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Brain tumor image classification is an important part of medical image processing. It
assists doctors to make accurate diagnosis and treatment plans. Magnetic resonance
(MR) imaging is one of the main imaging tools to study brain tissue. In this article, we
propose a brain tumor MR image classification method using convolutional dictionary
learning with local constraint (CDLLC). Our method integrates the multi-layer dictionary
learning into a convolutional neural network (CNN) structure to explore the discriminative
information. Encoding a vector on a dictionary can be considered as multiple projections
into new spaces, and the obtained coding vector is sparse. Meanwhile, in order to
preserve the geometric structure of data and utilize the supervised information, we
construct the local constraint of atoms through a supervised k-nearest neighbor graph,
so that the discrimination of the obtained dictionary is strong. To solve the proposed
problem, an efficient iterative optimization scheme is designed. In the experiment,
two clinically relevant multi-class classification tasks on the Cheng and REMBRANDT
datasets are designed. The evaluation results demonstrate that our method is effective
for brain tumor MR image classification, and it could outperform other comparisons.

Keywords: brain tumor image classification, magnetic resonance imaging, dictionary learning, local constraint,
convolutional neural network

INTRODUCTION

Brain tumors are abnormal cell aggregations that grow inside the brain tissues. Brain tumors can be
divided into benign tumors and malignant tumors. Brain benign tumors can be cured by surgery,
while malignant brain tumors are one of the most deadly types of cancer and can lead directly to
death (Yang et al., 2018; Sun et al., 2019; Ge et al., 2020). Brain tumors can also be divided into
primary tumors formed in the brain or derived from the brain nerves and metastatic brain tumors
metastasized from other parts of the body to the brain. The most common primary brain tumors
in adults are primary central nervous system lymphoma and gliomas, of which gliomas originate
from the periglial tissue and account for more than 80% of malignant brain tumors. Different
symptoms appear with different lesion areas, such as headache, vomiting, visual decline, epilepsy,
and confusion. A more detailed classification divides brain tumors into four grades, the higher the
grade, the more malignant the brain tumor is. According to the Global cancer statistics 2020 (Sung
et al., 2021), there are about 308,000 new cases of brain cancers in 2020, accounting for about 1.6%
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of all new cases of cancers, and about 251,000 deaths from brain
cancers, accounting for about 2.5% of all cancer deaths.

Early detection is important for effective treatment of brain
tumors (Gumaei et al., 2019). With the development of medical
imaging, imaging techniques play an important role in brain
tumor diagnosis and treatment evaluation and can provide
doctors with a clear human brain structure. These imaging
techniques can provide information on the shape, size, and
location of brain tumors, assisting doctors to make an accurate
diagnosis and develop a treatment plan. Magnetic resonance
(MR) imaging is one of the most commonly used scanning
methods in neurology. MR imaging uses radiofrequency signals
to excite the target tissue under the influence of a very strong
magnetic field to produce an image of its interior. It has
the advantages of high soft tissue contrast and zero ionizing
radiation exposure. Therefore, MR imaging is more suitable for
the detection of brain lesions (Zeng et al., 2018; Mittal et al., 2019;
Bunevicius et al., 2020).

In recent years, artificial intelligence has attracted more
and more attention due to its achievements in the field of
intelligent medicine. The classification and segmentation of MR
images using artificial intelligence methods has become a hot
topic in the research of medical image processing (Mohan and
Subashini, 2018; Anaraki et al., 2019). The application of brain
tumor classification falls into two main types: classification
of brain images into normal and abnormal, that is, whether
the brain image contains a tumor or not; and classification
within abnormal brain images, that is, differentiation between
different classes of brain tumors. Classifying brain tumors into
different pathological classes is more challenging than a binary
classification. The challenge lies in brain tumors being permeable,
their appearance is highly heterogeneous, their location is
random, and the number of voxels in each subregion varies
widely (Chahal et al., 2020).

Brain tumor classification includes two procedures: feature
extraction and classification. In some previous studies, traditional
manual extraction of features was widely used, such as intensity
and texture features of brain tumor images. However, traditional
feature extraction methods require the professional knowledge
and experience in specific fields. Manual feature extraction
will also reduce the efficiency of the system. Deep learning
techniques overcome this disadvantage (Sajjad et al., 2019).
Feature extraction methods based on deep learning have
demonstrated successful results in real-world medical image
processing applications (Deepak and Ameer, 2019). Among
various classification methods, dictionary learning (DL) is a
powerful tool in image processing and machine vision, making
sparse coding tasks efficient and robust (Al-Shaikhli et al.,
2016; Ni et al., 2020). The sparse coding can approximate
high-dimensional image features into a linear combination of
a few atoms from the learned dictionary (Li et al., 2018;
Gu et al., 2020b). Ghasemi et al. (2020, 2021) developed
fuzzy dictionaries to deal with the uncertainty in brain tumor
image classification. The classic fuzzy inference is embedded
into the dictionary learning process and fuzzy membership
functions are used to model uncertainty and improve sparse
representation. Wu et al. (2017) developed a parse representation

method to exact important features and key feature index
across different class images. Then, the learned feature weights
and classification dictionary are used in a radiomics system
for the diagnosis of brain tumors. Al-Shaikhli et al. (2014)
developed a coupled dictionary learning method, which designs
one dictionary of brain tumor image patches and one dictionary
of image labels. The label dictionary is used to present the
foreground and background multiple labels. Then, Al-Shaikhli
et al. (2016) extended this work by using the information of
brain topology and texture to develop a multi-class brain tumor
classification method. Chen et al. (2017) proposed a kernel sparse
representation method for multi-label brain tumor segmentation.
This method consists of three main parts as principal component
analysis—split for dictionary learning initialization, second for
kernel sparse representation processing of kernel dictionary
learning and kernel sparse coding, and third for making brain
image segmentation using graph-cut method. Adebileje et al.
(2017) applied two dictionary learning methods for classifying
proton MR spectroscopy of brain gliomas tumor, i.e., one is
discriminate sub-dictionary learning method, and the other is
projective dictionary pair learning. These two methods were
tested on many H-MRS patients signal samples selected in
an Iran hospital and evaluated to be noise insensitive. Tong
et al. (2019) proposed a kernel dictionary learning method that
segmented MR brain tumor images after the noise removal and
contrast enhancement and then extracted the nonlinear features
by the learned kernel dictionary for healthy and pathologically
tissues. Finally, the segmentation is done by kernel-clustering
method. Vu et al. (2015) proposed a feature-oriented dictionary
learning method. This method incorporated feature extraction
discriminative into dictionary learning. In addition, it built
discriminative class-specific dictionaries that emphasized the
small intra-class differences and large inter-class differences.
Finally, this method had been evaluated using brain cancer
dataset Cancer Genome Atlas.

Our goal in this study is to build an automatic and effective
brain tumor MR image classification method to assist physicians
in decision-making. In order to capture the better discriminative
feature representations of brain tumor MR images, we propose
convolutional dictionary learning with local constraint (CDLLC)
method to seek sparse feature representation and dictionary
simultaneously by using a convolutional neural network (CNN)
framework. In addition, we employ the locality constraint term
on codes in the last layer. The locality constraint term is used
to enforce the manifold structure of the codes to preserve the
locality information. Various CNN structures can be used in
CDLLC; in this study, we use AlexNet (Krizhevsky et al., 2012)
and softmax classifier loss in the last layer. The framework of
the proposed method is shown in Figure 1. The advantages of
the proposed CDLLC method are as follows: (1) CDLLC learns
a multi-layer convolutional dictionary for feature representation
and encoding in the nonlinear space, so that the nonlinear
latent information of data is employed. (2) Encoding a vector
on a multi-layer dictionary can be considered as multiple
projections into new spaces. The projection is nonlinear and the
obtained coding vector is sparse. Simultaneously, the resulting
coding vectors of different classes can give the discriminative
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FIGURE 1 | Framework of the proposed method.

approximation and delete the redundant information. For
example, the coding vectors in single layer dictionary learning
may be nonlinear separable, and they will be transformed into
linear separable in our method. (3) By considering the supervised
information and graph Laplacian regularization term, the
learned coding vectors are more discriminative. Simultaneously,
graph Laplacian regularization preserves the locality structure
information of the learned dictionary in the last layer. (4) The
proposed CDLLC method is conducted on two public brain
tumor datasets. The performance and usefulness of CDLLC
are validated in terms of accuracy, recall, precision, F1-score,
and balance loss.

The rest of the article is organized as follows: the related
work is introduced in section “Backgrounds.” The proposed
method is given in section “Convolutional Dictionary Learning
With Local Constraint,” and experiments are reported in section
“Experiments.” Finally, a conclusion is summarized in section
“Conclusion.”

BACKGROUNDS

Dataset
The brain tumor datasets used in this article are provided by
Cheng et al. (2015, 2016) and the Repository of Molecular
Brain Neoplasia Data (REMBRANDT) (Clark et al., 2013). The
images provided by Cheng are 3064 T1-weighted contrast-
enhanced images, containing 708 meningiomas, 1426 gliomas,
and 930 pituitary tumors. All images are digitized at a resolution
of 512 × 512 pixels. The REMBRANDT dataset contains
110,020 pre-surgical MR multi-sequence images from 130
brain tumor patients. The dataset contains astrocytoma (AST),
oligodendroglioma (OLI), glioblastoma multiforme (GBM), and
other unidentified tumor types. All images are digitized at a
resolution of 256 × 256 pixels. Each image in the Cheng and
REMBRANDT datasets is labeled with one type of brain tumor.
The example samples of the Cheng and REMBRANDT datasets
are shown in Figures 2, 3, respectively. The challenge of these two
datasets lies in some factors, such as high variability in shape, size,
and the similar presentation of different pathological types.

Dictionary Learning
Let X=[x1,x2,...,xN ]∈Rd×N be the labeled training images and
A ∈ RK×N be the sparse coding vector matrix. Denote the
dictionary to be learned by D∈Rd×K . Consider the linear
representation, DA≈X . The dictionary D can be learned as

min
D,A
‖ X-DA ‖2

F +λ2(A),

s.t. ‖ di ‖
2
2≤ 1, ∀i

(1)

where the first term is reconstruction error and 2(A) represents
the constraints of coding vector matrix A, such as `0 , `1 , `2 and
Frobenius norm. The parameter λ is a positive scalar, which
controls the sparsity.

‖di‖
2
2≤1 is used to control the complexity

of model. Its purpose is to prevent dictionary D from being
arbitrarily large, as it will result in very small values for coding
matrix A. Parameters D and A are often optimized by alternating
iterations until convergence.

Equation 1 is an unsupervised learning framework. It can
obtain good performance in reconstruction tasks and can also
be used in some classification tasks, as it is good at mining
potential patterns in the data. In order to make better use of
supervised information in classification tasks, different kinds
of loss functions are considered in dictionary learning. The
supervised dictionary learning can be presented as

min
θ,D

∑
x∈X L(lx, ax, D, θ),

ax = arg min ‖ lx − Da ‖2
2 +λ2(a),

(2)

where lx is the class label of training sample x. Determining the
suitable classification loss function L and its parameter θ are
critical to classification tasks. The joint learning of parameters D
and θ allows D to have discriminative capability with minimal
classification cost. In order to obtain the optimal solution of
Eq. 2, gradient descent method, back propagation method, or
orthogonal matching pursuit (OMP) (Wang et al., 2012; Peng
et al., 2020) can be used.

Convolution Dictionary Learning
Convolution dictionary learning has been proposed in recent
years (Papyan et al., 2018; Sulam et al., 2018; Song et al., 2019).
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FIGURE 2 | Example samples of Cheng dataset: (A) meningioma, (B) glioma, (C) and pituitary tumor.

A

B

C

FIGURE 3 | Example samples of REMBRANDT dataset: (A) AST, (B) GBM, and (C) OLI.

The model is an extension of traditional dictionary learning.
Its aim is to capture the deep structure of data and increase
the discriminability of features. Convolution dictionary learning

follows the architecture of CNN and is used in a hierarchical
way. The convolution of the filter in CNN corresponds to the
sparse coding step in multi-layer convolution dictionary. Let
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{Dm}
M
m=1 be M-layer convolution dictionary, where Dm ∈ Rd×Km

is the dictionary in the m-th layer dictionary and Km is the size
of Dm. The convolutional representation of X can be presented as
X ≈ D1D2...DMAM . In detail, with the decomposition constraint
Dm−1 = DmAm, this process can be described as

X ≈ D1A1,

X ≈ D1D2A2,

X ≈ D1D2D3A3,
...

X ≈ D1D2...DMAM.

(3)

where Am∈RKm×N is the coding vector matrix in the m-th layer.

CONVOLUTIONAL DICTIONARY
LEARNING WITH LOCAL CONSTRAINT

Objective Function
Consider multi-layer dictionary architecture with M layers, the
coding Am in the m-th layer can be written as

Am ≈ φ(Dm+1Am+1), (4)

where φ is a nonlinear function, such as rectified linear unit
(ReLU), Sigmoid, and TanHyperbolic activation function. In this
case, coding using a dictionary is used as a projection into another
feature space, and the coding vector is a new input for the next
layer. In order to preserve the essential structure information of
data, it is essential to reconstruct the original sample in the last
layer. We consider the following equation:

J1(D1, D2, ..., DM, AM) = ‖ X-D1φ(D2φ(...φ(DMAM))) ‖2
F

+λ2(AM), (5)

where λ is the regularization parameter.
Following Cai et al. (2013) and Ding and Fu (2018), we use the

rank operator for 2(AM). In this case, AM can be approximated as
AM≈SH , and the 2(AM) term can be written as

‖ AM − SH ‖2
F, (6)

where S ∈ RKM×C and H ∈ RC×N . C is the class number
of data samples.

To improve the classification performance, local information
takes an important part in dictionary learning (Peng et al., 2020).
Since the atoms of dictionary is more robust and stable than
original samples, we use a graph Laplacian regularization term
of atoms to trace the manifold structure of data. We build a
supervised k-nearest neighbor graph W of atoms on dictionary
DM in the last layer. The element wi,j in graph W is denoted as
follows:

wi,j =


exp

(
−
‖ dM,i − dM,j ‖

2

σ

)
, if dM,i ∈ KNN(dM,j)

and li = lj
0, else

,

(7)

where σ is an adjustable parameter. Different from the
unsupervised graph Laplacian (Peng et al., 2020), we embed the
supervised information in graph W, such that similar codes are
enforced and more discriminative information can be learned.

Then, we construct the graph Laplacian regularization term in
the last layer as follows:

J2(AM) =

KM∑
i=1

KM∑
j=1

wi,j ‖ aM,i − aM,j ‖
2
2= Tr(AT

MLAM), (8)

where the Laplacian matrix L = diag(w1, w2, ..., wKM )−W, and
wi =

∑KM
j=1 wi,j.

To further learn a discriminative dictionary by exploiting
supervised information, we use the softmax classifier loss in the
last layer, which is commonly used in CNN structure

J3(AM, θ) = −
1
M

M∑
i=1

C∑
c=1

pc,ilog
eθT

c aM,i∑C
u=1 eθT

u aM,i
, (9)

where pc,i is the label probability of aM,i and is assigned
to class c. θ = [θ1, θ2, ..., θC] is the adjustable parameter in
softmax classifier.

For brain tumor image classification, we combine the three
functions J1, J2, and J3 together, jointly optimizing convolutional
dictionary learning and classifier. Therefore, we have the
objective function of the CDLLC model

arg min J1(D1, D2, ..., DM, AM)+ J2(AM)+ J3(AM, θ),

s.t. ‖ di ‖
2
2≤ 1, ∀i

(10)

TABLE 1 | Confusion matrix of CDLLC on the Cheng dataset.

Meningioma Glioma Pituitary

Meningioma 0.8875 0.0782 0.0343

Glioma 0.0444 0.9487 0.0069

Pituitary 0.0093 0.0070 0.9837

TABLE 2 | Classification performance of CDLLC on the Cheng dataset.

Accuracy Recall Precision F1-score Balance loss

Fold-1 Training 96.94 94.97 95.17 94.95 96.56

Test 96.36 94.59 94.78 94.70 96.03

Fold-2 Training 96.76 95.15 94.78 95.25 96.44

Test 96.29 94.71 94.42 94.63 96.08

Fold-3 Training 96.77 95.02 95.21 95.30 96.41

Test 96.32 94.62 94.51 94.65 96.11

Fold-4 Training 96.83 94.89 94.99 95.10 96.47

Test 96.35 94.67 94.60 94.75 96.06

Fold-5 Training 97.12 95.09 95.28 95.17 96.96

Test 96.39 94.64 94.61 94.70 96.22
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To show all terms clearly, we expand the expression as follows:

[D1, D2, ..., DM, AM, θ]

= arg min ‖X-D1φ(D2φ(...φ(DMAM)))‖2
F +λ1 ‖AM − SH ‖2

F

+ λ2Tr(AT
MLAM)−

λ3

M

M∑
i=1

C∑
c=1

pc,i log
eθT

c aM,i∑C
u=1 eθT

u aM,i
,

s.t. ‖ di ‖
2
2≤ 1, ∀i (11)

This jointly optimizing convolutional dictionary learning and
classifier has benefits. During the procedure of optimizing,
the convolutional dictionary learning gradually enhances the
classification performance of the classifier; meanwhile, the
learned classifier also improves the numerical stability and
discriminative ability of dictionary coding.

Optimization of CDLLC
The optimization of Eq. 11 is not convex, and we solve
dictionaries {D1,D2,...,DM}, coding matrix A and classifier
parameter θ by an alternative optimization approach. In each

step of iteration, we compute a certain parameter and fix the
other parameters.

When fixing A and θ, we update dictionaries {D1,D2,...,DM}. We
use the chain rule to compute Dm(1≤m≤M) in each layer

∂J
∂Dm
=

∂J
∂(DmAm) AT

m

=

[
∂J

∂φ(DmAm) � φ′(DmAm)
]

AT
m

=

[
∂J

∂Am−1
� φ′(DmAm)

]
AT

m,

(12)

where � denotes the element-wise multiplication. Specifically, we
can obtain ∂J

∂D1
=2(D1A1−X)AT

1
. After dictionary DM is obtained, we

use Eq. 7 to construct the graph Laplacian regularization.
When fixing {D1,D2,...,DM} and θ, we update coding matrix

Am(1<m≤M−1) in each layer as

∂J
∂Am
= (Dm)T ∂J

∂(DmAm)

= (Dm)T
[

∂J
∂φ(DmAm) � φ′(DmAm)

]
=(Dm)T

[
∂J

∂Am−1
� φ′(DmAm)

]
.

(13)

FIGURE 4 | Performance of CDLLC on the Cheng dataset: (A) accuracy, (B) recall, (C) precision, (D) F1-score, and (E) balance loss.
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Specifically, we can obtain A1
as

∂J
∂A1
= 2DT

1 (D1A1 − X). (14)

The partial derivatives of the J regarding the AM is given as

∂J
∂AM

= 2(DM)T
[

∂J
∂AM−1

� φ′(DMAM)

]
+ 2λ1(AM − SH)

+ 2λ2LMAM −
λ3

M

C∑
c=1

(
θc −

∑C
u=1 θueθT

u AM,i∑C
u=1 eθT

u AM,i

)
. (15)

Considering Eq. 6, we need to update matrixes S and H in turn.
The optimal S can be computed as

∂J
∂S
= AMHT

− SHHT . (16)

Then, we can update S as

S=AMHT(HHT)†, (17)

where † is the Moore–Penrose pseudoinverse.
Similarly, the optimal H can be computed as

∂J
∂H
= STSH − STAM. (18)

Then, we can update S as

H= (SST)†STAM. (19)

In this study, we use the softmax classifier for brain tumor
image classification. The optimal classifier parameter θ can be
computed as

∂J
∂θc
= −

1
M

M∑
i=1

C∑
c=1

lc,i(1−
eθT

c aM,i∑C
u=1 eθT

u aM,i
)αT

M,i. (20)

TABLE 3 | Confusion matrix of CDLLC on the REMBRANDT dataset.

AST OLI GBM

AST 0.9686 0.0100 0.0214

OLI 0.0621 0.9127 0.0252

GBM 0.0583 0.0108 0.9309

TABLE 4 | Classification performance of CDLLC on the REMBRANDT dataset.

Accuracy Recall Precision F1-score Balance loss

Fold-1 Training 97.74 93.89 95.42 94.25 95.86

Test 97.55 93.67 95.28 94.10 95.39

Fold-2 Training 97.80 93.92 95.53 94.34 95.91

Test 97.74 93.90 95.38 94.21 95.39

Fold-3 Training 97.87 93.96 95.52 94.35 95.82

Test 97.74 93.89 95.39 94.22 95.56

Fold-4 Training 97.85 93.97 95.58 94.47 95.99

Test 97.80 93.92 95.52 94.34 95.71

Fold-5 Training 97.74 93.90 95.48 94.26 95.79

Test 97.37 93.66 95.12 94.05 95.42

Testing Brain Tumor MR Images
Let x be the feature descriptor of a test image, based on the learned
optimal S, H, θ, and {D1,D2,...,DM}, we can compute the dictionary
encoding of x by the following formulation:

min
aM
‖ x-D1φ(D2φ(...φ(DMaM))) ‖2

F +λ1 ‖ aM − SH ‖2
F . (21)

Finally, the softmax classifier is used for classification, and the
label probability of x assigned to class c can be computed as

pc =
eθT

u aM∑C
u=1 eθT

u aM
. (22)

EXPERIMENTS

Experimental Settings
In our experiment, we randomly select 1000 images in the
REMBRANDT dataset and the whole Cheng dataset for
simulation. Brain MR images are resized to 227 × 227 sizes to
use for AlexNet. All convolution layers in CDLLC employ filters
of size 3 × 3. Stochastic gradient descent (SGD) is used as an
optimizer and TensorFlow is implemented in model training.
ReLU is used as the activation function. The initialization of
dictionary is performed from D1 and A1. We run K-SVD
algorithm on each class of data and integrate subclass dictionary
into the dictionary D1. Then, we obtain the Dm and Am based
on the learned dictionary and coding from the previous layer.
The parameters λ1 , λ2 , and λ3 in CDLLC are selected in the
search grid {0.001, 0.01, 0.1, 1, 10}. We use the fivefold cross-
validation to complete with valid and comparable results. The
70% of the training fold are used for training and 30% are used
as validation. We perform experiments for 10 times and then
record their average values. We summarize the performance of all
comparative methods in terms of accuracy, F1-score, precision,
recall, and balance loss (Gu et al., 2018, 2020a).

There are many categories of methods used for brain tumor
MR image classification. We compare several traditional machine
learning and deep learning methods in the experiments. The
traditional machine learning methods include the support vector
machine with RBF kernel (SVM-RBF) (Nandpuru et al., 2014),
the dictionary learning method label consistent K-SVD (called
LC-KSVD1 in the experiment) (Jiang et al., 2013), and the
neural network fuzzy inference system (ANFIS) (Thirumurugan
and Shanthakumar, 2016). The deep learning classification
methods include CNN (Krizhevsky et al., 2012) and CapsNet
(Afshar et al., 2018). For these traditional classification methods,
feature selection is a key step, where first- and second-order
statistical texture features are widely used in brain tumor image
classification. In our experiment, we follow (Fujima et al., 2019;
Zhang et al., 2019) and use the statistical texture features: mean,
variance, standard deviation, skewness, kurtosis, contrast, energy,
entropy, correlation, and homogeneity. In addition, to compare
with LC-KSVD using deep features, we exploit features from
CNN architecture AlexNet and apply these features into LC-
KSVD (called LC-KSVD2 in the experiment). We conduct the
experiments on a computer with Intel Xeon Processor E5-2620
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v4 and 64 GB RAM. All methods are implemented on Python
2.7, using Keras library and Tensor Flow.

Experimental Results on Cheng Dataset
In this subsection, we observe the classification performance of
CDLLC on the Cheng dataset. The images of the Cheng dataset
used in our experiment contain three types of brain tumors:
meningioma, glioma, and pituitary. First, we show the confusion
matrix for three classes obtained by CDLLC in Table 1. The
confusion matrix provides the valuable information about the
predicted labels. From Table 1, we can see that the pituitary
tumor is classified with the highest accuracy, glioma tumors are
classified with the second accuracy, and meningioma tumors
are classified with the lowest accuracy. Generally, the overall
classification accuracy is satisfactory.

Second, we use accuracy, F1-score, precision, recall, and
balance loss as the evaluation indexes. The performance of
these five indexes of CDLLC in five folds is shown in Table 2
in detail. Table 2 shows that CDLLC obtains high average
values and small standard deviation on accuracy, F1-score,
precision, recall, and balance loss. Then, we compare our
method with RBF-SVM, LC-KSVD1, LC-KSVD2, ANFIS, CNN,
and CapsNet. The average experimental results on the Cheng

dataset are shown in Figure 4. It can be observed from these
results that (1) CDLLC achieves the best results in comparison
with other methods. This indicates that more discriminative
information can be exploited by the proposed method. It suggests
that the multi-layer dictionary learning, which addresses both
feature representation and encoding in the nonlinear space,
can exploit discriminative features from deep learning structure.
In addition, graph Laplacian regularization can preserve the
locality structure information of sparse codes, which can
largely improve the model discriminative ability. (2) Among
all methods, deep leaning methods gain better classification
performance than traditional machine learning (SVM-RBF, LC-
KSVD1, and ANFIS) with statistical texture features. Using the
deep features, the classification performance of LC-KSVD2 is
obviously improved than LC-KSVD1. It indicates that deep
features are more adapted to brain tumor image classification.

Experimental Results on REMBRANDT
Dataset
In this subsection, we observe the classification performance
of CDLLC on the REMBRANDT dataset. The images of the
REMBRANDT dataset used in our experiment contain three
types of brain tumors: AST, OLI, and GBM.

FIGURE 5 | Performance of CDLLC on the REMBRANDT dataset: (A) accuracy, (B) recall, (C) precision, (D) F1-score, and (E) balance loss.
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We first show the confusion matrix for three classes obtained
by CDLLC in Table 3. From Table 3, we can see that the
classification performance of CDLLC for three types of brain
tumor images is comparable. The classification rates of AST, OLI,
and GBM are 0.9686, 0.9127, and 0.9309, respectively. Second,
we summarize the performance of CDLLC in terms of accuracy,
F1-score, precision, recall, and balance loss in Table 4. From
the fivefold results in Table 4, we can see that CDLLC gains the
satisfactory results on the REMBRANDT dataset. Our multi-layer
dictionary structure is not only convolutional but also sparse, and
all parameters are updated within joint optimization learning.
Then, we compare our method with RBF-SVM, LC-KSVD,
ANFIS, CNN, and CapsNet. The average experimental results
on the REMBRANDT dataset are shown in Figure 5. Similar to
the results in Figure 4, CDLLC gains the best performance in
five evaluation indexes. LC-KSVD1 is as a baseline method of
our method. Whether using statistical texture features or deep
features, the performance of LC-KSVD1 is much lower than that

of the proposed CDLLC. The reason is that LC-KSVD1 learns the
dictionary in the original space and such dictionary cannot well
exploit the discriminative information.

Parameter Analysis
In this section, we analyze the parameter sensitivity of CDLLC
on the Cheng and REMBRANDT datasets. First, we discuss the
parameters λ1 , λ2 , and λ3 in CDLLC. These three parameters
are selected in the search grid {0.001, 0.01,..., 10}. We set λ1=λ2
and visualize the change of classification accuracy of CDLLC
with different values of λ2 and λ3 . Similarly, we set λ2=λ3 (λ1=λ3 )
and visualize the change of classification accuracy of CDLLC
with different values of λ1 and λ3 (λ1 and λ2 ). The results of
classification accuracy are shown in Figures 6, 7. We can see that
different values of the parameters λ1 , λ2 , and λ3 have a significant
impact on the classification accuracy of CDLLC. It indicates that
the grid search strategy is appropriate for λ1 , λ2 , and λ3 .

FIGURE 6 | Parameter sensitivity of CDLLC on the Cheng dataset: (A) λ1 and λ2 (λ3 ), (B) λ2 and λ1 (λ3 ), and (C) λ3 and λ1 (λ2 ).
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FIGURE 7 | Parameter sensitivity of CDLLC on the REMBRANDT dataset: (A) λ1 and λ2 (λ3 ), (B) λ2 and λ1 (λ3 ), and (C) λ3 and λ1 (λ2 ).
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FIGURE 8 | Parameter sensitivity M of CDLLC on (A) the Cheng dataset and (B) the REMBRANDT dataset.

Next, we discuss the number of layers M in CDLLC on the
Cheng and REMBRANDT datasets. We set M in grid {2, 3,..., 6}
to evaluate its effect on classification accuracy. The classification
result is shown in Figure 8. We see that the classification accuracy
of CDLLC improves when M increases from 1 to 3. When M is
greater than 3, the classification accuracy of CDLLC is reliable on
the Cheng and REMBRANDT datasets.

CONCLUSION

In this study, we propose CDLLC method for brain tumor
MR image classification. The CNN structure is utilized to seek
sparse representation in the nonlinear space, so that the resulting
coding vectors of different classes can give the discriminative
approximation. Meanwhile, the proposed method CDLLC uses
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the locality constraint of atoms to preserve the manifold structure
of the codes. Different from the traditional dictionary learning
that uses manual feature extraction, CDLLC extracts the useful
CNN features automatically in the architecture of deep learning.
Classification of types of meningiomas, gliomas, and pituitary
tumors on the Cheng dataset and types of AST, OLI, and GBM on
the REMBRANDT dataset is carried out with high performance
in accuracy, recall, precision, F1-score, and balance loss. The
shortcoming of CDLLC is that the selection of parameters
becomes complicated as the number of layers increases. In our
next work, we will try to design a more reasonable program to
select these parameters. Besides, we will compare various network
architectures on CDLLC, such as VGG and GoogLeNet. Also,
we will adjust our method so that it could be applied to other
medical MR images.
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