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Neuroscience research into how complex brain functions are implemented at an

extra-cellular level requires in vivo neural recording interfaces, including microelectrodes

and read-out circuitry, with increased observability and spatial resolution. The trend

in neural recording interfaces toward employing high-channel-count probes or 2D

microelectrodes arrays with densely spaced recording sites for recording large neuronal

populations makes it harder to save on resources. The low-noise, low-power requirement

specifications of the analog front-end usually requires large silicon occupation, making

the problem even more challenging. One common approach to alleviating this

consumption area burden relies on time-division multiplexing techniques in which

read-out electronics are shared, either partially or totally, between channels while

preserving the spatial and temporal resolution of the recordings. In this approach,

shared elements have to operate over a shorter time slot per channel and active

area is thus traded off against larger operating frequencies and signal bandwidths.

As a result, power consumption is only mildly affected, although other performance

metrics such as in-band noise or crosstalk may be degraded, particularly if the whole

read-out circuit is multiplexed at the analog front-end input. In this article, we review

the different implementation alternatives reported for time-division multiplexing neural

recording systems, analyze their advantages and drawbacks, and suggest strategies

for improving performance.

Keywords: neuroscience, neural recording, time multiplexing, crosstalk, CMOS technology, prosthetics

1. INTRODUCTION

One of the major challenges in neurophysiology is to identify the effective connectivity within the
brain and reveal the subjacent drive-response map of the neural system (Friston, 2011; Sakkalis,
2011). This could help to understand the functional mechanisms underlying many neurological
disorders which currently do not have effective treatments (Swann et al., 2018; Sisterson et al.,
2019) or unravel the neural network involved in specific tasks, including sensory responses, motor
activities or intellectual or emotional processes, to implement efficient Brain Machine Interfaces
(BMIs) (Vansteensel et al., 2016; Wagner et al., 2018). Neural recording systems based on CMOS
technology, in combination with micro-electrode arrays, can achieve very high temporal and
spatial resolution and have been proved useful for assessing connectivity at the extracellular single-
unit level. The suitability of these devices ultimately depends on the amount and quality of the
information which can be extracted from the brain tissue and, accordingly, it is crucial to increase
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the number of neural signals which can be accurately and
simultaneously recorded in vivo. In fact, in the last decades, and
similar to the well-knownMoore’s law for transistor count scaling
in dense integrated circuits (ICs), the number of single neuron
cells which can be monitored using recording interfaces, either
based on intracortical probes or surface sub-dural microelectrode
arrays, has increased over the years. This is illustrated in the
plot of Figure 1, derived from the dataset available in Stevenson
(2020). Only intracortical systems published along the last three
decades, i.e., approximately since the inception of the first silicon-
based structures for neural recording, have been considered.
The plot shows that the number of neurons which can be
simultaneously recorded has increased exponentially with the
year of publication, doubling approximately every 4.65 ± 0.25
years. Anyhow, future forecasts based on this growth trend
are questionable, because of fundamental limits in the size
and density of microelectrodes, which cannot be decreased
arbitrarily without degrading the Signal-to-Noise Ratio (SNR)
of the recorded signals (Camunas-Mesa and Quiroga, 2013), or
because of the induced displacement in the neural tissue which
at last instance may hamper the network connectivity which is
aimed to discover.

In the works represented in Figure 1, intracortical electrodes
are either arranged in parallel microwire bundles (e.g., Obaid
et al., 2020), or use micromachined silicon arrays (e.g., Bartolo
et al., 2020), or are integrated in planar silicon-based neural
probes (e.g., Mora Lopez et al., 2017), or are allocated in flexible
polymer-based substrates (e.g., Musk and Neuralink, 2019).
Szostak et al. (2017) gives an in-depth review of these techniques.
In many cases displayed in Figure 1, multiple probes, each with
multiple shanks have been used for increasing the number of
recording sites. Thus, for instance, in one of the selected works,
(Berényi et al., 2014), two silicon-based probes, each with 8

FIGURE 1 | Number of simultaneously recorded neurons, Nsu, over the last

three decades from a selection of N = 70 published works. Variable Yn is the

ordinal number of the years. The coefficient of determination of the fitting

model is R2 = 84%.

shanks of 32-channels, were used for a total of 512 electrodes.
Similarly, in Rajangam et al. (2016), six multielectrode arrays
with 96 microwires each were used totalling 576 recording sites.
More recently, the trend is toward including more electrodes per
individual shank or microwire bundle and, thus, for instance,
the Neuropixel probe (Jun et al., 2017) has 960 sites on a single,
10mm long, non-tapered shank with 70×20µm cross-section
and the Argo system (Sahasrabuddhe et al., 2020) uses a single
microwire bundle with 1300 electrodes (10mm array diameter,
18µm wire diameter, 200µm spacing, 1mm length), which can
be extended to 30,000 channels for surface LFP recordings.

Besides the huge amount of data to be processed and
transferred, which poses significant challenges in the digital back-
end of neural recording systems (Park et al., 2018a), an important
bottleneck for implementing high channel count microelectrode
arrays stems from the design of the active readout circuitry, which
is the focus of this survey. In most of the cases represented
in Figure 1, intracortical electrodes are passive, i.e., they are
made up of recording sites and interconnecting wires, while the
main circuitry for the acquisition, conditioning and processing
of neural signals, often from multiple probes, is housed in
bulky headstages (Shobe et al., 2015; Rajangam et al., 2016).
Only recently, seeking to increase the number of recording sites
which can addressed from the headstage, some silicon-based
intracortical shanks also include active devices such as switches or
small amplifiers, as in Raducanu et al. (2017). In order to reduce
the form factor of headstages, specific integrated solutions, which
almost invariably relies on the use of CMOS technologies, should
be used for the implementation of the readout electronics. In this
paper, the circuit used for recording the neural signal captured
from each individual electrode will be denoted indistinctly as
recording channel or neural recording Analog Front-End (AFE),
and comprisees all the circuit elements from the input Low-
Noise Amplifier (LNA) to the Analog-to-Digital Conversion
stage (ADC) (both inclusive). Clearly, in high channel count
neural recording systems, the occupation area of individual AFEs
should be made as small as possible and, in fact, the density
of recording channels has risen from some 5–6AFEs/mm2 to
more than 80AFEs/mm2 in the current state-of-the-art, whilst
still satisfying demanding specifications on low noise, high input
impedance or low power consumption. The use of Time-Division
Multiplexing (TDM) techniques, in which occupation area is
traded-off with operation frequency, have played a prominent
role on this accomplishment.

TDM makes it possible to totally or partially share AFE
elements at different time slots between different electrodes.
Compared to other multiplexing techniques such as frequency-
division multiplexing (Mikawa et al., 2020), TDM does not
suffer from signal overlapping issues in frequency domain, and
allows to reusing circuit blocks without penalizing to first order
power consumption. This is because although shared elements
have to increase their power consumption proportionally to the
higher bandwidth requirements in order to preserve the same
neural recording sampling rate, such increment is essentially
compensated by the fact that only one element is used instead
of multiple slower elements. Another advantage of TDM is
the improved tolerance against mismatch between recording
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channels as a single element is shared between different
electrodes, thus reducing discrepancies between the recorded
neural signals. Obviously, the more AFE elements are shared
by means of multiplexing, the higher the area reduction which
can be attained for the complete readout circuitry. In a limit
case, the largest area saving could be accomplished if a single
AFE is multiplexed between different electrodes (Jun et al., 2017;
Raducanu et al., 2017; Sharma et al., 2018), however, as will be
shown in this paper, this raises undesired effects which should
be tackled.

This work aims to review the implementation strategies and
restrictions for time multiplexing neural recording AFEs, and
analyses the main advantages and drawbacks of the proposed
techniques and architectures. The paper is organized as follows.
Section 2 details the main concerns about the AFE-electrode
interface. Section 3 introduces AFEs for neural recording
applications. Section 4 describes the basics of TDM and section
5 presents a classification of the reported neural recording
architectures depending on the position of the analogmultiplexer
in their signal paths. Section 6 describes the main architectures
for TDM at the AFE input, together with their advantages
and drawbacks. Finally, section 7 offers some conclusions and
suggestions for future research.

2. ELECTRODE-AFE INTERFACE

AFEs in multi-channel systems are usually placed relatively
far from the recording electrodes. The interconnection wires
between the electrode array and the AFEs severely limit the
electrode density and reduce the efficiency of the neural probe’s
occupation area. However, some silicon-based devices allow the
integration of one or more AFE stages along with the electrodes,
by splitting the AFE into two parts: one placed on the headstage
and the other on the probe shank(s). The most employed stage to
be integrated next to the electrodes is the input amplifier (IA).
The main advantages and drawbacks of employing or not this
active circuitry along with the electrodes can be disclosed in their
impact on electrode crosstalk and its noise contribution to the
system. The considerations presented throughout this section
will apply for recording both local field potentials (LFPs), which
are signals comprising the combination of synaptic and network
activities within a local brain region with an oscillation frequency
from 0.5 to 500Hz (Muller et al., 2015), and action potentials
(APs), which are rapid rises and subsequent falls in voltage or
membrane potential across a cellular membrane in a frequency
band from 0.25 to 10 kHz (Muller et al., 2015).

2.1. Crosstalk in Electrode-AFE Interfaces
Electrical crosstalk is one of the most significant scaling
limitations of multi-channel recording devices. For neural
applications, the crosstalk level has to be below 1% of the
recorded signal level to make it negligible compared with the
background noise (Najafi et al., 1990). This crosstalk can be
classified according to where it occurs: electrode crosstalk defines
the crosstalk from the electrodes to the AFE, i.e., from the shank
to the base of the device; crosstalk takes into account the impact

FIGURE 2 | Crosstalk models for electrode-AFE interface. (A) Equivalent

electrode impedance model. (B) Equivalent circuit model for electrode

crosstalk without active electrode-AFE interface. (C) Equivalent circuit model

for electrode crosstalk with active electrode-AFE interface. (D) Crosstalk at the

electrode-AFE interface against the electrode impedance (Du et al., 2009).

on the multiplexer output of non-activated channels. This last
type of crosstalk will be analyzed in section 4.

In high-channel-count devices, the space between adjacent
electrodes and between interconnection wires is largely reduced
while the dielectric layers below and above the electrodes
remain constant. The coupling capacitance between electrodes
thus increases because of the reduced space, thereby increasing
the electrical crosstalk. A simplified scheme which models the
crosstalk from the shank to the AFE was proposed in Najafi
et al. (1990) and further developed in Du et al. (2009) and Seidl
et al. (2012) (see Figure 2B). It should be noted that (Seidl et al.,
2012) also demonstrated that the switches placed along with
the electrodes have a negligible effect on crosstalk, so they were
not included in the model. For the AFE to be integrated within
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the neural probe, the capacitive coupling between metal lines
in the external wires (Du et al., 2009) was also excluded. To
further develop this approach, Figure 2C shows a model which
also includes an amplifier adjacent to the electrodes, similar to
Lopez et al. (2014). The circuit elements with their corresponding
values (taken fromDu et al., 2009; Seidl et al., 2012) are described
as follows:

• Rs is the spreading resistance encountered by the current
propagating out into the fluid near to the electrode. It has been
reported to be about 10 k� (Du et al., 2009).

• Ze represents the equivalent impedance of the electrode-
electrolyte interface (from now on simplified as electrode
impedance) which is modeled by a resistive RE and a
capacitive CE component, see Figure 2A (Du et al., 2009). This
impedance is, then, a frequency-dependent parameter. For this
analysis, a 20µm diameter Pt electrode has been taken with an
impedance measured at 1 kHz of about 1.2M� (Seidl et al.,
2012).

• Cmet describes the capacitive coupling between adjacent lines.
It was estimated as 0.1 pF (Du et al., 2009).

• Cpass is the estimated capacitance of the metal lines with the
extracellular fluid. This value was set as 2.7 pF (Du et al., 2009).

• Rmet represents the equivalent resistance between the metal
traces to the input of the amplifier (programmable-gain
amplifier, PGA, in the case of the active electrode-AFE
interface). Its value was about 500� (Du et al., 2009).

• Camp (only for non-active electrode-AFE interfaces) models
the input capacitance of the AFE and was set at about 12 pF
(Du et al., 2009).

• Cpga (only for active electrode-AFE interfaces) represents the
input capacitance of the PGA and it is about 12 pF.

• Zin (only for active electrode-AFE interfaces) is the input
impedance of the amplifier next to the electrode. It is
above 70M�.

• Rout (only for active electrode-AFE interfaces) describes the
output resistance of the amplifier next to the electrode. This
value is about 50 k�.

Simulations carried out in the SPICE software environment
in Du et al. (2009), have demonstrated the influence of the
electrode impedance in the crosstalk between channels. Electrode
impedances larger than 1.7M� produce crosstalks between
channels above the 1% (Du et al., 2009), significantly reducing
the SNR. This is illustrated in Figure 2D, which replicates the
analysis provided in Du et al. (2009). It is worth observing that
these results also included the influence of the capacitive coupling
of the metal lines for the connection with an external AFE, which
is not the case of placing the AFE at the base of the probe
(Du et al., 2009).

On the other hand, placing the amplifier adjacent to the
electrodes isolates the impedance of the electrodes from the
interconnection wires (Lopez et al., 2014). This makes the
crosstalk dependent on the output resistance of the amplifier due
to the fact that this resistance is in this model the equivalent
input impedance seen from the interconnection wires (Lopez
et al., 2014). Thus, crosstalk results are largely improved (Lopez
et al., 2014). For instance, crosstalk values below 0.1% have

FIGURE 3 | Simplified scheme of the three main noise sources at the

Electrode-AFE interface: the biological or background noise (VBN), the

electrode noise (VE), and the noise from the recording electronics (VA).

been reported by including amplifiers along with the electrodes
(Mora Lopez et al., 2017).

2.2. Noise in Electrode-AFE Interfaces
One of the most significant aspects of neural recording devices
is how different noise sources degrade the signal of interest.
At the electrode-AFE interface, three main noise sources can
be distinguished: biological or background noise, electrode-
electrolyte interface noise and the noise from the recording
electronics (Obien et al., 2015). This is illustrated in Figure 3

(Valtierra et al., 2020).
The background noise, VBN in Figure 3, comprises the

electrical activity of other cells surrounding the recording
electrode (Obien et al., 2015). This noise source is usually quoted
as vn,BN ≈ 10µVrms although its spectral density distribution
is not generally defined (Chandrakumar and Markovic, 2017;
Valtierra et al., 2020).

The electrode impedance also adds noise to the signal chain,
VE in Figure 3. The power spectral density (PSD) function of
this noise source at low frequencies (below 10Hz) is proportional
to 1/f (Obien et al., 2015). Above these frequencies, the thermal
noise becomes the main noise contributor and its value is given
by (Obien et al., 2015):

v2n,E = 4 · k · T · Re(Ze) · 1f (1)

where k is the Boltzamnn constant, T is the temperature, Re(Ze)
is the real part of the electrode impedance and 1f the recording
bandwidth. The resulting PSD is simplified in Figure 3.

Finally, the recording electronics, i.e., the AFE, also introduce
noise to the signal of interest. The main noise contributor of the
AFE is generally the IA because it involves the first amplification
stage. The IA’s PSD is conventionally divided into three sections:
(i) from low frequencies to the corner frequency, fcf , the flicker
noise contribution, vn,1/f ,A, dominates the noise PSD; (ii) from
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the corner frequency to the amplifier frequency bandwidth,
fbw, the main noise contributor is the thermal noise, vn,th,A;
and (iii) above this frequency the noise is filtered and can be
neglected (Razavi, 2001) (Figure 3). Both flicker and thermal
noise contributions will depend on the amplifier topology and
operation region. In biomedical applications, amplifiers are
commonly biased in sub-threshold region (Muller et al., 2015;
Delgado-Restituto et al., 2017; Valtierra et al., 2020). Hence, for an
IA employing an operational-transconductance amplifier (OTA),
the thermal and flicker noise contributions can be respectively
estimated by (Valtierra et al., 2020):

v2
n,th,A

=
4 · k · T · γ · η · Vt

Ib
1f (2)

v2
n,1/f ,A

=
KF

W · L · Cox · f
1f (3)

where Vt is the thermal voltage, η the sub-threshold slope,
gamma = 1/2 for the sub-threshold region, Ib the current
through the OTA,Cox is the gate-oxide capacitance,KF is a flicker
parameter dependent on the specific fabrication process and W
and L are the width and length of the OTA.

Integrating this IA adjacent to the electrodes makes the power
and area constraints of this stage even more restricted. In terms
of the power consumption, neural devices in contact with the
tissue have to be designed within the allowed limit of < 1◦C of
brain tissue heating (Kim et al., 2007). Furthermore, the active
area of the shank has to be minimized to increase the number of
readout channels (Mora Lopez et al., 2017). Therefore, it can be
observed from equations 2 and 3 that the thermal and the flicker
noise contribution of the amplifier can be penalized.

In terms of thermal noise, the power consumption of the
amplifiers located adjacent to the electrodes increases the shank
heating, so the current through these amplifiers, Ib, has to be
minimized. From equation 2 can be noted that the thermal
noise contribution of the active electrode-AFE interfaces would
theoretically be larger than in passive shanks. Nevertheless, as
demonstrated by the finite element method simulations carried
out in Mora Lopez et al. (2017), this power limitation depends
on the structure employed for the probe. Thus, up to 20mW
of power dissipation in the shank can be tolerated without
increasing the temperature of the tissue by one degree (Mora
Lopez et al., 2017). This keeps the amplifier’s power consumption
and, consequently, the thermal noise contribution of this stage,
at the same level as in conventional AFE structures by properly
designing the probe.

In terms of the occupation area, reducing the active area
located along with the electrodes makes it possible to increase the
number of recording channels and, in turn, the recording density
of the neural interface. Keeping the electrode area constant, the
area will increase with the size of the amplifier located adjacent
to the electrodes, establishing a trade-off between the amplifier’s
occupation area and the amplifier’s flicker noise contribution (see
Equation 3). While no such huge impact has been reported in
the APs band, the effect of this noise becomes significant for LFP
recording. This has been assessed by employing the integrated

input-referred noise (IRN), which is the total integrated noise
over the band of interest referred to the input of the circuit
(Razavi, 2001). This is a widely usedmeasure to evaluate the noise
performance of the circuits. In this case, the IRN for the system
presented in Mora Lopez et al. (2017) in the AP band is about
6.36µVrms while the IRN in the LFP band reaches 10.32µVrms.
Therefore, the amplifier adjacent to the electrodes has to be
carefully designed in terms of occupation area to not penalize the
IRN of the circuit, specially at low frequencies.

3. NEURAL RECORDING AFES

Neural recording AFEs are traditionally made up of an LNA,
a PGA, an anti-aliasing filter and an ADC. However, over
the years this standard has gradually been adapted according
to the requirements of each specific system and with the
purpose of optimizing the performance of the circuit. Thus, five
different high-performance approaches for neural AFEs have
been simplified and illustrated in Figure 4.

The conventionally employed AC-coupled topology,
continuous-time (CT) AFE (Brenna et al., 2016; Delgado-
Restituto et al., 2017; Park et al., 2018a,b), is shown in Figure 4A.
The basic structure of the LNA is presented in Harrison and
Charles (2003). This topology obtains a high input impedance,
which is desired to be as high as possible to reduce the attenuation
of the signal due to the electrode impedance (Pazhouhandeh
et al., 2020b), by reducing the size of the input capacitors.
Moreover, the high-pass filter required to reject the input DC
offset from electrodes is implemented in the IA, where the pole of
the IA transfer function is set by the input capacitors and a pair of
feedback resistors. Using pseudoresistors is a common technique
for setting this pole at sub-Hz frequencies without penalizing
the area of the AFE. However, these resistors conventionally
present large temperature and process variations (Sharma et al.,
2021). Furthermore, due to the lack of specific techniques for
low-frequency noise reduction, IAs are usually made up of large
input transistor area. Another significant disadvantage relies on
the prone to saturation of the IA to input artifacts due to its high
gain and its large time constant.

The chopper stabilization technique is a widely employed
method to reduce the low frequency noise components of an
amplifier by splitting, in the frequency domain, the flicker
noise components from the signal of interest (Enz and
Temes, 1996). In recent years, DC-coupled chopper-based AFE
topologies (Figures 4B,C) have proven their efficiency in further
reducing the flicker noise component of the IA. In these
architectures, the input impedance is inversely proportional to
the chopping frequency and the input capacitor value. Herein,
two main impedance boosting techniques have been reported:
implementing an impedance boosting loop (IBL) by means
of a positive feedback network (Fan et al., 2011) (Figure 4B),
or/and employing an auxiliary input path (Chandrakumar and
Markovic, 2017) (not shown in Figure 4B), penalizing the IRN
of the system. These DC-coupled topologies also require a
mechanism to remove the input DC offset from the electrodes.
One widely adopted solution consists of employing a DC SERVO
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FIGURE 4 | Block diagram of high-performance neural AFEs. (A) Continuous-Time AFE topology. (B) Chopper-stabilized AFE topology. (C) Chopper-based 1-AFE

topology. (D) 126 AFE topology. (E) VCO-Based 61 AFE topology.

LOOP (DSL) (Figure 4B) in the analog domain (Fan et al.,
2011; Chandrakumar and Markovic, 2017; Lee and Song, 2019;
Samiei and Hashemi, 2019) or in the digital domain (Muller
et al., 2015) (not illustrated). Another approach is based on
employing the1-modulation technique. This technique relies on
tracking differences between successive samples which inherently
implements a high-pass filter. In this way, the applied technique
consists of working with 1-signals by feeding the previous
(Johnson et al., 2017) or the predicted (Kim et al., 2018) value of
the signal (Figure 4C) into the input of the IA by a mixed-signal
loop. This method usually increases the dynamic range (DR) of
the AFE at the cost of requiring an oversampled ADC (OS ADC).

Besides conventional AFE topologies, some alternatives based
on 1 6 schemes have been presented (Kassiri et al., 2017;
Pazhouhandeh et al., 2020a). In contrast with the 1-modulation
technique, the 6 operation relies on the integration of the
signal through the summation of successive samples (Carusone
et al., 2011). A similar approach of continuous-time 1 6 AFE
is reported in Chandrakumar and Markovic (2018). Some of
these architectures are also known as ADC-direct schemes
and do not have IAs. Promising architectures based on this
technique relies on applying twice the 1-modulation and
are know as 12 6 AFEs (Figure 4D) (Pazhouhandeh et al.,
2020a). In these systems, the signal is 1-modulated at the input,
similar to Figure 4C). Then, the signal is integrated by the 6

operation carried out during the amplification stage and, finally,

1-modulated again in the analog-to-digital conversion. Thus,
the SNR is largely increased (Pazhouhandeh et al., 2020a). As in
the chopper-based AFEs, however, the input impedance depends
on the modulation frequency. To improve that, a 1-modulation
opamp-less topology was presented in Pazhouhandeh et al.
(2018, 2020b) which increases the input impedance to
the G�s.

Finally, AFEs that rely on a conversion of the signal amplitude
to the frequency domain, time/frequency based AFEs, show
large efficiency in terms of occupation area (Tu et al., 2017;
Jeon et al., 2019). Herein, voltage-controlled oscillators (VCOs)
based circuits, which transforms the input signal amplitude into
different oscillation frequencies, have recently proven to be an
efficient low-power alternative to conventional AFEs (Jiang et al.,
2017) and low-frequency filters (Leene and Constandinou, 2017).
In these topologies, an AC-coupled input transconductance, Gm,
converts the input voltage to current, which is translated to phase
by a current-controlled oscillator (CCO) and, finally, converted
to the digital domain by a quantizer. Due to the open-loop nature
of the AFE, for large input signals the Gm suffers from strong
non-linearity, requiring an extra digital circuit calibration at the
output of the quantizer. A different approach to implementing
VCO-based AFEs is reported in Prabha et al. (2015), Tu et al.
(2017), Jeon et al. (2019) and shown in Figure 4E. To solve
the dynamic range problem, a mixed-signal loop is employed
to perform a 16 operation. As in the previously presented
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topologies, these 1-signals at the input eliminate the DC-offset
from the electrodes and allow the Gm to work in the linear
region for a larger input range. However, the low-frequency noise
contribution of the Gm is not reduced and large input transistors
are needed to keep it within the system’s noise margins.

3.1. Comparison of State-of-the-Art
A comparison of state-of-the-art AFEs and LNAs topologies are
illustrated in Figures 5–7. It is worth observing that a green-red
scale is provided in the figures to evaluate the IRN of each work:
the green represents the lowest IRN values and the red the highest
IRN values.

Firstly, Figure 5 represents the evolution of the form factor
over the last years for CT LNAs (Figure 5A) and for digitally-
assisted AFEs (Figure 5B). It should be noted that digitally
assisted AFEs comprise all AFE architectures presented in section
3, except for CT AFEs. The occupation area saving over the years
for CT LNAs (Figure 5A) has not been as high as in the case of
digitally-assisted AFEs (Figure 5B). This is mainly due to the fact
that first topologies involving chopper-based amplifiers used to
have large input capacitors to improve the IRN results.

On the other hand, Figure 6 illustrates the noise efficiency
factor (NEF), parameter which represents the performance of a
circuit in terms of its noise contribution and power consumption,
against the area per channel. The NEF is defined as:

NEF = vni,rms ·

√

2 · It
Vt · 4 · k · T · 1f · π

(4)

where vni,rms the IRN of the amplifier and It the total current
through the circuit. This parameter is widely used to illustrate
the performance of neural AFEs. Thus, while in Figure 6A, this
comparison is made for CT LNAs, in Figure 6B, this comparison
is made digitally-assisted AFEs. Note how the NEF largely
depends on the area of the LNA due to the impact of the flicker
noise contribution in the case of the CT LNAs (Figure 6A).
In Figure 6B, it can be observed how chopper-stabilized AFEs
offer the lowest IRN at the cost of increasing the area per
channel. Proposed solutions based on 1 6 AFEs and mixed-
signal feedback offer some of the best performances in terms of
noise and area per channel.

Finally, Figure 7A compares the channel figure-of-merit
(FoM) against the area per channel for different AFE
architectures. This FoM represents the performance of the
circuit in terms of power, resolution and bandwidth and is
given by:

Channel FoM(DR) =
Pch

2BW · 2ENOB(DR)
(5)

where Pch is the power consumption per channel and
ENOB(DR) = (DR(dB)- 1.76)/6.02, represents the equivalent
number of bits for the DR of the system. Figure 7B compares
the LNA supply current with the normalized IRN, which is the
result of multiplying the IRN by

√
BW. In both comparisons,

CT LNAs show better results than digitally-assisted AFEs, due to
the employment of low-power analog blocks instead of complex

mixed-signal loops. Moreover, CT LNAs also usually have lower
bandwidths than digitally-assisted AFEs, especially those using
the chopper-stabilization technique. In Figure 7B, the IRN scale
has been replaced by a red-blue scale which represents the
occupation area per channel.

4. TIME-DIVISION MULTIPLEXING

TDM is a technique widely employed in communication systems.
It relies on dividing the data from M-channels into M different
time slots of the same output signal. Thus, after multiplexing,
the signal from the M channels is shared by the same AFE
block/s, reducing the number of instances of each multiplexed
block employed by M − 1. The main advantage of the TDM
technique in neural recording AFEs therefore lies in area saving,
which will scale up with the number of multiplexed stages.
The technique is carried out by an analog multiplexer, the
operating frequency of which, fmux, has to be at least 2 · M-
times faster than the signal bandwidth, fb. The bandwidth of the
subsequent block/s therefore has to be aboutM times larger than
in non-multiplexed topologies, leaving the system’s overall power
consumption the same.

One of the main drawbacks of this technique is related to
noise folding. Employing larger bandwidth blocks increases in-
band noise, which will be folded to the baseband. Although anti-
aliasing filters are used to reduce this spectral folding, if the
multiplexer is located in one of the first stages of the AFE, this
filter becomes harder to implement and another approach must
be adopted. This problem is described in more detail in section 6.

Another noise source to take into account during system
design is the crosstalk from an analog multiplexer. This crosstalk
can be disclosed in four different components: (i) capacitive
coupling between the input metal lines of the multiplexer;
(ii) the finite off-resistance of the switches; (iii) time-adjacent
channel crosstalk; (iv) capacitive coupling through the parasitic
capacitance of the transistor used as a switch. The first three
crosstalk sources can be ignored. In the first case, the impact
of the capacitive coupling can be avoided by applying layout
techniques such as the careful shielding of each input line. In the
second, the subthreshold conduction of the switches is negligible
due to the large back-bias effect in low-voltage topologies. The
off-resistance is in the order of hundreds of G�, which does
not represent a crosstalk source in the circuit (Seidl et al., 2012).
Time-adjacent channel crosstalk reveals the multiplexer’s ability
to charge/discharge the load capacitors during the active period
of a channel. If the multiplexer response is slow, a residual charge
will appear between two time-adjacent channels, resulting in
crosstalk noise. The time constant defined by the on-resistance of
the switches along with the load capacitors of the circuit should
therefore be designed to be as small as possible, in order to
suppress this crosstalk source.

The effect of the capacitive coupling through the parasitic
capacitance of the transistor can have a real impact at the
multiplexer output (Chae et al., 2008). Multiplexer crosstalk can
be defined as the effect of the turned-off channels at the output
of the multiplexer. A complete mathematical analysis of this
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FIGURE 5 | Evolution of the form factor of neural AFEs over the years. The green-red scale indicates the value of the IRN of each reported circuit. Fitting curves

represent the trend over the years of the area per channel. (A) For CT LNAs. (B) For digitally-assisted AFEs.
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FIGURE 6 | Comparison of state-of-the-art LNAs and AFEs topologies in terms of NEF and area per channel. The green-red scale indicates the value of the IRN for

each reported circuit. In both figures, arrows indicate the limit on the trend of current circuits, and how future approaches should be beyond the marked line. (A) For

CT LNAs. (B) For Digitally-Assisted AFEs.

crosstalk effect is provided in Chae et al. (2008). The results
from this analysis show that the value of output resistance of
the previous stage strongly influences the crosstalk results. For

instance, for a resistance value of 4 k�, the crosstalk noise is
around −110 dB at 10 kHz (Chae et al., 2008). Therefore, by
properly setting this value, this crosstalk source can be neglected.
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FIGURE 7 | Comparison of state-of-the-art LNAs and AFEs topologies in terms of Channel FoM and normalized IRN. (A) Channel FoM vs. area per channel

comparison. The green-red scale indicates the value of the IRN of each reported circuit. The lines shows different FoM per area values as references. (B) Supply

current vs. normalized IRN comparison. The green-blue scale indicates the value of the occupation area of each reported circuit. The lines show different NEF values

as references. The employed symbol code is the same as shown in Figure 6.
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FIGURE 8 | Taxonomy of different AFEs depending on the location of the multiplexer. (A) Non-multiplexed AFE topology. (B) ADC sharing AFE topology. (C) PGA

sharing AFE topology. (D) Switch array AFE topology. (E) Time-division-multiplexing AFE topology.

5. TAXONOMY OF NEURAL RECORDING
MULTIPLEXING SYSTEMS

Some of the main building blocks of neural recording AFEs
presented in section 3 can be multiplexed to save area. Neural
recording multi-channel AFE topologies can thus be classified
by the position of the multiplexer in the signal path and,
consequently, by the number of multiplexed blocks (Figure 8).
Note that Figure 8 does not show the anti-aliasing filter. This
is because although this low-pass filter is commonly embedded
within the LNA, some works, such as Angotzi et al. (2018),
include it in other stages.

5.1. Non-multiplexed AFE Topology
In non-multiplexed AFE topology (see Figure 8A), each channel
is recorded by a low-rate (low sampling frequency per channel)
low-power AFE. For M independent recording channels, M
independent AFEs are therefore required. Herein, all the
presented architectures in section 3 are suitable for this kind of
topology. In terms of the electrode-AFE interface, the constraints
of the active area in the shank make the integration of these
AFEs along with the electrodes, beforehand, not suitable. Thus,
integrating them far from the electrodes relaxes the size and
power constraints of the AFE. This enables the inclusion of
additional on-chip functionality for the AFE. Employing an
AFE per channel also involves mismatch errors in multi-channel
topologies (Ng and Xu, 2016). Low-frequency neural signals relax
the bandwidth requirements of the AFE’s blocks, leading to a
reduction of the power consumption of each block. In addition,
the design of the non-multiplexed AFE structure must meet
the conventional requirements of neural recording AFEs: high
input impedance, low-noise, low-power, small occupation area,

large common-mode rejection ratio (CMRR), and large DC offset
rejection (Muller et al., 2015; Chandrakumar and Markovic,
2017, 2018).

In terms of the ADCs used, despite using a low sampling
frequency, conventionally up to few kHz, the need for one
ADC per channel requires very careful design in order not
to largely increase the area and power consumption of the
neural recording IC. Successive-approximation (SAR) ADCs
have generally shown good results for this kind of topologies
(Gao et al., 2012; Brenna et al., 2016; Delgado-Restituto et al.,
2017; Johnson et al., 2017), specially for providing low power
consumption for resolutions about 8 to 10 bits (Delgado-
Restituto et al., 2016). After conversion, the signal is multiplexed,
typically by employing data serializers (Park et al., 2018a,b)
(Figure 8A). In the digital domain, the signal presents higher
noise margins and is more stable against crosstalk and other
noise sources than in the analog domain, making it more suitable
for multiplexing.

5.2. ADC Sharing and PGA Sharing AFE
Topologies
One of the most popular approaches for multi-channel
architectures is to use a single ADC shared by all channels
(Figure 8B). Theoretically, this reduces the form factor and the
power consumption of the IC. This topology is based on N
structures with M channels per structure sharing a single ADC
(N ADCs for the whole system) (Wattanapanitch and Sarpeshkar,
2011; Zou et al., 2013; Bagheri et al., 2014; Yeager et al., 2014;
Liu et al., 2017). This approach has the same problems and
advantages as the non-multiplexed AFE topology in terms of the
AFE-electrode interface. Regarding the electrical properties of
the AFE itself, after amplification the signal is directed toward
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FIGURE 9 | Examples of PGA sharing and switch array AFE topologies. (A) Block diagram of the PGA sharing AFE topology presented in Angotzi et al. (2018).

(B) Block diagram of the switch array AFE topology presented in Dutta et al. (2019).

the ADC by means of TDM. The M times increased sampling
frequency increases the power consumption of the ADC and
could even require driving buffers at the input of the converter
(Noshahr et al., 2020). Most of the topologies presented in section
3 are suitable for being multiplexed at the ADC stage. However,
those with a digitally-assisted loop will require memory blocks to
store the information for each channel.

A similar scheme to the ADC sharing architectures involves
using the same PGA and ADC for the M channels, as shown
in Figure 8C). In the PGA sharing AFE topology, LNAs can
be integrated into the same IC along with the rest of the AFE
(Chae et al., 2009; Han et al., 2013; Liu et al., 2016), or along
with the electrodes (Johnson et al., 2013; Angotzi et al., 2014,
2018, 2019). An interesting application example of PGA sharing
with the LNA adjacent to the electrode is reported in Angotzi
et al. (2018) and simplified in Figure 9A. In this architecture,
the LNAs are integrated within the pixel of the neural probe and
basically lie in an open-loop amplifier. To remove the DC offset
without increasing the area of the pixel, an out-of-pixel autozero
(AZ) amplifier is shared by all the LNAs through time-division-
demultiplexing. Moreover, the column buffers are implemented
in two stages: a pixel stage (with a column buffer per channel) and
a base stage , i.e., not adjacent to the electrodes, which is shared
by all the channels. The output of this shared buffer is fed into
an amplifier (ACB). The short channel effects are then mitigated

by time-division-demultiplexing the signal and feeding it into the
pixel’s column buffers.

5.3. Switch Array AFE Topology
All presented topologies allow full-frame read-out at the cost of
reducing electrode density. To increase the number of electrodes,
and therefore to increase the spatial resolution of the probe,
a switch-matrix is integrated adjacent to the electrodes. More
complex routes are used to rewire a group of electrodes to
the available read-out channels (Figure 8D). This switch-matrix
mainly comprises a large group of routing wires, switches, and
a local memory such as a SRAM which allocates the connection
status of the electrode (Frey et al., 2010), so that not so much
active area is required. As in PGA sharing topologies, this
architecture can also include amplifiers along with the electrodes
(Huys et al., 2012; Mora Lopez et al., 2017) or just the switch-
matrix (Frey et al., 2010; Ballini et al., 2014; Jun et al., 2017;
Dutta et al., 2019). In this architecture, also known as static
multiplexing, for N electrodes, the switch-matrix only selects
M of them (with N > M) and interconnects them with the
M read-out channels (AFEs). After the amplification stages, the
signal is commonly multiplexed as in ADC sharing topologies. A
simplified example of a switch array AFE corresponding to the
neural probe scheme reported in Dutta et al. (2019) is shown in
Figure 9B. Note that the switch-matrix incorporates memories
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FIGURE 10 | Illustration of the noise folding problem in TDM AFEs. (A) Noise folding problem in multiplexing circuits. (B) Noise folding in multiplexing circuits applying

charge sampling techniques. (C) Noise folding in multiplexing circuits applying a narrow-band CDS architecture.

(flip-flops) which select the electrodes to record using a digital
selector integrated into the base of the neural probe. In this
kind of topology, the overall form factor required defined by
the number of readout channels restricts the possibilities of
implementing some of the topologies of the section 3.

One of the main issues concerning these structures is the
selection of the electrodes to be read and those not to be read.
One widely-used solution to this involves a process which firstly
records the whole electrode matrix during different time slots.
The data is then processed and some groups of electrodes are
prioritized to be read by applying an optimization algorithm
(which could involve machine learning) based on the previously
recorded signals and the main purpose of the recording. Another
alternative, presented in Mora Lopez et al. (2017), divides the
electrode matrix into a set of subgroups. In this proposal,
the electrodes in each subgroup are selected pseudo-randomly,
ensuring that all areas of the probe are recorded.

5.4. Time-Division-Multiplexing AFE
Topology
One new trend in multi-channel neural recording topologies
is to place the multiplexing at the input of a single AFE
(Figure 8E) which is shared by all channels. This reduces the
occupation area per channel and ignores mismatch between
recording channels, potentially making the power consumption
per channel lower than in conventional topologies (a further
breakdown of the AFE time-division-multiplexing specifications
and architectures is provided in section 6). For instance, it
can be observed in Figure 6B how the TDM AFE reported
in Uehlin et al. (2020) shows one of the most promising
results in terms of area and noise equivalent bandwidth (NEB),
which is defined as the bandwidth of a brickwall filter which
produce same integrated noise power as that of the analyzed
system, for this kind of topologies. The main drawback of these
topologies relies on the requirement of a high-bandwidth LNA
(HB LNA) to fast-multiplex all the channels, which significantly
increases power consumption and in-band noise due to aliasing
(Sharma et al., 2018).

6. REVIEW OF
TIME-DIVISION-MULTIPLEXING AFES

One of the first reported TDM AFEs was presented in Raducanu
et al. (2017). In this architecture, the TDM technique was only
used for the amplifiers within the pixel, reducing the number
of interconnection wires and increasing the electrode density of
the neural probe. The AFE/electrode ratio, however, was still 1:1.
Recently, new TDM systems have emerged with multiplexing of
the whole AFE (Pérez-Prieto et al., 2019; Sharma et al., 2019;
Uehlin et al., 2020). The aim of this kind of architectures is to
reduce the power and area of the whole recording interface, but
here two major design issues arise: noise folding and DC offset
from electrodes.

6.1. Noise Folding in TDM AFEs
For an M-channel multiplexed recording device, the sampling
frequency, fs, has to be M times faster than for a single channel,
(fc = 2 · fb), in order to keep the same throughput rate per
channel, i.e., fs = M · fc. For voltage sampling with a single pole
low-pass filter response, the required IA bandwidth will therefore
be given by (Sharma et al., 2018):

fBA =
ln(ǫ) · fs
2 · pi

=
ln(ǫ) · fc ·M

2 · pi
(6)

where ǫ is the tolerable dynamic settling error. Thus, the NEB for
the multiplexed topology will be determined by:

NEBTDM =
π

2
· fBA = −fs · ln(ǫ)/4 = −M · fc · ln(ǫ)/4 (7)

From equation 7 it can be concluded that the NEB increases
proportionally with the number of channels. For APs recording,
for example, the NEB in TDM AFEs is 3.5 · M higher than for
conventional non-multiplexed AFE topologies (Sharma et al.,
2018). Accordingly, the out-of-band noise components are
folded-back to the baseband which largely increases the system’s
in-band noise due to aliasing (Raducanu et al., 2017). Figure 10A
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FIGURE 11 | TDM AFE proposed in Sharma et al. (2019). (A) Block diagram.

(B) Simplified schematic of WIS and DC Servo Loop. (C) Simplified

timing diagram.

illustrates this noise folding process: at the sampling instant,
all the noise components above the band of interest which are
not filtered (fc/2 in Figure 10) are folded-back to the signal
bandwidth. To solve this problem, the NEB of the AFE has to
be reduced without sacrificing settling accuracy within the time
allocated for channel sampling.

The first approach to coping with this problem is to apply
charge-sampling (CS) instead of voltage sampling (Raducanu
et al., 2017; Smith et al., 2017; Uehlin et al., 2020). The windowed
integration sampling solution proposed in Sharma et al. (2018)
can be considered as a kind of charge sampling. The main idea
of this technique is based on integrating the signal during a
period Ti, with fi = 1/Ti and fc < fi < fs, and then sampling
the last value. High-frequency noise components are filtered
(Figure 10B) according to a sync filter specifications, i.e., sin(x)/x
(Gang and Jiren, 2000), reducing the noise folding effect. In
terms of circuit implementation, this technique is performed by
a Gm-cell driving a sample-and-hold capacitor, Cint , as shown in
Figures 11B, 12B. The gain of this block will therefore be given

by Gm, Ti and Cint (see Table 1). However, this technique has
some significant drawbacks: (i) the pole of the sync filter and the
DC gain of the architecture are very sensitive to clock jitter (Gang
and Jiren, 2000); (ii) process variations will have a high impact
on the system’s gain and time constant due to the employment of
an open-loop structure; (iii) low-frequency noise components are
not reduced; (iv) large common-mode (CM) signals could change
the operating point of the Gm stage, which may lead to distortion
or even saturation.

Another solution is to use a narrow-band correlated double
sampling (CDS) scheme (Pérez-Prieto et al., 2019), Figure 13B.
In this architecture, the AFE transfer function is reduced
by the low-pass filter which the CDS inherently implements,
as illustrated in Figure 10C. The noise in conventional CDS
topologies would normally be doubled due to spectral folding,
but since the sampling frequency of the CDS is higher than the
CDS amplifier bandwidth, the folded noise components in the
bandwidth of interest are reduced as illustrated in Figure 10C.
Moreover, the flicker noise component is also palliated by the
CDS scheme (Enz and Temes, 1996), while the stage power
consumption retains approximately the same value as without
CDS. In addition to these advantages, since the CDS is a closed-
loop structure it has none of the above-mentioned gain accuracy
problems, its gain being fixed by the ratio between the input
capacitor (Cin) and the feedback capacitor (Cfb). This makes the
system more robust to the influence of large CM signals.

Table 1 briefly compares the two solutions reported for
reducing noise folding in TDM AFEs. As can be seen, the main
advantages of CDS over CS/WIS are related to CDS being a
closed loop architecture. The highest gains, however, are achieved
in CS/WIS structures without significantly increasing power
consumption, whereas in CDS the power requirement for the
same gain is higher.

6.2. DC Offset From the Electrodes in TDM
AFEs
DC offset from electrodes is a recurrent problem in DC-coupled
AFEs (Fan et al., 2011; Chandrakumar and Markovic, 2017;
Samiei and Hashemi, 2019). In any of the presented topologies
with an IA per channel, DC offset can usually be rejected
using large time constant high-pass filtering. However, analog
large time constant filters are not suitable in rapid multiplexing
systems, since the filtering would increase crosstalk between
channels and would not be fast enough to reject the DC offset
from each channel. One solution to this problem could be to limit
the gain of the AFE and to increase the resolution of the ADC.
However, this extra resolution, together with the high sample rate
required for multiplexing, would make the ADC unsuitable for
low-power designs.

High-pass filtering the signal through a mixed-signal loop has
been adopted as an alternative approach to palliating the DC
offset problem in DC-coupled topologies (Muller et al., 2015;
Bagheri et al., 2017). In this method, a sub-Hz finite-impulse-
response (FIR) or infinite-impulse-response (IIR) filter is fed into
the input of the AFE by a digital-to-analog converter (DAC).
While the filter can be designed to not penalize the system’s power

Frontiers in Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 681085

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pérez-Prieto and Delgado-Restituto Recording Strategies for Microelectrode Arrays

FIGURE 12 | TDM AFE proposed in Smith et al. (2017) and Uehlin et al. (2020). (A) Block diagram. (B) Simplified schematic of CS amplifier and 1-Encoding loop.

(C) Simplified timing diagram of CS amplifier.

consumption and occupation area, the required DAC resolution
has to be high enough not to increase the noise at the input of
the AFE. The number of bits required will be determined by

the resolution of the ADC, the overall gain through the signal
path, and the IRN of the AFE. In most practical cases, a DAC
of more than 16-bits is required, which strongly compromises
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FIGURE 13 | TDM AFE proposed in Pérez-Prieto et al. (2019). (A) Block diagram. (B) Simplified schematic of CDS amplifier. (C) Simplified timing diagram of

CDS amplifier.
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TABLE 1 | Noise-folding aware structures comparison.

Architecture Gain
Noise Noise Flicker CMRR Clock/process Power

filtering folding reduction insensitive variations requirements

CS / WIS Open-Loop Gm ·Ti
Cint

sync2 No No No Weak Low

CDS Closed-Loop Cin
Cfb

sync2 Yes Yes Yes Robust Medium

the form factor specification of the neural recording AFE. One
proposed solution for implementing this high-resolution DAC is
to employ a 16 modulator (Muller et al., 2015; Bagheri et al.,
2017). However, this method is not feasible for TDM AFEs
because the required oversampling frequency will be multiplied
byM, and this will significantly impact the power consumption of
the digital part of the IC. An alternative to a high-resolution DAC
would be to use a binary search algorithm (Sharma et al., 2019)
which initially computes theDC offset codes for each channel and
retains the correction values until a threshold condition occurs.
At that instant, the binary search recalculates the correction value
for each channel. By applying this method, DC offset drifts are
palliated without increasing the IRN of the AFE. On the other
hand, although the system range is ensured, there will be residual
offset at the output of the AFE. This will have to be filtered in the
digital domain.

Another proposed solution is based on working with 1-
signals (as illustrated in Figures 4C–E). In this approach, the
system tracks differences between successive samples, high-pass
filtering the input signal. The signal then has to be reconstructed
in the digital domain using an integrator/accumulator. This
technique can be transferred to TDM AFE topologies by
employing registers to store the previously sampled value of
each channel. One example of a TDM AFE which exploits this
technique is reported in Smith et al. (2017), Uehlin et al. (2020).

6.3. Comparison of TDM AFE Architectures
Despite their promising results, TDMAFE topologies have not to
date been researched in depth. In this subsection, three reported
TDM AFE architectures are detailed. Block diagrams of these
neural AFEs are shown in Figures 11A, 12A, 13A.

The first architecture, reported in Sharma et al. (2018) and
Sharma et al. (2019), is shown in Figure 11A. The IA comprises
a capacitive feedback single-stage cascaded OTA. An open-
loop OTA is employed as a Gm-cell along with the SAR ADC
capacitors to implement the WIS filter and to further amplify
the signal (Figure 11B). This reduces the high-frequency noise
components from the IA. The timing diagram of this operation
is shown in Figure 11C. It can be seen that the integration
period, Ti, lasts for most of the sampling period Ts. After that,
before the capacitors of the ADC (φrst) are reset and the input
channel is changed, the conversion phase, Tconv, takes place for
only 11% of the sampling period. This short-time conversion is
carried out by an asynchronous converter. To remove the DC
offset, a binary search algorithm is implemented externally by
a Python script. This algorithm recomputes the 9-bit code each
second to palliate the input DC offset. This is fast enough to
compensate DC drifts at the input. The code is divided into 4-bits
for DAC1 and 5-bits for DAC2 andmaximizes the useful dynamic

range of the system while reducing the ADC requirements. It
should also be mentioned that both DACs are embedded in the
amplifier structure.

A 1-Encoded TDM AFE was first presented in Smith
et al. (2017) and further developed in Uehlin et al. (2020)
(Figure 12A). In this architecture, after the input multiplexer,
an input switching scheme consisting of a set of switches with
a couple of input capacitors performs two main functions: (i)
autozeroing the inputs to reduce crosstalk between adjacent
channels; and (ii) largely suppressing the CM signals. An 8-
bit capacitive DAC connected to the input node of the OTA
then carries out the 1-operation by subtracting the signal value
previous to the present value. This also minimizes the DC
offset, improving the system’s dynamic range. Afterwards, the
1-signal is amplified by a charge-sampling amplifier consisting
of an open-loop Gm-cell and capacitors CL (Figure 12B). Note
that the value of CL is variable, mainly to set the gain of the
charge-sampling topology and to palliate the φi clock variations.
A timing diagram of this charge-sampling block in normal
recording mode is shown in Figure 12C. Firstly, the signal is
integrated during φi. Then, in the φAZ phase the capacitors are
reset. Once the signal is converted by an 8-bit SAR ADC, it can
follow two paths: (i) through the mixed-signal loop to perform
the encoding technique and (ii) to the output. The first step of the
mixed-signal loop is a user-programmable threshold block which
determines the update quantity of the tracking signal. The update
values, which can be −1, 0, or +1, are added to the previous
tracking value. A 64x8-bit register stores the previous values of
the correction signal for each channel. This register, together with
the tracking update, performs an integration loop. The output
signal from this loop feeds the DAC and is also scaled and added
to the ADC output in order to reconstruct the signal. The output
code thereby increases its resolution from 8 to 16 bits.

Another approach to TDM AFE is shown in Figure 13A

(Pérez-Prieto et al., 2019). In this architecture, both IAs are
implemented using narrow-band CDS architectures to filter the
flicker and high-frequency noise components of the circuit and to
provide a robust closed-loop structure against CM interferences.
The scheme of the first IA is shown in Figure 13B. An 8-bit
capacitive DAC is connected to each input virtual ground node
of the IA, Vx. These DACs close the mixed-signal loop which, in
addition to rejecting the DC offset, also implements an artifact
compression technique, thus increasing the dynamic range of the
circuit. The input impedance of the AFE is boosted by a couple
of capacitors, Cib, included in the CDS loop (Fan et al., 2011).
The timing diagram of this stage is shown in Figure 13C. Before
reading the input of the multiplexer, the feedback capacitors are
reset in order to reduce crosstalk between adjacent channels.
The signal is then amplified and flicker-reduced in phase φ2.
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TABLE 2 | Comparison of high-performance AFEs (range of values).

AFE topology Continuous-time Chopper-stabilized Chopper-based 16 16
Time/frequency TDM

based Uehlin et al., 2020

Power/channel
[0.0015d–114.8c] [0.017j–2160i ] [0.8p–9.9n] [0.63s–4.79r ] [3.2y–21x ] 2.98

(µW/ch)

IRN normalized
[0.0068b–1.354d ] [0.0038i–0.7518l ] [0.0443p–0.2656q] [0.0492r–0.0716t ] [0.0325x–0.639w ] 0.0884

(µVrms/
√
Hz)

Area/channel
[0.0098f–0.26e] [0.017k–0.81j ] [0.018n–0.55q] [0.013u–0.023t ] [0.01y–0.135v ] 0.0023

(mm2/ch)

Input impedance
[4b–61a] [1i–5400h] [20o–1000n] [1s–1000r ] [50w–∞v ) 92

(M�)

NEF [1.07g–19.4c] [0.86m–126.7l ] [1.81p–26.03q ] [2.86u–5.99r ] [3.33z –57.61w ] 2.35

aLeene and Constandinou, 2017; bZhang et al., 2013 ; cMohseni and Najafi, 2004 ; dHarpe et al., 2015 ; eRai et al., 2009 ; fKuhl and Manoli, 2015 ; gShen et al., 2018; hHa and Yoo,

2016; iJiang et al., 2019; jChen et al., 2015; kChandrakumar and Markovic, 2017; lXu et al., 2014; mMondal and Hall, 2020; nBagheri et al., 2017; oChandrakumar and Markovic, 2018;
pKim et al., 2018; qBang et al., 2018; rMuller et al., 2012; sKassiri et al., 2017; tO’Leary et al., 2018; uMuller et al., 2015; vJiang et al., 2017; wMohan et al., 2017; xTu et al., 2017;
yHuang et al., 2018; zZhao et al., 2020.

It is then oversampled and, after analog-to-digital conversion,
filtered and decimated. The resolution of the signal is thus
increased from 10 to 14 bits. In the mixed-signal loop, the DSL
mainly comprises an integrator, the gain of which sets the sub-Hz
cutoff frequency. This integrator is voltage-triggered so as not to
produce input oscillations.

6.4. Comparison of State-of-the-Art TDM
and High-Performance AFEs
Table 2 shows a final comparison between TDM AFEs and
the high-performance neural AFEs presented during section 3.
Due to the fact that each presented AFE topology comprises
several and different works, this comparison has been carried
out by employing the lowest and highest reported values for
each topology. Thus, it is worth observing how TDM AFEs
provide the lowest values in terms of occupation area without
significantly penalizing the rest of the AFEs’ specifications.
This Table corroborates the comparisons of the state-of-the-art
previously presented in section 3.

7. DISCUSSION AND FUTURE WORKS

This work has presented a review of recording techniques for
high-channel-count, densely-spaced microelectrode arrays. Two
of the main concerns when increasing the number of read-
out channels in neural recording devices are the occupation
area and the power consumption of the silicon-based signal
conditioning circuitry. Although the design effort has to be
focused on these two factors, other significant neural AFE
specifications such as low noise contribution, low crosstalk
between channels and high input impedance also have to
be satisfied.

Firstly, the issue of whether or not to employ active electrode-
AFE interfaces was introduced. With regard to crosstalk, the
reported analysis in Du et al. (2009), Seidl et al. (2012), Lopez
et al. (2014) has shown how placing the amplifier adjacent
to the electrodes significantly minimizes crosstalk between
the interconnection wires. However, the power consumption

and occupation area of the amplifier are severely limited
by the heating and the form factor of the active area. The
noise contribution of the active electrode-AFE interface will
therefore be larger than for an amplifier placed on the base
of the neural probe. With regard to thermal noise, the power
constraints of these interfaces depend on the device employed,
and this improves the design flexibility to reduce the thermal
noise floor. On the other hand, flicker noise is larger for
the active interfaces due to the small size of the employed
amplifier. The main consideration when using or not using active
electrode-AFE interfaces is therefore the reported crosstalk-
flicker noise tradeoff.

High-performance neural AFE topologies have been disclosed
and briefly introduced and compared. Herein, one commonly
employed method for reducing the number of recording blocks
is the TDM technique. This paper proposes a classification of
neural recording architectures into five different topologies
based on the location of the multiplexer in the signal path.
Over the last few years, non-multiplexed AFE topologies have
been consolidated as one of the best techniques in terms
of power consumption and occupation area thanks, among
other things, to their design flexibility. Moreover, different
schemes of non-multiplexed architectures have been introduced,
demonstrating different alternatives for implementing these
topologies without penalizing neural AFE specifications.
Also, novel TDM AFEs have demonstrated the capability of
multiplexing at the AFE input to reduce area and power more
than in conventional ADC or/and PGA sharing topologies.
Although some strategies, such as charge sampling, have been
reported to filter high-frequency noise components, the trade-off
between the number of multiplexed channels and the noise
increment due to aliasing has to be taken into account in the
design process. Furthermore, no TDM structures have been
reported with more than 64 channels. This work also provides
a state-of-art comparison illustrating how non-multiplexed
AFEs and TDM AFEs are generally reported to offer the best
performance, while switch array AFEs have the largest number
of input channels.
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Future advances in neural recording techniques should follow
the trendsmentioned above. Although notmentioned during this
work, one of the main problems associated with these techniques
is the processing and transmission of data. Increasing the
number of channels considerably increases the amount of data
to be processed and transmitted. This increases consumption
in the digital part of neural recording systems, making it
comparable with that of the analog part. Moreover, as these
systems are intended for long-duration implants, the amount
of data to be stored could be too big. New techniques for data
compression and feature extraction must therefore emerge to
address these problems.
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