patients had a local abnormal surface contraction in the ventral medulla oblongata and
ventral pons. Compared with healthy controls, ALS patients showed significantly lower
fractional anisotropy (FA) in the left corticospinal tract (CST) and bilateral frontopontine
tracts (FPT) at the brainstem level, and higher radial diffusivity (RD) in bilateral CST and
left FPT at the brainstem level by ROI analysis in DTI. Correlation analysis showed that
disease severity was positively associated with FA in left CST and left FPT.

Conclusion: These findings suggest that the brainstem in ALS suffers atrophy, and
degenerative processes in the brainstem may reflect disease severity in ALS. These
findings may be helpful for further understanding of potential neural mechanisms in ALS.

Keywords: amyotrophic lateral sclerosis, magnetic resonance imaging, diffusion tensor imaging, shape analysis,
brainstem
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative
disease. It predominantly affects the upper and the lower motor
neurons in the cerebral cortex, brainstem, and spinal cord,
leading to progressive limb strength loss, dysarthria, drooling,
tongue wasting, and dysphagia (Brown and Al-Chalabi, 2017;
van Es et al., 2017). More recently, it appears that ALS
pathology involves more than the motor system and pathological
TAR DNA-binding protein 43 (TDP-43) inclusions have been
confirmed to be in four stages in the whole brain, inclusive of
extra-motor cortical and subcortical structures and the brainstem
(Braak et al., 2013; Brettschneider et al., 2013; Qiao et al., 2020).

Advanced magnetic resonance imaging (MRI) methods
are robust imaging techniques that enable the evaluation of
neurological systems degeneration in ALS in vivo (Chio et al.,
2014). Neuroimaging studies have revealed that anatomical and
functional changes not only involve precentral gyrus (Walhout
et al., 2015; Alshikho et al., 2018; Grapperon et al., 2019;
Contarino et al., 2020) and corticospinal tract (CST) (Senda
et al., 2017; Gorges et al., 2018; Ishaque et al., 2018; Broad
et al., 2019; Baek et al., 2020) but also spread to the frontal
cortex (Consonni et al., 2018, 2019), thalamus (Schönecker et al.,
2018; Tu et al., 2018), and basal ganglia (Bede et al., 2013;
Machts et al., 2015). On the other hand, quantitative volumetric
studies in ALS have detected both gray and white atrophy
results in global spinal cord atrophy in ALS (Rasoanandrianina
et al., 2017; Paquin et al., 2018). Furthermore, CST and anterior
horns degeneration and alterations in ALS are associated with
functional impairment (Cohen-Adad et al., 2013). The brainstem
pathology is considered as the “first stage” in the suggested four-
stage pathological staging system based on pathological TDP-
43 burden patterns (Brettschneider et al., 2013). However, few
neuroimaging studies have addressed morphological changes in
the brainstem and its subregions in ALS patients.

Corticospinal disruption is generally studied in ALS (Chio
et al., 2014), while alterations in other sensorimotor pathways are
less well understood. This could be because several experiments
have studied morphological changes in the cerebrum, in
which most of the ascending and descending brain pathways
overlap. Besides, the sensorimotor pathways are separated in
the brainstem (Vanderah and Gould, 2015; Gray, 2016). The
brainstem is a fundamental structure that communicates motor
and sensory information between the cerebral cortex and the
spinal cord. Previous researches using diffusion tensor imaging
(DTI) have confirmed the extensive degeneration of the brain in
ALS patients. However, most studies only established the most
significant alterations in CST in the ALS brainstem areas, with
limited research investigating extra significant white matter tract
alterations in the brainstem regions in the ALS group.

Therefore, the current study aimed to reveal the patterns
of focal gray matter atrophy and white matter damage in
brainstem regions of ALS patients. Both volumetric and
vertex-wise approaches were performed for the brainstem to
compare ALS patients and healthy controls. Then the region
of interest (ROI) analysis was used to compare diffusion
metrics in ALS patients with the white matter in healthy

controls. Additionally, correlation analysis was used to evaluate
the relationship between ALS clinical features and volume or
diffusion metrics.

MATERIALS AND METHODS

Participants
Thirty-three patients were recruited. Twenty-two patients with
definite ALS and 11 patients with probable ALS were clinically
diagnosed based on the revised El Escorial criteria. None of the
ALS patients in this study had a family history of ALS. With
respect to ALS phenotypes classification, as formerly identified
by Chiò et al. (2011), 29 patients displayed classic phenotype and
four exhibited bulbar phenotype. To evaluate disease severity,
the Revised ALS Functional Rating Scale (ALSFRS-R) (Brooks
et al., 2000) was used. The duration of the disease was calculated
from the onset of symptoms to the acquisition of MR imaging in
months. To modify the degree of disability for disease duration,
the rate of disease progression was calculated using the following
formula: (48-ALSFRS-R score)/(disease duration). None of the
ALS patients had a history of cerebrovascular events, intracranial
pathology, or other neurological diseases. None of the ALS
patients had clinical signs of frontotemporal dementia. Mini-
Mental Status Examination (MMSE) was used to assess general
cognitive functions. Thirty-three right-handed healthy controls
matched for age and gender were recruited. There was no history
of mental and neurological problems in healthy controls.

Written informed consent was obtained from all participants.
Ethical approval for all procedures was obtained from the Ethics
Committee of the First Affiliated Hospital of Xi’an Jiaotong
University in advance.

MRI Acquisition
Magnetic resonance imaging data were acquired on a 3 Tesla
GE scanners (General Electric Healthcare, Milwaukee, WI,
United States) using an eight-channel parallel head coil. The
high-resolution T1-weighted MRI images of the brain were
obtained using a 3D T1 fast spoiled gradient-echo sequence with
the following parameters: TE = 4.8 ms; TR = 10.8 ms; field
of view (FOV) = 256 mm × 256 mm; matrix = 256 × 256;
voxel size = 1 × 1 × 1 mm. The conventional T2 weighted
imaging, fluid-attenuated inversion recovery (FLAIR) sequences
were obtained to rule out cerebral infarction, tumors, and other
incidental findings. Whole-brain DTI images were performed
using an echo-planar imaging sequence with the following
parameters: TR = 14 s, TE = 90.7 ms, FOV = 256 mm × 256 mm,
matrix = 128 × 128, slice thickness = 2.5 mm, 35 isotropic
directions, b-value = 1000 s/mm1. In addition, one scan without
diffusion weighting (b = 0 s/mm2) was acquired. Resting-state
functional MRI (reported elsewhere) was also obtained. The total
acquisition time was approximately 30 min for each subject.
During scanning, a tight but comfortable sponge pad inside the
head coil was used to restrict head motion.

1http://www.fmrib.ox.ac.uk/fsl
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Image Analysis
FreeSurfer software version 6.0 (Massachusetts General Hospital,
Boston, MA, United States2) was used for the preprocessing of
T1-weighted images (Fischl et al., 1999). The main recon stream
(“recon-all”) in FreeSurfer is used for volumetric segmentation,
specifically including motion correction, skull-stripping, non-
parametric non-uniform intensity normalization, Talairach
transformation (affine transform from the original volume to the
MNI305 atlas), volumetric registration, and topology correction
(Fischl et al., 2001; Segonne et al., 2007; Reuter et al., 2010).
Automated segmentation and volume computations of the whole
brainstem and four brainstem substructures [pons, midbrain,
medulla, and superior cerebellar peduncle (SCP)] were completed
using the brainstem substructures toolbox implemented in
FreeSurfer software. Segmentation was conducted using a robust
and accurate Bayesian algorithm relying on a probabilistic atlas
of the brainstem and neighboring anatomical structures (Iglesias
et al., 2015). Each subject’s T1 imaging outputs in all processes
were carefully inspected for errors by two trained independent
researchers to ensure the quality of brainstem segmentation.

Moreover, the total intracranial volume (TIV) was calculated
for each participant with SIENAX (Smith et al., 2002) in
the FMRIB Software Library (FSL version 6.0.32) (Jenkinson
et al., 2012), which was used as a covariate for subsequent
volumetric comparisons.

While volumetric analysis can only offer information
about the total size of the brainstem, vertex-wise subcortical
shape analysis can identify changes in the shape of the
brainstem and offer more information about regional
abnormalities in the brainstem. Vertex-wise shape analysis
was achieved through the algorithm FIRST, (Patenaude
et al., 2011), a model-based segmentation and registration
module implemented in FSL software. This method is
based on a Bayesian framework model; the multivariate
Gaussian shape and appearance of subcortical structures
are constructed from a large set of manually labeled images
(336 brains) provided by the Center for Morphometric
Analysis, Massachusetts General Hospital, Boston. During
registration, raw 3D T1 images are transformed to MNI152
template by standard 12 degrees of freedom and accurately
registered to a Montreal Neurological Institute (MNI) 152
brainstem mask to exclude voxels outside the brainstem
region. Then brainstem was automatically segmented based
on a Bayesian framework. Afterward, the surface mesh output
of the brainstem, which was used for surface-based vertex
analyses, was generated.

Diffusion tensor imaging data processing and analysis were
performed using software tools from FSL. Eddy current
induced distortions and head motion in the diffusion-
weighted images was corrected using EDDY tools provided
in the FSL, (Andersson and Sotiropoulos, 2016). Then
the quality of the dataset was assessed using QUAD and
SQUAD (automated EDDY quality control framework in
FSL), (Bastiani et al., 2019). The quality control criteria were
set as average absolute volume to volume head motion of

2http://surfer.nmr.mgh.harvard.edu

<3 mm or total outliers <5% by referencing the previous
literature, (Zheng et al., 2021). An example of a quality
control report is added in Supplementary Material. Skull
stripping was performed for each participant using FSL’s Brain
Extraction Tool (BET), (Smith, 2002). Afterward, by fitting
a tensor model to the raw diffusion data, quantitative DTI
parameters of fractional anisotropy (FA), axial diffusivity (AD),
mean diffusivity (MD), and radial diffusivity (RD) images
were calculated.

All subjects’ FA, MD, AD, and RD images were then
registered to the standard MNI152 space using a non-
linear registration algorithm (FSL’s FLIRT and FNIRT)
(Smith et al., 2004; Greve and Fischl, 2009), which uses
a b-spline representation of the registration warp field
(Rueckert et al., 1999).

An atlas-based ROI analysis was performed to compare
diffusion metrics of brainstem fiber pathways in ALS patients
with healthy controls. Recently, a novel probabilistic atlas of
23 brainstem pathways using the Human Connectome Project
(HCP) data was developed and publicly distributed (Tang
et al., 2018). The atlas was in the MNI152 space, which can
be downloaded on NITRIC3. ROIs were defined by anatomic
marks obtained from the 23 brainstem pathways atlas and six
ROIs of motor tracts were identified, which were respectively
bilateral CST, bilateral frontopontine tracts (FPT), and bilateral
parieto-occipito-temporo-pontine tracts (POTPT) (Figure 1).
The average values within each region were calculated.

3https://www.nitrc.org/projects/brainstem_atlas/

FIGURE 1 | Six regions of interest of motor tracts defined by probabilistic
atlases of 23 brainstem bundles. The bilateral corticospinal tracts (CST) are
marked red-yellow. The bilateral fronto-pontine tracts (FPT) are displayed in
blue. The bilateral parieto-occipito-temporo-pontine tracts (POTPT) are
represented as green.
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Statistics Analysis
Normal distribution assumption was examined by Kolmogorov–
Smirnov tests. Group differences in the clinical data were
evaluated using a t-test for continuous variables and Chi-square
tests for discrete variables. All non-voxel-wise statistical analyses
were carried out with Statistical Package for the Social Sciences
(SPSS) V.20 (IBM SPSS, IBM Corp., NY, United States).

An analysis of covariance (ANCOVA) was used to test for
volume differences of the whole brainstem and its subregions
between groups, adjusting for the effect of age and TIV to avoid
spurious results.

Meanwhile, ANCOVA was performed to test for changes in
DTI parameters within the brainstem fiber pathways between
groups with age as a covariate. The analysis was carried out
with average values of FA, MD, RD, and AD, respectively.
After Bonferroni correction, P < 0.008 (0.05/6) was considered
statistically significant. In line with recent recommendations
(Chen et al., 2017), partial eta squared was calculated to
estimate effect sizes.

For statistical analysis of brainstem shape data, general
linear models consisting of age as a covariate were used
for permutation-based non-parametric statistics. The non-
parametric permutation approach (5000 permutations) was
accomplished by the randomize tool commanded in FSL,
(Winkler et al., 2014). Results with P < 0.05 were taken
into consideration significantly after threshold-free cluster
enhancement (TFCE) and family-wise error corrected (FWE)
correction for multiple comparisons (Smith and Nichols, 2009).

Due to skewed distributions, the Spearman correlation
test was used to analyze the relationship between different
variables. Correlation significant at P < 0.008 (0.05/6) was
considered statistically significant after Bonferroni correction for
multiple comparisons.

RESULTS

Demographic and Clinical
Characteristics
The demographic and clinical data of enrolled individuals are
summarized in Table 1. There were no significant differences in
age (P = 0.852) or gender (P = 0.622) between patient groups
and the healthy controls. There were no significant differences in
MMSE (P = 0.07).

Comparisons of the Volume and Shape
of Brainstem Structures Between ALS
Patients and Healthy Controls
There were no significant differences in the volumes of the whole
brainstem and three brainstem subregions between ALS patients
and the healthy control group (Table 2).

Comparisons of the vertex-wise shape of brainstem structures
between ALS patients and healthy controls are shown in Figure 2.
Automated brainstem vertex-wise analysis revealed that the
ventral medulla oblongata and a small part of the ventral pons
had significant group differences in the ALS group than in the

TABLE 1 | Demographic characteristics of the cohorts.

Characteristics ALS patients Healthy controls

Number of participants 33 33

Gender (male/female) 18/15 16/17

Age at MRI scan 52.39 (1.56) 51.97 (1.63)

Handedness (right/left) 33/0 33/0

Site of ALS onset

Bulbar 4 N/A

Upper limb 21 N/A

Lower limb 8 N/A

Disease duration (months) 16.82 (13.42) N/A

Disease progression rate 0.87 (0.91) N/A

All ALSFRS-R score (/48) 38.61 (6.57) N/A

ALSFRS-R bulbar subscore (/12) 10.86 (1.84) N/A

ALSFRS-R upper limb subscore (/12) 7.12 (3.40) N/A

ALSFRS-R lower limb subscore (/12) 8.76 (2.91) N/A

ALSFRS-R respiration subscore (/12) 12 (0) N/A

MMSE 27.91 (1.99) 28.61 (0.86)

Values are given in mean (standard deviation) format where appropriate. ALSFRS-
R, Revised Amyotrophic Lateral Sclerosis Functional Rating Scale. MMSE, Mini-
Mental State Examination.

FIGURE 2 | The brainstem shape differences between ALS groups and
healthy controls (HC) using vertex-wise surface analyses. The blue color
indicates the 3D brainstem mesh. The regions in orange represent
ALS-related local shape deformations (ALS < HC). The results are corrected
for multiple testing with the threshold-free cluster enhancement (TFCE) and
family-wise error (FWE) method (P < 0.05).

healthy controls group, following TFCE and FWE correction
(P < 0.05).

Comparison of DTI Findings With
Atlas-Based ROI Analysis
Figure 3 and Table 3 show comparisons of diffusion metrics
between ALS patients and healthy controls for six motor tracts
of brainstem pathways. In the ROI analysis, ALS patients had
significantly decreased FA values in the left CST but increased
RD values in the bilateral CST at the brainstem level (P < 0.008).
In addition, ALS patients had significantly decreased FA values
in the bilateral FPT but increased RD values in the left FPT
(P < 0.008).
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TABLE 2 | Difference of volumes of brainstem regions between the ALS and healthy controls group.

Brainstem region ALS patients Healthy controls F Partial eta squared P-value

Medulla oblongata 4378.21 ± 451.64 4210.41 ± 437.02 2.352 0.037 0.130

Pons 12,947.33 ± 1950.17 13,149.50 ± 1440.01 0.522 0.008 0.473

Midbrain 5736.68 ± 734.86 5694.19 ± 576.41 0.887 0.014 0.701

SCP 244.52 ± 55.25 234.57 ± 40.55 0.149 0.002 0.350

Whole brainstem 23,305.89 ± 2994.61 23,289.52 ± 2114.33 0.001 <0.001 0.970

Data are mean ± standard deviation (mm3). The P-values are obtained using analysis of covariance (ANCOVA) adjusted for age, gender, and total intracranial volume as
covariates. SCP, superior cerebellar peduncle.

FIGURE 3 | The violin plot depicts the diffusion measures from the region of interest analysis of ALS patients and healthy control groups. The blue color represents
healthy controls (HC), and the red represents ALS patients. Inner violin plot shows the quartile, median. Asterisk indicates significance after Bonferroni correction.
(A) Comparison of FA values between groups. (B) Comparison of RD values between groups.

Correlations Between Imaging Findings
and Clinical Characteristics
As shown in Figure 4, ALSFRS-R showed significant positive
correlations with FA values of the left CST (r = 0.468, P = 0.006).
Similarly, the bulbar sub-score showed positive correlations with
FA values in the left CST (r = 0.590, P < 0.001). Moreover, the
upper sub-score showed significant positive correlations with left
CST (r = 0.550, P < 0.001) and the left FPT (r = 0.475, P = 0.005).
There were no other significant associations between imaging
findings (volumetric metrics and vertex data) and clinical data.

DISCUSSION

This study demonstrated the patterns of structural
degeneration of the brainstem in ALS using the volumetric
and surface-based approach, in addition to selective
fiber integrity investigation. The results revealed that
ALS patients encounter specific brainstem volume loss
and white matter degeneration. The volume loss in the
brainstem is mainly characterized by the local shape
deformation in the medulla oblongata and pons. Selective

degeneration in the CST and FPT related to clinical
disease deterioration.

Our vertex-wised analyses identified shape deformations of
the medulla oblongata in ALS patients compared with healthy
controls. A fraction of involvement of posterior pons was
also demonstrated in ALS patients. A previous study by Bede
et al. (2019) proved significant alterations of the brainstem in
ALS patients. Brainstem pathology refers to stage one of the
lately proposed phosphorylated TDP-43 (pTDP-43) pathological
staging scheme, which is characterized by the involvement
in the brainstem motor nuclei of cranial V, VII, and X–
XII of TDP-43 pathology (Braak et al., 2013; Brettschneider
et al., 2013). Furthermore, the aforementioned cranial nerves
are mainly distributed in the medulla oblongata and pons.
Our volumetric analysis did not reveal the general volume
reduction of the gray matter related to ALS patients in the three
subregions of the brainstem. Metabolism has been shown to
increase in bilateral midbrain and pons areas in ALS patients,
suggesting the local activation of microglia and astrocytes in
the brainstem of ALS patients (Haukedal and Freude, 2019;
Volonté et al., 2019). Studies of ALS postmortem (Cardenas
et al., 2017) and mouse model pathology (Chiarotto et al., 2019;
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TABLE 3 | Group comparisons of the mean DTI parameters in ALS patients and healthy controls.

Region DTI parameters ALS patients Healthy controls F Partial eta squared P-value

L-CST FA 0.52 ± 0.026 0.54 ± 0.035 12.571 0.169 <0.001*

MD 0.82 ± 0.075 0.80 ± 0.085 0.95 0.015 0.333

AD 1.57 ± 0.113 1.61 ± 0.143 1.779 0.028 0.187

RD 0.44 ± 0.063 0.38 ± 0.043 15.136 0.196 <0.001*

R-CST FA 0.51 ± 0.023 0.53 ± 0.030 6.445 0.094 0.014

MD 0.81 ± 0.082 0.80 ± 0.104 0.049 0.001 0.826

AD 1.60 ± 0.109 1.65 ± 0.178 2.506 0.039 0.118

RD 0.41 ± 0.050 0.37 ± 0.033 14.782 0.193 <0.001*

L-FPT FA 0.51 ± 0.032 0.53 ± 0.037 8.647 0.122 0.005*

MD 0.89 ± 0.129 0.86 ± 0.204 0.155 0.002 0.695

AD 1.71 ± 0.187 1.73 ± 0.302 0.235 0.004 0.63

RD 0.48 ± 0.096 0.41 ± 0.078 8.188 0.117 0.006*

R-FPT FA 0.47 ± 0.027 0.50 ± 0.032 11.324 0.154 <0.001*

MD 0.84 ± 0.129 0.83 ± 0.174 0.023 0.003 0.88

AD 1.66 ± 0.171 1.70 ± 0.303 0.654 0.01 0.422

RD 0.43 ± 0.070 0.39 ± 0.063 4.768 0.071 0.033

L-POTPT FA 0.51 ± 0.024 0.52 ± 0.024 4.061 0.061 0.048

MD 0.77 ± 0.064 0.77 ± 0.047 0.05 0.001 0.823

AD 1.43 ± 0.092 1.46 ± 0.084 2.172 0.034 0.146

RD 0.44 ± 0.069 0.42 ± 0.042 1.555 0.024 0.217

R-POTPT FA 0.51 ± 0.028 0.53 ± 0.026 3.094 0.048 0.083

MD 0.75 ± 0.054 0.75 ± 0.053 0.283 0.005 0.597

AD 1.43 ± 0.090 1.48 ± 0.116 5.217 0.078 0.046

RD 0.41 ± 0.057 0.39 ± 0.047 3.696 0.056 0.059

All values are expressed as the mean ± standard deviation. Mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) × 104 mm2/s. Asterisk indicates
significance after Bonferroni correction. P-values are presented before Bonferroni correction. L, left; R, right. CST, corticospinal tract. FPT, fronto-pontine tract. POTPT,
parieto-occipito-temporo-pontine tract.

Espejo-Porras et al., 2019) have shown astrogliosis and active
microglia surrounding the neurodegeneration region. One
possible reason for the negative result may be that the increased
number of astrocytes in brain regions influenced by ALS occupies
the place of the dead neurons, compensating for volume loss by
shrinkage of neurons.

The relationship between the volume and the shape structure
on the brainstem surface is yet to be understood (Rahayel et al.,
2019). Volume analysis only provides information about the
global size of the brainstem and neither presents any location
information for volume changes nor offers any information about
the shape (Patenaude et al., 2011). The present results showed
that the estimated total brainstem volume might not capture
structural alterations in ALS patients. The change in shape may
precede volume changes of the brainstem. Therefore, a shape-
based morphological analysis could be a useful tool for detecting
early brainstem atrophy in ALS.

In our study, significantly reduced FA values in the left
CST at the brainstem level and increased RD values in the
bilateral CST at the brainstem level were observed. Other
DTI studies have also investigated significant abnormalities
at brainstem levels of the CST in ALS patients (Cardenas-
Blanco et al., 2014; Floeter et al., 2014; Schuster et al., 2016;
Baek et al., 2020). A previous multicenter imaging study
detected a reduced FA value within CST at the brainstem

level (Müller et al., 2016). Furthermore, a recent voxel-
based meta-analysis revealed significant FA reduction in the
right CST that stretched to the right cerebral peduncle
(Zhang et al., 2018). Decreased FA and increased RD values
commonly reflect some degree of impaired fiber integrity
(Hutton et al., 2020). FA assesses the extent of anisotropy
of diffusion processes (van Veluw et al., 2019). RD is a
straight estimate that represents vertical directions to the tract,
offering more indirect information on pathological changes
in the axons or myelin compared to FA or MD (Fattah
et al., 2020). Recent research has validated RD metrics as
sensitive to characterize myelin (Geeraert et al., 2018). In
addition, pathological changes of the white matter, including
myelin damage and axonal degeneration, have been revealed in
animal ALS models and postmortem studies of ALS patients
(Kang et al., 2013; Wang et al., 2020). Therefore, the DTI
results indicated a disruption and degeneration of CST in the
brainstem region.

The present analysis showed a significant positive association
between FA values of the left CST and total ALSFRS-R, which is
consistent with former DTI studies (Bao et al., 2018; Kassubek
et al., 2018). Lower performance in the bulbar function and
the upper limb function was associated with lower FA values
of the left CST in the brainstem level in ALS patients. A
previous study has found an increase in functional brain network
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FIGURE 4 | Significant clinical correlates of ALSFRS-R, ALSFRS-R bulbar subscore, and upper limb subscore, with FA values of brainstem pathways in patients with
ALS. Dotted lines represent the 95% confidence region of the linear model fit. P < 0.008 (0.05/6) was considered statistically significant after Bonferroni correction.
ALSFRS-R, Revised Amyotrophic Lateral Sclerosis Functional Rating Scale.

connectivity along with ALS disease progression (Sorrentino
et al., 2018). In addition, a previous neuroimaging study showed
that disease-related gray and white matter changes in ALS
patients propagated from the motor to extra-motor areas as
ALS progresses (Trojsi et al., 2015). The current findings may
reinforce the notion that disease may propagate through axonal
pathways in multiple regions of the brain. Following this
evidence, we suggest that the CST at the brainstem level may
be a reliable region for monitoring disease severity. Meanwhile,
the results may provide further in vivo evidence for the proposed
staging scheme of ALS-associated pathology (Braak et al., 2013;
Brettschneider et al., 2013).

Patients with ALS had decreased FA values in bilateral FPT
underlying the brainstem and increased RD values in the left
FPT in the brainstem level. FPT is part of the cortico-ponto-
cerebellar system, which is a white matter tract stretching
from the cerebral cortex via pontine nuclei to the cerebellum
(Jang et al., 2014; Palesi et al., 2017). This system plays an
important role in movement regulation and modulates higher
cognitive functions (Palesi et al., 2017; Wagner and Luo,
2020). Based on a multicenter DTI study, corticopontine tract
(CPT) FA decreases have been related to stage 2 of a lately

suggested pathological staging system (Kassubek et al., 2014;
Müller and Kassubek, 2018). Moreover, a DTI study has shown
that disruption of white matter integrity of the cortico-ponto-
cerebellar system in ALS patients was associated with the
pseudobulbar syndrome, (Floeter et al., 2014). Further, cortico-
ponto-cerebellar system microstructural changes have been
related to memory impairment in ALS patients, (Trojsi et al.,
2020)., Mean FA of the CPT was reduced in ALS patients in a
longitudinal multicenter study (Kalra et al., 2020). The CPT is
associated with hand dominance-related alterations (Kim et al.,
2019). In addition, previous researches have demonstrated that
the integrity of the CPT in patients with chronic stroke affects
the residual upper limb function (Schulz et al., 2015; Guder et al.,
2020). A positive association was observed between the FA of the
left FPT and the upper limb sub-score, which concurs with the
association between the FA of the CPT and the finger-tapping-
score in ALS patients (Kalra et al., 2020). Thus, the identified
alterations may contribute to abnormal upper limb function
of ALS patients.

However, some limitations should be acknowledged in our
study. First, the spatial resolution of DTI in our study was
relatively low, and there were still some residual distortions in
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the brainstem even after the application of correction
procedures. These may reduce the interpretability of the
results. Therefore, more high-resolution and accurate assessment
methods, such as High Angular Resolution Diffusion-
weighted Imaging or Diffusion Spectrum Imaging, need to
be performed in future studies. Second, the sample size of
our patients is relatively small. It is undoubtedly that the
limited sample size of a single-center study is challenged by
inherent disease heterogeneity in ALS. Therefore, multicenter
cooperation is required to solve this problem. In addition,
the limitation of this study lies in its cross-sectional nature.
Thus, further studies should be performed to assess the
changes of longitudinal volume and diffusion in the brainstem
of ALS patients.

CONCLUSION

In summary, the present study provides evidence for brainstem
involvement in ALS patients, which is characterized by
local atrophy in the medulla oblongata and white matter
degeneration in the CST and FPT in the brainstem region.
Furthermore, FA reduction in the left CST and FPT may
reflect the severity of the disease. These findings may
be helpful for further understanding of potential neural
mechanisms in ALS.
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