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Since the introduction of memristors, it has been widely recognized that they can be

successfully employed as synapses in neuromorphic circuits. This paper focuses on

showing that memristor circuits can be also used for mimicking some features of the

dynamics exhibited by neurons in response to an external stimulus. The proposed

approach relies on exploiting multistability of memristor circuits, i.e., the coexistence of

infinitely many attractors, and employing a suitable pulse-programmed input for switching

among the different attractors. Specifically, it is first shown that a circuit composed of

a resistor, an inductor, a capacitor and an ideal charge-controlled memristor displays

infinitely many stable equilibrium points and limit cycles, each one pertaining to a

planar invariant manifold. Moreover, each limit cycle is approximated via a first-order

periodic approximation analytically obtained via the Describing Function (DF) method,

a well-known technique in the Harmonic Balance (HB) context. Then, it is shown that the

memristor charge is capable to mimic some simplified models of the neuron response

when an external independent pulse-programmed current source is introduced in the

circuit. The memristor charge behavior is generated via the concatenation of convergent

and oscillatory behaviors which are obtained by switching between equilibrium points

and limit cycles via a properly designed pulse timing of the current source. The design

procedure takes also into account some relationships between the pulse features and

the circuit parameters which are derived exploiting the analytic approximation of the limit

cycles obtained via the DF method.

Keywords: neuron, spiking, bursting, memristor, pulse-programmed circuit, harmonic balance

1. INTRODUCTION

The ever-growing need of computing power to handle data intensive applications is seriously
challenging conventional digital von Neumann computing architectures (Bonomi et al., 2012;
Satyanarayanan, 2017; Williams, 2017). The physical separation between the computing and
memory units can indeed generate long latency time and large energy consumption when data
intensive tasks are performed. In this context, researchers look at the emerging nanoscale analog
devices, such as memristors, as a viable approach for developing new computing paradigms, based
on in-memory and analog computation, which are potentially capable to overcome the limitations
of conventional computer architectures (Waldrop, 2016; Zidan et al., 2018; Krestinskaya et al.,
2020).
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The memristor (a shorthand for memory resistor) is the
fourth basic passive circuit element theoretically introduced by
Prof. Leon Chua in 1971 (Chua, 1971). The appealing features
of a memristor are non-volatility, i.e., the memristor capability
to hold data in memory without the need of a power supply,
and non-linearity, which makes memristor circuits capable
to generate quite a rich variety of oscillatory and complex
dynamics. The combination of these two features enables in-
memory computing, i.e., the co-location of computation and
memory in the same device (Ielmini and Wong, 2018). In-
memory computing, which resembles a basic principle of brain
computation, can provide several advantages, such as low energy
consumption, high bandwidths, excellent scalability, thus lending
itself as quite a promising novel computing approach in the field
of artificial intelligence and big data (Ielmini and Pedretti, 2020).
Memristor circuits have been already positively used to address
several tasks, including the solution of global optimization,
constraint satisfaction and linear algebra problems (Yang et al.,
2013; Wang et al., 2015; Kumar et al., 2017). They are also used
as building blocks in reservoir computing systems (Du et al.,
2017) and neuromorphic computing for on-line signal processing
tasks (Di Marco et al., 2016, 2017; Di Marco et al., 2017; Ascoli
et al., 2020a,b).

Since the very beginning it was clear that understanding the
peculiar dynamical features of memristor circuits is the key step
for developing analog in-memory computing schemes. It has
been definitely shown that memristor circuits are capable to
generate quite a large variety of dynamical behaviors (Corinto
et al., 2011; Corinto et al., 2019; Pershin and Di Ventra, 2011;
Xu et al., 2016; Yuan et al., 2016; Di Marco et al., 2018),
including bursting oscillations (see e.g., Wang et al., 2019 and
references therein). Recently, a new technique, named flux-
charge analysis method (FCAM), has been introduced for the
analysis of memristor circuits in the flux-charge domain (Corinto
and Forti, 2016, 2017, 2018). FCAM permits to show that
the dynamical richness displayed by memristor circuits is a
consequence of the property that the state space of any given
circuit, i.e., with its parameter having fixed values, contains
infinitely many invariants manifolds (foliation property of the
state space). This specific property implies that in memristor
circuits there is the coexistence of infinitely many different
attractors, a property referred to as multistability. Moreover,
structural changes of the attractors are observed when the
initial conditions are varied while keeping constant the values
of the circuit parameters, a peculiar phenomenon which is
referred to as bifurcations without parameters (Corinto and
Forti, 2017; Di Marco et al., 2018; Innocenti et al., 2019b). In
particular, Di Marco et al. (2018), Innocenti et al. (2019b) have
employed techniques within the Harmonic Balance (HB) context
for predicting limit cycles and their bifurcations by first showing
that the dynamics of the memristor circuit admits an equivalent
input-output representation, which has been recently extended
also to circuits containing memory elements (Innocenti et al.,
2020).

Among other applications, it has been soon recognized
that memristors can be successfully employed as synapses in
neuromorphic circuits (see e.g., Jo et al., 2010; Adhikari et al.,

2012; Thomas, 2013; Kim et al., 2015; Hu et al., 2016; Hong
et al., 2019). It has been also pointed out that memristor
circuits appear to be suited for modeling some features of the
dynamics of neurons. Some contributions provide a memristor
representation of popular neuron models (see e.g., Chua et al.,
2012; Usha and Subha, 2019 for the Hodgkin-Huxley axon), while
others show how to mimic some typical dynamics displayed
by cortical neurons (see e.g., Babacan et al., 2016; Nakada,
2019, and references therein). In Innocenti et al. (2019a), it is
shown that dynamics of the memristor Murali-Lakshmanan-
Chua circuit, equipped with an independent pulse programmed
input source and simple comparator and hysteresis feedback
blocks, can resemble some dynamical behaviors of cortical
neurons. Finally, it is worth noting that HB techniques have
been suitably employed for the analysis of neural oscillations (see
e.g., Chen et al., 2008; Matsuoka, 2011 and references therein).

The purpose of this paper is to show how memristor circuits
can be exploited for modeling some features of the neurons
dynamics (see e.g., Izhikevich, 2000, 2007). The basic ideas are
to exploit multistability, i.e., the fact that a memristor circuit
contains infinitely many attractors (equilibria, limit cycles, . . .),
and to employ a suitable pulse-programmed input for controlling
multistability, i.e., for switching among the different attractors.
Controlling multistability is currently a research field of general
interest (see e.g., Pisarchik and Feudel, 2014 and references
therein) and some contributions to the problem of steering the
memristor circuit dynamics toward the attractors contained in
one of the invariant manifolds have been given (Chen et al.,
2018; Corinto and Forti, 2018; Corinto et al., 2019; Di Marco
et al., 2019, 2020a,b). In particular, Di Marco et al. (2020b,a),
Di Marco et al. (2021) have shown that the dynamics of a
second order R, L, C circuit connected with a charge-controlled
memristor can be steered, via a pulse programmed source, toward
a pre-assigned invariant manifold where it converges toward the
attractor contained in the manifold itself. In this paper, such
a simple memristor circuit is used to mimic some aspects of
the dynamics displayed by cortical neurons in response to an
external stimulus. Section 2 describes the circuit and formulates
the problem of interest. Specifically, the memristor charge should
exhibit some typical neuron dynamics when the current source
is suitably pulse-programmed. It is assumed that the pulses and
their timing are generated by some given hardware mechanisms,
whose design is not the object of the paper. Section 2 also
illustrates the foliation property of the circuit state space in the
input-less case, by characterizing the infinitely many invariant
manifolds and the differential equations governing the dynamics
onto them. Section 3 investigates the dynamics of the input-less
circuit by showing that each manifold contains as attractor either
a stable equilibrium point or a stable limit cycle. The limit cycles
analysis is performed via the Describing Function (DF) method,
a classical technique within the HB context. By exploiting the
coexistence of stable equilibrium points and limit cycles and the
knowledge of the first order periodic approximations, section 4
provides a procedure for the design of a pulse timing of the
current source ensuring that the memristor charge mimics some
dynamical features of the neuron response. The sought behavior
of the memristor charge is obtained via a suitable concatenation
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FIGURE 1 | Charge-controlled memristor circuit with R, L,C components and

independent current source Is.

of convergent and oscillatory behaviors, which are generated by
switching between different attractors according to the designed
pulse timing. The relation between the pulse timing parameters
and the circuit parameters is also discussed. Some conclusions
are finally drawn in section 5.

2. PROBLEM FORMULATION AND
PRELIMINARIES

The aim of the paper is to show that the coexistence of many
different attractors in memristor circuits permits to mimic some
features of the dynamics of cortical neurons. Specifically, we
consider the simple circuit depicted in Figure 1 which contains
a resistor R, an inductor L, a capacitor C and a non-linear
charge-controlled memristor.

The capacitor voltage, the inductor current, the memristor
voltage and current are denoted by vC, iL, vM , and iM ,
respectively. The circuit is subject to an independent current
source Is, which is the input of the circuit. The charge-flux
characteristic ϕ̂ :R → R of the memristor relating the charge
qM and the flux ϕM is assumed to have both a linear and a cubic
term. Specifically,

ϕM = ϕ̂(qM) = −s0qM + s1

3
q3M , (1)

where the constant terms s0 and s1 satisfy

s0 > R , s1 > 0 . (2)

Throughout the paper, we assume that all the circuit parameters
R, L, C, s0, s1 have normalized values. Also, we consider arbitrary
units for the time.
We want to show that the circuit is able to generate some
characteristic dynamical behaviors of a neuron in response to
a pulse stimulus, as the typical one depicted in Figure 2A.
Specifically, the memristor charge qM should display the time

behavior of Figure 2B when the input source Is provides a
suitable stimulus.

It can be readily verified that the circuit dynamics is described
by the following third-order system of differential equations















DvC(t) = 1

C

(

Is(t)− iL
)

DqM(t) = iL

DiL(t) = 1

L

(

vC + (s0 − R)iL − s1q
2
MiL

)

(3)

where D is the time-derivative operator1 and vC, qM , and iL are
the state variables.

Let us consider the input-less case, i.e., Is = 0. It has been
shown (see e.g., Corinto and Forti, 2017) that memristor circuits
enjoy the so-called foliation property, i.e., the memristor state
space is decomposed into infinitely many invariant manifolds.
The verification of this property for the considered circuit is
readily obtained. Since Is = 0, the first equation of Equation (3)
can be rewritten equivalently as

DvC(t)+
1

C
iL(t) = DvC(t)+

1

C
DqM(t) = 1

C
D(qM(t)+ CvC(t)) = 0

(4)

which means that the quantity qM(t) + CvC(t) is constant along
the solutions of Equation (3) with initial conditions vC(t0),
qM(t0), and iL(t0) at time t = t0, i.e.,

qM(t)+ CvC(t) = qM(t0)+ CvC(t0) ∀t ≥ t0 . (5)

Hence, in the input-less case the state space of the memristor
circuit is decomposed into infinitely many invariant manifolds
of the form

M(Q0) =
{

(vC, qM , iL) : qM(t)+ CvC(t) = Q0 , ∀t ≥ t0
}

, (6)

whereQ0 is the index of themanifold whose value depends on the
circuit initial conditions according to the relation Q0 = qM(t0)+
CvC(t0). Note that the invariant manifolds M(Q0) are planar
surfaces parameterized by the manifold index Q0, as illustrated
in Figure 3.

We have then established that in the input-less case the
circuit dynamics is confined to lie onto one of the invariant
manifolds. The differential equations governing the dynamics
onto the invariant manifold M(Q0) can be readily singled out.
Since the first equation of Equation (3) has been used to obtain
M(Q0), it follows that the dynamics is characterized by the two

remaining equations once vC(t) is replaced by
1

C
(Q0 − qM(t)).

Hence, the dynamics ontoM(Q0) obeys the second-order system
of differential equations

{

DqM(t) = iL(t)

DiL(t) = 1

LC
(Q0 − qM(t))+ s0 − R

L
iL(t)−

s1

L
q2M(t)iL(t) .

(7)

1Throughout the paper,Df (t̄) denotes the derivative of the function f (t) at t = t̄.
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A B

FIGURE 2 | (A) Schematic of an ideal voltage-pulse of the cellular membrane (action potential). (B) Reference shape of the memristor charge-pulse considered in this

paper. For the sake of simplicity, the depolarization is assumed to occur without distinction between the sub- and the super-threshold branches, and the

hyperpolarization dynamics admits small ripples during the convergence to the resting state.

FIGURE 3 | Invariant manifolds of the input-less circuit: the state space

trajectory generated by the solution of Equation (3) with initial conditions vC(t0),

qM (t0), iL(t0) (marked with ◦) at time t = t0 belongs to the manifold M(Q0) with

Q0 = qM (t0)+ CvC(t0) for all t ≥ t0.

Clearly, the complete dynamical behaviors of the input-less
circuit can be obtained by collecting all the dynamics confined to
lie onto each invariant manifold M(Q0). The dynamical analysis
of Equation (7) for any value of the index manifold Q0 will be
pursued in section 3. Note that Q0 can be seen as a parameter
of Equation (7) which however depends on the circuit initial
conditions and hence it has a different nature with respect to the
circuit parameters R, L, C, s0, and s1.

3. INPUT-LESS MEMRISTOR CIRCUIT
DYNAMICS

In this section, we summarize the properties of the dynamics onto
M(Q0) by investigating system (7). Specifically, the equilibrium

points and their stability features are dealt with in section 3.1,
while the presence of limit cycles is considered in section 3.2.

3.1. Equilibrium Points
It readily follows that each invariant manifold M(Q0) has a
unique equilibrium point at (qM , iL) = (Q0, 0). Taking into
account (6), this implies that the circuit system (7) has an
equilibrium point at (vC, qM , iL) = (0,Q0, 0) for any value of
the index Q0. Hence, the qM-axis is a line of equilibrium points
of the circuit.
To assess the stability properties of the equilibrium point of
M(Q0), we compute the Jacobian J(Q0) of (7) at (qM , iL) =
(Q0, 0), getting

J(Q0) =
(

0 1

− 1

LC

s1

L
(Q̄2

0 − Q2
0)

)

, (8)

where

Q̄0 =
√

s0 − R

s1
. (9)

The eigenvalues of J(Q0) have a negative real part if |Q0| >

Q̄0 and a positive real part if |Q0| < Q̄0, while they are pure
imaginary at Q0 = ±Q̄0. This implies that the equilibrium point
at (qM , iL) = (Q0, 0) is ensured to be (locally) asymptotically
stable if |Q0| > Q̄0 and unstable if |Q0| < Q̄0.
Hence, the equilibrium point of each manifold M(Q0) with
|Q0| > Q̄0 is an attractor of the input-less memristor
circuit. Figure 4 summarizes the dynamical behavior around the
equilibrium point ofM(Q0).

3.2. Limit Cycles
To investigate the presence of limit cycles on M(Q0) we
resort to the DF method, a classical technique within the HB
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FIGURE 4 | Stable (green half lines) and unstable (red segment) equilibrium

points: the trajectories starting on the planes with Q0 < −Q̄0 and Q0 > Q̄0

converge toward the corresponding equilibrium points; the trajectory starting

on the plane with Q0 ∈ (−Q̄0, Q̄0 ) converges toward the stable limit cycle

(green).

FIGURE 5 | Equivalent input-output representation of system (7).

context. The DF method has been widely used for analyzing
oscillatory behaviors in non-linear feedback control systems (see
e.g., Gelb and Vander Velde, 1968; Atherton, 1975; Mees, 1981;
Khalil, 2002). Within the HB setting, other techniques have
been proposed to predict bifurcations of limit cycles and more
complex dynamics (Genesio and Tesi, 1992; Piccardi, 1994; Tesi
et al., 1996; Basso et al., 1997; Bonani and Gilli, 1999; Di Marco
et al., 2003; Innocenti et al., 2010). The first step to apply the
DF method is to show that system (7) admits the representation
of Figure 5 whose dynamics is governed by the following input-
output relation

qM(t) = −L(D)ϕ̂(qM(t))+ L0(D)Q0 , (10)

where L(D) and L0(D) are suitable rational functions.

It is worth observing that this representation has an internal
feedback interconnection between the linear subsystem L(D)
and the non-linear subsystem described by the memristor
characteristic, while L0(D) is a feed-forward linear block driven
by a constant input.

It can be readily verified that Equation (7) can be rewritten
equivalently as a unique second order differential equation
involving only qM . Since iL = DqM the second equation of
Equation (7) becomes

D
2qM(t) = 1

LC
(Q0 − qM(t))− R

L
DqM(t)

− 1

L
(−s0DqM(t)+ s1q

2
M(t)DqM(t)) . (11)

Taking into account that−s0DqM(t)+s1q
2
M(t)DqM(t) = Dϕ̂M(t),

the above differential equation can be rearranged in the following
equivalent input-output form

qM(t) = −
1

L
D

D2 + R

L
D + 1

LC

ϕ̂(qM(t))+
1

LC

D2 + R

L
D + 1

LC

Q0 .

(12)

Hence, system (7) can be equivalently described via the input-
output relation (10) with L(D) and L0(D) given by

L(D) =
1

L
D

D2 + R

L
D + 1

LC

, L0(D) =
1

LC

D2 + R

L
D + 1

LC

.

(13)

It is worth observing that L(D) is exactly the equivalent
admittance of the linear part of the circuit with IS(t) = 0, i.e.,
the one seen at the terminals T′ and T′′ in Figure 1 where the
memristor is connected.

The DF method looks for a first-order approximation of a
periodic output qM(t) of the system of Figure 5, i.e.,

qM(t) = A+ B cosωt , B > 0 , ω > 0 . (14)

The corresponding periodic output ϕM(t) of period 2π/ω of the
non-linear subsystem can be written as

ϕM(t) = ϕ̂(A+ B cosωt) =
N0(A,B)A+ N1(A,B)B cosωt + ϕh(t), (15)

where N0(A,B) is the bias gain and N1(A,B) is first harmonic
gain, which are known as describing function terms, while ϕh(t)
contains the higher order harmonics, i.e.,

ϕh(t) =
+∞
∑

h=2

γh cos(hωt + θh) (16)

with γh and θh, h = 2, . . ., being suitable constants.
The final step of the DF method consists in first computing the
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periodic signal of period 2π/ω given by the sum of the outputs
y(t) and y0(t) of the two linear subsystems driven by−ϕM(t) and
the constant signalQ0, respectively, then in equating the constant
and the first order harmonic terms of the obtained periodic signal
with the corresponding terms of qM(t), i.e., A and B. Taking
into account that the constant and first order harmonic terms of
ϕM(t) can be rewritten in an exponential form as N0(A,B)Ae

0t

and N1(A,B)B(e
jωt + e−jωt)/2, respectively, the periodic signal

given by the sum of y(t) and y0(t) can be computed by exploiting
superposition and the expression of the response of a linear
system which has the same exponential form of the input2. The
so computed periodic signal has the following expression

L(0)N0(A,B)A+ L0(0)Q0

+N1(A,B)B

(

L(jω)ejωt

2
+ L(−jω)e−jωt

2

)

+ yh(t) (17)

where yh(t) contains the higher order harmonics generated by
−ϕh(t). Then, by equating the constant term in Equation (17)
with that of qM(t), we get the real equation

A+ L(0)N0(A,B)A = L0(0)Q0 , (18)

while by equating the first harmonic terms and taking into
account that B cosωt = B(ejωt + e−jωt)/2 we get the
complex equation

1+ L(jω)N1(A,B) = 0 . (19)

In the HB approach, any first-order periodic signal (14) withA, B,
and ω solving both Equations (18) and (19) is called a Predicted
Limit Cycle (PLC) of the system of Figure 5. Also, it is expected
that there exists a true limit cycle close to a PLC if the system
of Figure 5 satisfies some conditions (see Atherton, 1975; Mees,
1981; Khalil, 2002 and references therein). These conditions
basically rely on so-called filtering hypothesis which means that
the non-linear subsystem does not generate large higher-order
harmonics (i.e., ϕh(t) is small) and the two linear subsystems are
low-pass filters (i.e., the gains |L(jhω)|, h = 2, . . ., are smaller
than |L(0)| and |L(jω)|). Hence, this hypothesis requires that yh(t)
must be much smaller than the constant and first order harmonic
terms of Equation (17), according to some quantitative measure.
For instance, in DiMarco et al. (2018) the distortion index is used
to this purpose.
Now, to apply the DF method to the system under consideration,
we observe that from Equation (13) we get L(0) = 0 and L0(0) =

2Consider a linear time-invariant finite-dimensional causal system described by

the input-output relation y(t) = L(D)u(t) where the operator L(D) has the

following general form

L(D) = bn−1D
n−1 + . . . + b1D + b0

Dn + an−1D
n−1 + . . . + a1D + a0

with ai, bi, i = 0, . . . , n − 1 being constants. Let u(t) be an exponential signal,

i.e., u(t) = Ceσ t , C ∈ R, σ ∈ C, and assume that L(σ ) is finite, i.e., L(σ ) 6= ∞.

Then, for suitable initial conditions of the system, we have y(t) = CL(σ )eσ t , i.e.,

the output of the system has the same exponential form of the input.

1, while from Equations (1) and (15) it can be verified that the
gains N0(A,B) and N1(A,B) have the following expressions:

N0(A,B) = −s0 +
s1

3

(

A2 + 3

2
B2
)

, (20)

N1(A,B) = −s0 + s1

(

A2 + 1

4
B2
)

. (21)

Then, the Equation (18) reduces to

A = Q0 , (22)

and the complex equation (19) boils down to

1+
1

L
jω

−ω2 + R

L
jω + 1

LC

(

−s0 + s1

(

A2 + 1

4
B2
))

= 0 , (23)

which can equivalently be written by separating the real and
imaginary parts as

R− s0 + s1

(

A2 + 1

4
B2
)

= 0 , (24)

−ω2 + 1

LC
= 0 . (25)

Equations (22), (24), and (25) are then solved for A = Â = Q0,

ω = ω̂ = 1√
LC

and B = B̂ with B̂ such that

B̂2 = 4

(

s0 − R

s1
− Q2

0

)

= 4
(

Q̄2
0 − Q2

0

)

. (26)

Hence, for each index Q0 such that |Q0| < Q̄0 there exists a PLC
of the following form

qM(t) = Â+ B̂ cos ω̂t = Q0 + 2

√

Q̄2
0 − Q2

0 cos
1√
LC

t . (27)

This implies that eachmanifoldM(Q0) contains a unique PLC for
|Q0| < Q̄0. Since

iL(t) = DqM(t) = −B̂ω̂ sin ω̂t = − 2√
LC

√

Q̄2
0 − Q2

0 sin
1√
LC

t ,

(28)

the trajectory described by the PLC in the (qM , iL)-plane lies on
the following ellipse

(qM − Q0)
2 + LCi2L = 4

(

Q̄2
0 − Q2

0

)

. (29)

Note that the ellipse is centered at the equilibrium point (Q0, 0)
and its size is maximum at Q0 = 0 and decreases to zero as the
index Q0 tends to Q̄0, thus collapsing to the equilibrium point.
Moreover, since for |Q0| < Q̄0 the equilibrium point is unstable
and taking into account that the system is two dimensional, we
can conclude that the PLC is stable. In this regard, we mention
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FIGURE 6 | Input-less circuit attractors: stable (green ⋆) equilibrium points and

stable PLCs (solid green) given by Equations (27) and (28) as a function of the

manifold index Q0. The red circles denote the unstable equilibrium points.

that PLC stability can be assessed also via approximate HB tools,
such as the Loeb criterion (see e.g., Atherton, 1975; Tesi et al.,
1996).

Summing up, we have shown that in the input-less
memristor circuit there coexist infinitely many attractors: a
stable equilibrium point for each value of the manifold index
Q0 such that |Q0| > Q̄0 and a stable PLC for each value of
the index Q0 such that |Q0| < Q̄0. Figure 6 illustrates this
multistability scenario for the following normalized values of the
circuit parameters

R = 0.4 , C = 0.1 , L = 1.5 , s0 = 0.7 , s1 = 0.3 , (30)

from which it follows that Q̄0 = 1.
In particular, it turns out that at Q0 = ±Q̄0 = ±1 a

typical behavior of (supercritical) Hopf bifurcation is observed.
However, since it is obtained by varying the index Q0 and thus
the circuit initial conditions (for fixed circuit parameters), it
may be referred to as a bifurcation without parameters (Corinto
and Forti, 2017; Di Marco et al., 2018; Innocenti et al., 2019b;
Ascoli et al., 2020a). As already discussed, it is expected that
there exists a true limit cycle close to a PLC. Indeed, a more
refined numerical analysis shows that for each |Q0| < 1 the
corresponding invariant manifoldM(Q0) has a unique limit cycle
which attracts all the (non-trivial) trajectories. Moreover, the
limit cycle is well-approximated by the PLC, as shown in Figure 7
for Q0 = 0.

A quantitative comparison between the PLCs and the true
limit cycles is provided by Figure 8 where the maximum and the
minimum of both the true periodic solution qM(t) and the PLC
in Equation (27) are depicted as a function of the index Q0.

It can be readily checked that theminimum and themaximum
of the first-order approximation are given by

min
t

qM(t) = Q0 − 2

√

Q̄2
0 − Q2

0 (31)

FIGURE 7 | True limit cycle (solid dark) and PLC (solid red) in the (qM, iL)-plane

for Q0 = 0.

FIGURE 8 | Stable (green ⋆) and unstable (red ◦) equilibrium points; maximum

(32) and minimum (31) of the PLCs (solid red) as a function of Q0; maximum

and minimum values of the numerically computed limit cycles (dotted dark

points).

and

max
t

qM(t) = Q0 + 2

√

Q̄2
0 − Q2

0 , (32)

respectively.We finally observe that similar results can be derived
also for values of the circuit parameters different from those
in Equation (30).
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4. MODELING NEURON DYNAMICS VIA
THE CONTROLLED CIRCUIT

Section 3 makes it clear that in the input-less case the memristor
circuit displays infinitely many attractors. Specifically, each
planar invariant manifold M(Q0) contains either a unique
stable equilibrium point or a stable limit cycle. Moreover, an
approximation of the limit cycle belonging to M(Q0), with Q0

such that |Q0| < Q̄0, is explicitly obtained in terms of the
PLC (27).

In this section it will be shown how the coexistence of
infinitely many stable equilibrium points and limit cycles,
together with the knowledge of their dependence on themanifold
index Q0, which in the case of limit cycles is given in an
approximate way by Equation (27), can be suitably exploited
to make the memristor charge qM responding as in Figure 2B

to a pulse shaped input source Is. To proceed, we consider the
circuit state equations (3) by replacing vC with the following
state variable

Q
.= qM + CvC . (33)

It turns out that (3) reduces to the third-order system











DQ(t) = Is(t)
DqM(t) = iL

DiL(t) = 1

LC
(Q− qM)+ s0 − R

L
iL −

s1

L
q2MiL

(34)

where Q, qM , and iL are the new state variables. Suppose that at
time t = ti ≥ t0 the current source Is(t) displays a pulse of area
3 and width 1 > 0, i.e., Is(t) is equal to zero for t ∈ [t0, ti] and
t ∈ [ti + 1,+∞) and such that

∫ ti+1

ti

Is(t)dt = 3 . (35)

From the first equation of Equation (34) it follows that

Q(t) = Q
(i)
0 +

∫ t

ti

Is(σ )dσ , (36)

which implies Q(t) = Q
(i)
0 for t ∈ [t0, ti] and Q(t) = Q

(i)
0 + 3 for

t ∈ [ti + 1,+∞). For instance, in the case of a rectangular pulse

we have Q(t) = Q
(i)
0 + (A/1)(t − ti).

By comparing the second and third equations of Equation (34)
with those of Equation (7), it follows that the circuit dynamics lies

ontoM(Q
(i)
0 ) for t ∈ [t0, ti], it moves towardM(Q

(i)
0 + 3) during

the interval [ti, ti + 1], it reaches M(Q
(i)
0 + 3) at t = ti + 1,

where it remains for all t ≥ ti + 1. Hence, the circuit has the
property that pulse shaped current sources Is make the dynamics
moving from an initial manifold to any other one within a given
time interval, by suitably choosing the pulse area and width.

We are interested in the case where the manifold M(Q
(i)
0 ) has

a stable equilibrium point and in particular the index Q
(i)
0 is

negative and hence Q
(i)
0 < −Q̄0. Moreover, we assume that at

t = ti the circuit state is at the equilibrium point, which means

that (Q(ti), qM(ti), iL(ti)) = (Q
(i)
0 ,Q

(i)
0 , 0). Let us now investigate

the dynamics induced by a rectangular pulse of positive area 3

and width 1 on the circuit dynamics. It turns out that the final

manifold M(Q
(i)
0 + 3) still contains a stable equilibrium point

if 3 < |Q(i)
0 | − Q̄0, while it contains a stable limit cycle if

|Q(i)
0 | − Q̄0 < 3 < |Q(i)

0 | + Q̄0 and again a stable equilibrium

point if 3 > |Q(i)
0 |+ Q̄0. Figure 9 illustrates the first two possible

behaviors in the case of a rectangular pulse of height A/1 with
the circuit parameters as in (30).

Specifically, after reachingM(Q
(i)
0 +3) at time t = ti+1 at the

point (Q(ti+1), qM(ti+1), iL(ti+1)) withQ(ti+1) = Q
(i)
0 +3,

the dynamics converges toward the attractor contained in the
manifold, an equilibrium point in Figure 9A and a limit cycle in
Figure 9B.

Clearly, the length of the transient behavior toward the
attractor depends on the values of qM(ti+1) and iL(ti+1). The
farther away is the point (qM(ti+1), iL(ti+1)) from the attractor

lying onto M(Q
(i)
0 + 3), the longer is the transient. Clearly, if

(qM(ti + 1), iL(ti + 1)) belongs to the attractor we have no
transient behavior. The values of qM(ti+1) and iL(ti+1) cannot
be computed explicitly since this would require to integrate the
second and third equations of (34) in the interval [ti, ti+1] with

the initial condition (qM(ti), iL(ti)) = (Q
(i)
0 , 0) and Q(t) = Q

(i)
0 +

3(t−ti)/1. However, by employing a Taylor series expansion for
qM(t) and iL(t) for t ∈ [ti, ti + 1], it turns out that

qM(ti + 1) = qM(ti)+ α11 + α21
2 + . . . = Q

(i)
0 + O(1)

iL(ti + 1) = iL(ti)+ β11 + β21
2 . . . = β11 + O(12) ,

(37)

where αi and βi, i = 1, 2 are constants. It is interesting to note
that if the width 1 of the pulse is small, then for t ∈ [ti, ti + 1]
the charge qM remains almost constant, while iL varies from zero
to a quantity proportional to 1.

Summing up, for a suitable choice of the pulse area A and
for sufficiently small width 1, the pulse current Is is able to
steer, within the interval [ti, ti + 1], the dynamics from the

stable equilibrium point of M(Q
(i)
0 ) to the manifold M(Q

(i)
0 + A)

containing a stable limit cycle. Moreover, during the time interval
the charge qM is almost constant and the current iL remains close
to zero.

We are now ready to show how it is possible to make the
charge qM display a behavior similar to that of Figure 2B in
response to a pulse shaped input source Is. Here, we are more
interested in the dynamic response of the neuron than in its set
and reset mechanisms. For these mechanisms we simply adopt
the pulse timing of Figure 10 which is assumed to be generated
via suitable logic gates.

At time t = ti the hardware detects a stimulus and generates a
current pulse Is with area A and width 1 (set mechanism), which
moves the dynamics away from the stable equilibrium point

(resting point) inM(Q
(i)
0 ); at time t = ti+1 the dynamics reaches

M(Q
(i)
0 + 3) and the memristor charge qM starts displaying a

behavior similar to that reported in Figure 2B; at time t = ti +
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A B

FIGURE 9 | Dynamics generated by applying at ti = 10 a rectangular pulse of area 3 and width 1 = 1 via the current source Is; the circuit parameters are as in

Equation (30) and the initial conditions are qM (0) = −2 and IL(0) = 0, while Q(0) = −2. (A) For 3 = 0.5, the index Q(t) and the state variables qM (t), iL(t) converge to

Q0 = −1.5 and to the equilibrium point (−1.5, 0), respectively. (B) For 3 = 2.5, Q(t) converges to Q0 = 0.5 and the state variables qM (t), iL(t) converge to the limit

cycle belonging to the manifold M(0.5).

1 + T an inverse current pulse is generated in order to make the

dynamics come back to the stable equilibrium point in M(Q
(i)
0 )

(reset mechanism).

Hence, the problem is how the parameters Q
(i)
0 , 3, 1, and T

should be designed in order to obtain the sought behavior of qM .
Let 1 be chosen enough small to ensure, as discussed above, that
in [ti, ti + 1] the charge qM is almost constant and the current iL
remains close to zero. Choosing a small 1 implies that when at

t = ti + 1 the dynamics reaches the manifold M(Q
(i)
0 + 3) we

have that qM and iL are quite close to Q
(i)
0 and zero, respectively.

Thismanifold contains a stable limit cycle which can be in general
computed only numerically. However, in section 3 it has been
shown that the limit cycle can be approximated by a PLC. Clearly,

the current expression of the PLC onM(Q
(i)
0 + 3) is obtained by

putting Q0 = Q
(i)
0 + 3 in Equation (27).

Now, observe that the minimum and the maximum values
of qM , expressed in Equations (31) and (32), respectively, are
achieved once iL is equal to zero. Hence, since for sufficiently
small 1 we have that (qM(ti + 1), iL(ti + 1)) ≈ (Q(i), 0), it
is possible to set (qM(ti + 1), iL(ti + 1)) as the point of the

manifold M(Q
(i)
0 + 3) where the PLC has its minimum value

(31). Consequently, for t ∈ [ti + 1, ti + 1 + T] with T
being the PLC period, the PLC provides the typical harmonic
oscillator over one period, i.e., it evolves from the minimum to
the maximum coming back again to the minimum. At the end
of the period, the reset mechanism generates a current pulse of
area −A and width 1, which makes the dynamics come back

to the stable equilibrium point of M(Q
(i)
0 ). Hence, the resulting

behavior of the memristor charge q0M(t) can be expressed as

q0M(t) =



















Q
(i)
0 t ∈ [t0, ti + 1]

Q
(i)
0 + 3 + 2

√

Q̄2
0 − (Q

(i)
0 + 3)2 cos

1√
LC

(t − ti − 1)+ π) t ∈ (ti + 1, ti + 1 + T)

Q
(i)
0 t ∈ (ti + 1 + T,+∞)

(38)

and is depicted in Figure 10. Note that the parameter T has been
chosen as the period of the PLC, i.e.:

T = 2π
√
LC . (39)

Hereafter, we denote by i0L(t) the time-derivative of q0M(t), i.e.:

i0L(t) = Dq0M(t) ∀t ∈ [t0,+∞) . (40)

Now, to set (qM(ti + 1), iL(ti + 1)) as the point of the manifold

M(Q
(i)
0 + 3) where the PLC has its minimum value (31), the

following condition must be satisfied

Q
(i)
0 = Q0 − 2

√

Q̄2
0 − Q2

0 (41)

with Q0 = Q
(i)
0 + 3. It is not difficult to verify that there are

many solutions Q
(i)
0 and Q0 of (41) such that Q

(i)
0 < −Q̄0 and

|Q0| < Q̄0. We are interested in the one with the minimum value

of Q
(i)
0 because this choice ensures that the stable equilibrium

point on the initial manifoldM(Q
(i)
0 ) is at the maximum distance

from the invariant manifold M(Q̄0) where the Hopf bifurcation
happens, thus guaranteeing a larger robustness margin against

spurious pulses of small area. The minimum value of Q
(i)
0 can be
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FIGURE 10 | Top: predicted behavior q0M (t) of the memristor charge. Bottom:

timing of the current pulses.

computed in closed form by minimizing the right hand side of
Equation (41). It turns out that

Q0
.= Q∗

0 = − 1√
5
Q̄0 , (42)

and since

Q∗
0 − 2

√

Q̄2
0 − (Q∗

0)
2 = −

√
5Q̄0 ,

from Equations (41) and (9) we have

Q
(i)
0 = −

√
5

√

s0 − R

s1
. (43)

Moreover, since Q0 in Equation (41) stands for Q
(i)
0 + A, from

Equation (42) we finally get

3 = 4√
5

√

s0 − R

s1
. (44)

Finally, the pulse width1 should be practically chosen to be some
percent of the period T. Hence, we can select it according to
the relation

1 = 2σπ
√
LC , (45)

where σ lies in the interval [0.01, 0.05].
Summing up, to obtain q0M(t) in Equation (38), the parameters

T,Q
(i)
0 ,3, and1 can be designed according to the corresponding

expressions given in Equations (39), (43), (44), and (45),
respectively. Notably, these relations depend explicitly on the
circuit parameters R, L, C, s0, and s1. Hence, by suitably adapting
these parameters it is possible to vary the features of q0M(t).

On the other hand, the formulas in Equations (39), (43),
(44), and (45) have been derived under two approximations.
The first one concerns the assumption that at time t = ti +
1 the values of qM and iL are quite close to Q

(i)
0 and zero,

respectively. However, according to Equation (37) by lowering
the value of the pulse width this assumption can be suitably
satisfied. The second approximation is that the formulas have
been obtained by using the PLCs instead of the true limit
cycles. Indeed, as shown in section 3.2, the true limit cycles
contain higher order harmonics terms which can generate
some distortion in both the period and the minimum and
maximum amplitudes over the period, with respect to those
analytically computed for the PLCs. However, these higher order
harmonics can be filtered out by suitably adjusting the circuit
parameters. Moreover, the fact that the input-less memristor
circuit contains a bundle of limit cycles makes the formulas,
and hence the parameter design procedure, sufficiently robust
with respect to the use of PLC in their derivation. Said

another way, by slightly varying the parameters T, Q
(i)
0 , A,

and 1 from the nominal values provided by Equations (39),
(43), (44), and (45), respectively, the distortion effect could
be reduced.

To illustrate the design procedure let us consider the circuit
parameters in Equation (30). From Equations (39), (43), and (44),
we have that

T = 2.4334 , Q
(i)
0 = −2.2361 , 3 = 1.7889 , (46)

and choosing σ = 0.02 in Equation (45) we obtain

1 = 0.0487 . (47)

The corresponding predicted behavior q0M(t) in Equation
(38) is reported Figure 11A together with the true behavior
of qM(t) which is obtained by solving numerically (34).
The state space trajectories corresponding to the
true solution (Q(t), qM(t), iL(t)) of the circuit and the
predicted solution (Q(t), q0M(t), i0L(t))) are depicted in
Figure 11B.

Note that the charge qM(t) has a dynamical behavior that
is quite similar to the one depicted in Figure 2B, thus clearly
showing that the memristor circuit can be used for mimicking
some features of neuron dynamics.

This dynamical similarity is confirmed also in other
scenarios. For instance, suppose that in the pulse timing
the reset pulse is activated at t = ti + 1 + nT, with
n being a positive integer. Clearly, in this case q0M(t)
completes n periods within the interval ti + 1, ti + 1 + nT,
and, therefore, qM(t) is expected to generate a burst of
n spikes. Figure 12 provides the numerically computed
behavior of qM(t) for n = 8 over a time frame covering
three bursts.

5. CONCLUSIONS

In this paper, a memristor circuit composed of a resistor,

an inductor, a capacitor, an ideal charge-controlled memristor
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A B

FIGURE 11 | The set pulse is applied at ti = 2 with area A = 1.7889 and width 1 = 0.0487, the reset pulse is applied at ti +1+ T = 4.4821 with area 3 = −1.7889

and width 1 = 0.0487. The initial conditions are Q(0) = −2.2361, qM (0) = −2.2361 and iL(0) = 0. (A) Time behaviors of qM (blu) and q0M (red). (B) Trajectories in the

state space generated by (Q(t),qM (t), iL(t)) (blu) and (Q(t),q0M (t), i
0
L (t)) (red).

FIGURE 12 | The initial conditions are as in Figure 11, the set pulses are activated at ti ∈ {10, 60, 110} and the reset pulses are applied 19.5164 time units later. (A)

Time behavior of qM for n = 8. (B) Time behavior of Is.

and an independent current source as input is considered.

It is first shown that in the input-less case the circuit
enjoys the foliation property of the state space, i.e., it
contains infinitely many planar invariant manifolds which
are parameterized by a scalar index depending on the
circuit initial conditions. Each manifold contains an attractor
which can be either a stable equilibrium point or a stable
limit cycle, depending on the value of the manifold index.
Moreover, a first-order periodic approximation is obtained
in an analytic way for each limit cycle via the Describing

Function (DF) technique, a classical tool within the Harmonic
Balance (HB) context.

Then, it is shown that the memristor charge can mimic
a simplified model of a neuron response when an external
independent pulse-programmed current source is introduced
in the circuit. Specifically, the sought dynamics of the
memristor charge is generated via the concatenation of
convergent and oscillatory behaviors, which are obtained
by switching between stable equilibrium points and limit
cycles via a suitable design of the pulse timing of the
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current source. Some relationships between the pulse
and the circuit parameters are also devised exploiting the
knowledge of the first-order periodic approximation of the
limit cycles.
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