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Deep learning implementations using convolutional neural nets have recently
demonstrated promise in many areas of medical imaging. In this article we lay out
the methods by which we have achieved consistently high quality, high throughput
computation of intra-cranial segmentation from whole head magnetic resonance
images, an essential but typically time-consuming bottleneck for brain image analysis.
We refer to this output as “production-level” because it is suitable for routine use in
processing pipelines. Training and testing with an extremely large archive of structural
images, our segmentation algorithm performs uniformly well over a wide variety of
separate national imaging cohorts, giving Dice metric scores exceeding those of other
recent deep learning brain extractions. We describe the components involved to achieve
this performance, including size, variety and quality of ground truth, and appropriate
neural net architecture. We demonstrate the crucial role of appropriately large and
varied datasets, suggesting a less prominent role for algorithm development beyond
a threshold of capability.

Keywords: magnetic resonance imaging, brain segmentation, deep learning, convolutional neural network,
medical image processing, medical imaging data ground truth

INTRODUCTION

This paper focuses on the procedures, including data and training, needed for convolutional neural
net learning to segment the brain cavity within structural magnetic resonance imaging (MRI).
Convolutional neural nets (CNNs) (Bengio, 2009) are particularly well suited for image analysis
and have recently been used in a variety of applications for medical image processing (Litjens
et al,, 2017; Zhang et al., 2017; Lundervold and Lundervold, 2019). Here we focus on training and
testing protocols using a CNN that led to a practical, production-level application for MRI pipeline
processing of brain cavity segmentation.

In this project, our goal of “production-level” processing means the capacity to perform high
throughput and consistent quality image processing. High throughput means fast computation
times; consistent quality means that the need for human interaction quality control (QC) is
minimized. Both of these aspects are crucial to the ability for analyzing large datasets, because they
currently lead to bottlenecks that limit data processing capacity. The remainder of this introduction
expands upon these points.
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The Need for High Volume Data

Processing

In the field of medical imaging, there is a developing consensus
that diseases such as Alzheimer’s are multifactorial in origin,
with subtle pathological changes beginning many years before the
onset of clinical symptoms (Maillard et al., 2012; Jack et al., 2013;
Knopman et al., 2013; Villemagne et al., 2013; Fletcher et al., 2014;
Han et al., 2020). This suggests that a “big-data” approach will
be needed to uncover and analyze the etiology and evolution of
such diseases, by enabling the statistical power to detect subtle
effects. A limiting factor for such analyses has historically been
the lack of ability to robustly process large amounts of data, with
the implicit need of harmonization (Pomponio et al., 2020), in
order to generalize across inevitable sources of variability.

Deep learning holds the promise to address this limitation
(LeCun et al., 2015; Akkus et al., 2017; Sun et al., 2017).
However, current work on deep learning applications in many
fields has highlighted the need for very large training data sets
in order to make useful predictions (Sun et al., 2017). From
facial recognition and image identification to game playing
and language comprehension, innovative learning architectures
need training on large data sets that adequately represent
real-world variability of the objects to be learned. In medical
image processing, the lack of adequate training data has been
a long-standing problem (Akkus et al., 2017; Ker et al., 2017;
Litjens et al., 2017).

Brain Segmentation as Part of a
High-Throughput Pipeline

Segmentation of the brain from the whole head (i.e., skull-
stripping or brain extraction) is an essential task in neuroimaging
processing pipelines. The gold standard for segmentation has
historically been slice-by-slice manual human labeling, but this
is slow, subject to systematic operator error, and effectively
limits the achievable size of labeled data sets. In response, many
standalone algorithm applications have been developed for skull-
stripping, using variations on the techniques of growing a volume
outward or fitting a deformable mesh to the brain surface [see
(Eskildsen et al., 2012) for review]. Some of these allow user
input of parameters [e.g., BET (Smith, 2002)] and some are
completely automatic [e.g., ROBEX (Iglesias et al., 2011)] but
in any case, performance has remained variable across different
datasets (Shattuck et al., 2009; Leung et al., 2011). An alternative
approach is atlas-based matching (Aljabar et al., 2009; Leung
et al., 2011). This method employs a set of images (the atlases)
whose brain masks have been carefully segmented a priori; the
atlas MRIs are nonlinearly registered to the target native space
MRI, followed by a voting scheme using the deformed masks
to identify the most likely brain voxels within the whole head
image. The brain atlas-matching approach outperformed three
other extraction tools in an earlier test (Leung et al., 2011). We
have found that this method is generally accurate and answers our
need for segmentation on large datasets. It avoids the parameter
tweaking among many available algorithms and also improves
robustness across different data sets seen in other methods.
However, it is computationally very expensive.

Segmentation of the Intracranial Cavity
Another important issue arises from our protocol of segmenting
not the brain but the intra-cranial cavity (ICC). Because the brain
is subject to tissue loss with age, while the ICC is a relatively
stable biomarker, accurate measures of ICC can be used as a
reference for more precise measures of brain differences due to
age or disease. Not only do accurate assessments of ICC adjust
for gender-related differences in head size (DeCarli et al., 2005)
but the ICC reflects maximally attained brain growth and is
itself a predictor of cognitive ability in later life (Farias et al.,
2012). The ICC is thus a stable benchmark that enables reliable
measurements of other biomarker changes.

Intra-cranial cavity segmentation is unavailable in the other
methods that aim to segment a preset brain mask but is feasible
in an atlas protocol using customized atlas ICC masks. Our
laboratory therefore previously adopted atlas-matching as our
standard ICC segmentation step. Computation of atlas matching
is intensive, however, requiring up to 15-27 CPU hours to
nonlinearly register 15 atlas MRI images to the target image
(Aljabar et al., 2009), followed by additional time of 15-45 min
for human quality control (QC). Intensive resource use in
computation and human involvement has thus remained a
throughput bottleneck for our main processing pipeline.

Previous Recent Work on Brain

Segmentation

At least two approaches to CNN brain mask prediction have
recently been proposed (Kleesiek et al., 2016; Salehi et al., 2017).
These were shown to outperform non-CNN brain extraction
applications on publicly available datasets. However, these
datasets comprised relatively small numbers with limited scanner
variety and variable segmentation quality: they included the
LONI Probabilistic Brain Atlas Project (LPBA40) with 40 scans
(Shattuck et al., 2008); the Open Access Series of Imaging Studies
(OASIS) with 77 scans (Marcus et al., 2010); and the Internet
Brain Segmentation Repository (IBSR) with 18 scans (Rohlfing,
2012). A dearth of high-quality medical image training data has
been a limitation to many recent published methods (Akkus et al.,
2017; Ker et al., 2017; Litjens et al., 2017). Such limitations stem
from small quantities and lack of variability, including limited
scanner variety and homogeneity of participants. This again
raises the issue of large datasets — and their relative scarcity.

The Current Project

This paper reports on our experiments to develop a CNN
application for production-level, high throughput and robust
identification of ICC locations in structural MRI. For machine
learning to achieve production level as we have defined it, three
components are required (Sun et al., 2017): a high performance
computational platform, an appropriate CNN architecture, and
large training datasets. We aim to fill the gaps in recent literature
by demonstrating component characteristics of data, architecture
and training that have achieved production level. Our laboratory
has a uniquely extensive archive of over 27,000 structural MRI
whole head images from multiple national imaging cohorts,
representing a range of scanners and high-quality ICC masks,
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along with a high-performance machine learning platform
(NVIDIA DGX). We hypothesized that our large archive with its
variability of data could train a CNN prediction model capable
of routine, fast and robust processing of large numbers of ICC
segmentation masks.

METHODS

Hardware and Software

We performed all training, testing, preprocessing, postprocessing
and image prediction metric evaluations on an NVIDIA DGX
Station equipped with a 20-core Intel Xeon CPU, 256 GB of
system memory, and four Tesla V100 16GB GPUs.

We used the TensorFlow platform' to implement and train the
CNN, and to calculate the similarity metrics between predicted
and ground truth ICC masks. We produced ICC mask ground
truth data for training and testing via our in-house code for
atlas-based brain extraction, developed as part of our image
processing suite that has been detailed previously (Fletcher et al.,
2018). We performed all additional processing in Python 3 using
publicly available external modules including NiBabel, NumPy,
SciPy, scikit-image, Pydicom, ptoml and tqdm. Result analysis
was performed using Pandas or R. Visual analysis of images and
masks was performed using Mango.

Neural Network

Our architecture was an end-to-end volumetric 3D CNN adapted
from a network that was previously used for vascular boundary
segmentation in 3D computed tomography scans (Merkow et al.,
2016). One of our experiments was to determine the effects
on prediction performance of varying the number of stages in
the CNN. As an illustration of the architectural framework for
our CNN approach, our best version is outlined in Table 1
and illustrated in Figure 1. It takes as input a whole-head
3D structural MRI volume and outputs maps estimating the
relative strength (from 0 to 1) of brain membership for each
voxel location in the MRI. Binary brain segmentation masks are
derived by thresholding the probability maps at an empirically
derived value of 0.34 to maximize the median Dice match score
and minimize the interquartile variability ranges of the match
scores. In the architecture reported in Table 1 and Figure 1,
the encoder consists of 13 convolutional/ReLU layers divided
into 5 stages of decreasing image resolution. Successive stages
are connected, and spatial dimensions are reduced, via 4 max-
pooling layers. The decoder consists of 6 convolutional layers.
To create a fused output mask prediction, the output images
from each stage is reduced using a 1 x 1 x 1 convolutional
layer (yellow arrows of Figure 1), then upsampled to the original
input dimensions using trilinear interpolation in the form of a
non-learning convolution transpose layer. One last 1 x 1 x 1
convolutional layer then fuses the multi-resolution outputs from
each stage, which is bound to the range [0,1] using a sigmoid
activation layer. The CNN output is thus a number in the range
[0,1] for every MRI voxel; we thresholded the output as described

Uhttps://www.tensorflow.org/

TABLE 1 | CNN architectural detail.

Stage Layer count Filter size Layer filter count
1 2 3x3x3 32

2 2 3x3x3 128

3 3 3x3x3 256

4 3 3x3x3 512

5 3 3x3x3 1024

All architectures share the same scheme illustrated here for the 5-stage best-
performing model.

above to obtain the prediction mask (Figure 2). Experiments for
this paper involved altering the number of stages in this basic
design, to test 2,3,4 or 5 stages.

Extracted Intra-Cranial Cavity Mask
Definition

Most skull-strip algorithms aim at segmenting the brain at its
tissue boundary (i.e., with cerebrospinal fluid) in the whole
head image. That extracted mask thus excludes any tissue and
space outside the brain. However, our protocol extracts the ICC
head space beyond the brain out to the dura mater anteriorly,
dorsally and posteriorly, as illustrated in Figure 2. The dura/CSF
boundary is easily visible as a line between gray intensity (dura)
and CSF (black) (Figure 2, left panel). This segmentation has
enabled us to test for longitudinal consistency as measured by
the volumetric segmentation of ICCs from sequential scans of a
single individual, since the ICC should not change over time.

Ground Truth Data, Training and Testing
Data Set Composition

For training and testing, we used 10,378 structural T1-weighted
MRI brain scans selected from our archive of over 27,000 scan
sessions, representing data from 17 national imaging studies,
from which training sets were drawn with up to 11 imaging
cohorts in a training set. The available imaging cohorts and data
set sizes are detailed in Table 2. Training and testing sets selected
from this pool were varied to test the influence of the two factors
of training set size and variety of imaging cohorts for output
predictions. No participant with serial scans had one scan in the
training set and another in the test set. The available diversity of
imaging cohorts by subject demographics and MRI acquisitions
allowed us to experiment with the best combination for robust
segmentation in the face of image variability across sites.

Atlas-Based Mask Generation

Each structural MRI had a segmented ICC mask created by an
automated multi-atlas segmentation procedure (Aljabar et al,
2009) followed by human quality control. Briefly, the multi-
atlas segmentation consisted of nonlinear warps of 15 template
brain images, in which the ICC has been carefully delineated by
human operators, onto a target whole-head MRI. The deformed
template ICC masks were overlaid in the target native space
and a voting scheme is conducted to ascertain a consensus of
ICC locations within the target image. Final cleanup to remove
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FIGURE 1 | Neural network diagram tracking 3D volume through the 5-stage encoder and fuse decoder. Convolution and RelU layers are combined in blue arrows.
Upsampling is shown by green arrows. The five stages are connected by four downsample pooling layers (red arrows) that each reduce the image by a factor of 2.
The final fuse layer (green arrows) upsamples each stage output to the original image resolution and fuses them to create the prediction mask. Figure modified from
Fletcher and Knaack (2020).

FIGURE 2 | Stages in extraction of ICC from whole head volume. Left panel: whole head MRI. Middle: ICC mask. Right: Resulting ICC volume image. Note the ICC
boundary extending beyond the cortical edge to the dura mater boundary. Figure modified from Fletcher and Knaack (2020).

inevitable mistakes was performed by human operators using a
slice-based visualization tool.

Human Quality Control

Human QC is an indispensable final step of any computational
image processing method. As such, it accounts for a significant
portion of the resource use, in time and expense, to achieve usable
data. In ICC mask production, human QC is necessary to inspect,
and where required, manually remove misestimations of mask

boundaries, all on a slice-by-slice basis using a slice visualization
tool. In our experiments, all ground truth (GT) data included a
final human QC step. With our atlas-based mask segmentations,
this QC takes from 15 to 45 min per image.

However, human inconsistency across slices introduces edge
unevenness that adds random noise. The effects of slice-based
edge inconsistencies compared to CNN predictions are seen in
Figure 3, which shows two estimations of the ICC mask for
the same subject. The left panel shows the effects of human QC
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TABLE 2 | Imaging sources for our ground truth data.

Cohort Cohort numbers Cohort characteristics
Train Eval Test Scanner  Scanner Sex Avg
(3T %) Models(N) (M%) Age
A 102 34 34 1.00 1 0.27 93.4
B 381 50 59 0.50 7 0.22 76.0
C 2696 337 26 0.15 16 0.07 74.0
D 244 39 37 0.00 3 0.41 58.0
F 209 37 35 0.00 3 0.40 79.5
G 80 33 33 1.00 1 0.36 71.5
H 2849 357 348 0.23 Ih 0.46 58.0
| 0 0 6 0.50 2 0.00 N/A
J 74 33 9 0.09 2 0.05 49.3
K 0 0 50 1.00 1 0.02 N/A
L 0 0 10 1.00 1 0.40 64.5
M 0 0 73 0.99 2 0.63 74.4
N 0 0 2 1.00 1 0.50 94.0
O 1182 147 119 0.41 17 0.17 63.7
P 157 37 37 1.00 3 0.04 50.9
Q 333 48 47 0.94 4 0.51 70.3
R 0 0 14 0.00 2 0.14 N/A
Totals 8307 1152 939 0.33 28 0.29 63.3

All ground truth data was generated by our atlas-based plus human QC as
described in the text. Basic scanner characteristics are number of different scanner
models and percentages of 1.5T and 3T field strengths; percentage for 1.5T is
1 minus the 3T values shown. Thus, for example, O for cohort R means all its
scans had 1.5T field strength; similarly, 1.0 for cohort A indicates all scanners at 3T.
Similar presentation for demographic breakdown by sex. Average ages are shown
in cohorts where available.

on an atlas-based mask. The right panel shows the same for a
CNN prediction. By the CNN’s capacity to generalize, the CNN
estimates tend to be inherently smoother than the atlas based,
thereby potentially diminishing introduced noise from human
QC. We therefore hypothesized that CNN outputs combined
with human QC would benefit not only by drastically reduced
computation time but also reduced human interaction time.

In sum, GT for all training, test and validation sets consisted
of atlas-based ICC masks completed by human QC. Each of the
three sets was completely disjoint from the others, having no
images from any participant in more than one set.

Training

Network training was deeply supervised, with loss function
penalties calculated at each stage as well as the final fused
prediction. Training example pairs were sampled one at a time
in round-robin fashion by cohort. Individual cohort sets were
continually cycled over successive training iterations to maintain
influence until a fixed number of training steps had been
completed. Specifically, at each training cycle all cohorts are
represented via round-robin selection. This means that over all
cycles of the training, images from smaller cohorts are seen in
more of the cycles than images from larger cohorts. Training
was completed in a range between 12 and 44 hours depending
on the number of cohorts and CNN architecture, and using the
following hyperparameters:

Atlas Mask CNN Prediction Mask

‘ . o
‘ ‘ o

FIGURE 3 | Comparison of ICC mask quality before and after human QC. The
same MRI image with an atlas-based GT (left column) and CNN prediction
mask (right). Top row (red): raw masks before QC. Bottom row (green): masks
after human QC. The edge-based variability is a source of random noise in
ground truth. Less variability is introduced for human QC of CNN predictions
than for atlas-based masks.

e Loss function: Summed cross-entropy of each stage
and the fused prediction compared to ground truth
(Merkow et al., 2016).

e Optimization: Exponential moving average of a stochastic

gradient descent with Nesterov momentum (Sutskever

et al,, 2013). All gradients were clipped so that their L2-
norm was less than or equal to 4 before they were applied
by the optimizer.

Learning rate: 10~2

Momentum: 0.9

Moving average decay: 0.999

Batch size: 1

Steps: 30,000

Image Pre- and Post-processing

Pre-processed images were auto-cropped and padded to achieve
minimal background while conforming to lattice dimensions
divisible by 2N ~!, with N corresponding to the number of image
resolution stages in the CNN (see Figure 1 where N = 5).
Intensities were normalized to unit SD with zero mean after the
image was cropped, but before it was zero padded.

To preserve the original volumes and save space, pre-
processing steps are calculated non-destructively, and applied
immediately before neural network processing.

To produce CNN based ICC masks, the CNN prediction
maps for voxels to be included were binarized using a threshold
of p > 0.34, empirically determined to produce the best mask
based on quantitative results from our performance metrics. This
threshold was therefore not derived from training, but rather
a postprocessing step used to maximize the overall matching
performance with test sets.
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Metrics for Evaluating the ICC Mask

Predictions

We evaluated the performance and quality of the CNN brain
mask predictions using three comparison measures: model
generalization, model consistency and resource efficiency.

A. Model generalization refers to the ability of the trained
neural net to match ground truth masks of the test samples across
a variety of imaging cohorts. This is important because imaging
cohorts vary by characteristics of scanner and participants, and
we want to achieve consistently good matches regardless of
cohort. We used the Dice similarity coefficient (DSC) (Dice,
1945) for match quality between each CNN mask and its
corresponding ground truth mask. DSC is commonly used
measure of mask outputs and enabled a direct comparison of our
results to mask performance with other methods (Shattuck et al.,
2009; Eskildsen et al., 2012; Kleesiek et al., 2016; Salehi et al., 2017)
The DSC is defined as follows:

_ 2|ANB|

DSC= ——
|Al + 1B

where A is the set of predicted voxels in the CNN mask and B is
the set of voxels in the GT mask.

In a randomly selected smaller dataset (N = 400) we also
evaluated model performance using the Hausdorft distance
(Huttenlocher et al., 1992) of prediction mask to GT, and false
negative and positive labeling. These three measures provided
complementary information about CNN model performance. In
our context, the Hausdorff distance (HD) measures the extent to
which each point in the CNN segmentation mask is close to some
point of the GT mask, and vice versa. HD is thus a measure of
similarity between two masks. It is defined as follows:

HD = max(h(A, B), h(B, A))

where,
h(A, B) = maxmin |a — b|
acA beB

and | = | indicates the Euclidean distance between points in
masks A and B. Because HD depends on maximal distances, it
could be large even though the masks almost entirely coincide, if
a point of one mask lies a great distance outside the other. For our
purposes of evaluating a production algorithm, we therefore also
computed how much of the target mask was “missed” or failed
to be labeled by the CNN prediction; this is a measure of how
much infill would have to occur during human QC. Likewise,
we computed the percentage of the CNN mask lying outside the
target GT, thereby giving a measure of how much removal would
have to be performed by human QC.

B. Model consistency is the ability to generate ICC masks
for longitudinal same-subject repeated scans that are close
in volume. Unlike brain volume, estimated ICC volumes are
expected to be unchanged over repeated scans. We used the
maximum volumetric differences over all scans of a subject to
assess this consistency. Consistency tests are a valuable metric of
prediction quality and robustness, given that absolutely accurate
GT is out of reach.

C. Resource efficiency encompasses the two aspects of
computational and human resource time. Our atlas-based
brain mask computations require about 15-27 CPU hours of
computation followed by an average of 15-45 min of human
QC. We compare the corresponding times for computation and
human QC of the CNN masks.

Summary of Experiments Varying
Training and Testing Protocols and CNN

Architecture

Effects on Performance of Number of Cohorts vs.
Raw Dataset Size

We fixed the number of CNN stages at five and evaluated
the effect on output quality by varying the overall number of
subjects in the training set and the number of separate imaging
cohorts. This tested the relative importance of sheer dataset
sizes vs. number of imaging cohorts, where each cohort may
embody a constellation of imaging characteristics — scanner field
strength, manufacturer, model and image acquisition parameters,
along with differences in subject population age and clinical
diagnoses - that distinguishes it from the others. Cohort scanner
and demographic characteristics are presented in Table 2.

To run the experiments reported in Figure 4, we performed
42 separate trainings of our 5-stage CNN architecture, using the
11 cohorts with nonzero Training set numbers in Table 2. Each
training resulted in a different CNN model that was then tested
on 939 subjects in the cohorts with nonzero Test numbers of the
same table. The cohort representation in each training set was
determined as follows. For 1-cohort trainings, we used each of
the 11 cohorts in turn, giving 11 different 1-cohort CNN training
models. For all 11 cohorts, there was only one training. For each
of the other numbers of cohorts, the number of possible trainings
(11 choose N, where N = 2,4,8 cohorts), was impossible to
explore fully given limited resources, so for each N we chose to do
10 training models, selected so that each cohort was represented
in at least one N-tuple among the 10 trainings at that N. Each
training model produced a single output of 939 DSC match plots
with the test set, color coded by N and positioned along the x-axis
by raw size of training set, in Figure 4.

Effects on Performance of Number of Stages in the
CNN Architecture

Using the best combination of imaging study variety and number
of subjects from the first test, we examined differences that may
be produced by varying the number of CNN stages, from 2 to 5.
This tested the importance of CNN architecture parameters on
mask prediction quality.

Performance Evaluation Using Additional Similarity
Metrics

We evaluated our best model CNN performance on a randomly
selected subset (N = 400) using three additional measures:
Hausdorft distance, and extents of false negative and positive
labeling, providing complementary measures (maximal and
average-based) of mask shapes.
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A 5-Stage Model Performance: Dice Scores
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FIGURE 4 | Performance vs. number of cohorts in training. The x-axis shows the number of samples in each individual training session (N = 74 to 8309). The
number of cohorts (1, 2, 4, 8, and 11) in a training set is labeled by color (see legend). Following the protocol in Section “Effects on Performance of Number of
Cohorts vs. Raw Dataset Size,” each colored vertical line plots the distribution of DSC matches to 939 test subjects from a CNN model corresponding to one
training set. For example, there are 11 red vertical lines, one for each of our 1-cohort trainings, though some are hard to distinguish because of overlap due to similar
training set size numbers shown in Table 2. There is one distribution for the one 11-cohort training. For all others, there are 10 vertical lines of each color. (A) Dice
similarity performance against test set ground truth based on training sets of variable cohort diversity. Dotted line indicates DSC = 0.95. (B) Volume difference values
(CNN prediction — GT mask volume) as percentage of GT mask volume. Dotted lines indicate +0.05, i.e., =5 percent.
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CNN Prediction Consistency for Serial Same-Subject
Scans

This tested the constancy of the ICC segmentations in
single subjects, which ideally should not change over time.

Although it is impossible to achieve ground truth that
perfectly represents extracted volumes within the skull, we can
nevertheless test whether the CNN produces consistent ICC
volume predictions over time.
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RESULTS

Composition of Ground Truth Data

Table 2 shows the imaging cohorts and partitioning of each
cohort into training, evaluation and test sets. We used ground
truth data from 17 imaging cohorts (left column of Table 2)
with ICC masks generated using atlas-based segmentation.
We used a combined sum of 10,398 images divided among
training, evaluation and test sets as shown. These data cover
the entire breadth and depth of scanner characteristics including
differences in MR vendors and models and field strengths
that vary between 1.5 to 3T. There is similar variability in
demographic characteristics of age and sex, factors which can
change characteristics of the acquired MRI due to differing age-
related atrophy levels and gender head size. We note relatively
young ages of 48 years for cohort J; 58 years for cohorts D and
H; middle-old (in the 70 s) for B, C, E G; and oldest-old (above
90 years) for A and N.

Results of Experiments
Except where otherwise noted, test results were generated from
the full test set described in Table 2.

Effects on Performance of Cohort Counts vs. Training
Set Size

Using a five-stage CNN (see Figure 1) we conducted individual
training sessions from GT incorporating 1, 2, 4, 8 and the
full complement of 11 imaging cohorts. The data set was our
full set of atlas-based GT that is described in Table 2. These
experiments tested the effects of number of cohorts represented
(i.e., its “diversity”) and number of subjects in a training set
on performance measures. Results are displayed in Figure 4,
showing the performance (measured as dispersion of Dice
similarity scores in A and percent volume differences from GT in
B) as a function of these variables. Summary statistics appear in
Table 3. All test results were generated from the test set described
in Table 2.

Although both the raw size of training sets and number of
imaging cohorts in each training affected outcome performance,
these results suggest that the number of represented cohorts,
or diversity of the training set, is a stronger determinant for
robustness of performance than the raw numbers of subjects. For

TABLE 3 | Summary statistics for performance from training runs using 1, 2, 4,
8, or 11 cohorts.

Number of cohorts DSC

Median Mean SD
1 0.977 0.969 0.082
2 0.982 0.979 0.012
4 0.983 0.982 0.006
8 0.984 0.983 0.005
11 0.985 0.984 0.004

Entries display the median, mean and SD of DSC test set matches over all runs for
each stated number of cohorts. CNN model: 5-stage.

example, with one training cohort the dispersion of DSC scores is
high regardless of the number of subjects in the training set (red
plots in Figure 4, training sizes N = 74 to 2849). Training with
over 2000 subjects did not obtain a better DSC dispersion than
using only 74 subjects. Conversely, for trainings with 8 cohorts,
the dispersion of DSC predictions was uniformly low regardless
of the number of training examples (magenta plots in Figure 4A,
training N = 1582 to 8053), and very close to the performance
achieved by using all 11 cohorts (training N = 8309). Note in
particular that using 8 cohorts (magenta) with training set sizes
just below or above 2000 show appreciably lower dispersion than
for nearby plots of 2 (green) or 4 (blue) cohorts with similar sized
training sets; and not different than those for much larger training
sets having 8 cohorts. The summary results of Table 3 suggest
a stabilized median DSC performance at 4 cohorts and above,
with median DSC above 0.98. However, Figure 4A indicates
longer low outlier “tails” of DSC values among the runs trained
on 4 cohorts, and Table 3 shows a roughly 50% higher SD for
4 cohorts, suggesting that stabilization occurred at 8 cohorts.
Measures of volumetric mismatch (Figure 4B) show differences
approaching 50% of GT targets for trainings with one or two
cohorts, with differences declining to near 5% with 8 cohorts.

Performance vs. CNN Stage Count

Our next results report the effects of varying the number of stages
in the CNN architecture, using the full training set of 11 cohorts
with 8307 training examples whose performance is at the far
right of Figure 4. Results are displayed in Figure 5, with box and
whisker plots showing the dispersion of Dice similarity scores as
a function of number of stages.

In these results, the model performance of Dice scores vs. test
set ground truth achieves a peak at DSC = 0.9848 using 4 stages,
with highest median value and lowest dispersion of the prediction
scores. The mean performance was DSC = 0.984 using 5 stages.

Measures of Hausdorff Distance and Percent
Mismatches

Figure 6 displays probability density functions for a randomly
selected subset (N = 400) of the test set (Table 2) containing
three cohorts. The model tested was our top performing model
that used 11 cohorts for training and 5 stage CNN architecture.
Figure 6A shows HD measure performance. The modes of HD
are from 3 to 6 mm, varying by cohort. For cohort H there
were three outliers with HD > 25, not shown in this graph to
avoid scale compression. Visual examination of the CNN masks
showed close correspondence to the GT, except for small regions
in GT not included and at large distances from the CNN mask.
The percentage of false negatives (Figure 6B) and false positives
(Figure 6C) did not have any outliers, confirming that the areas
of the HD outliers were very small. Modes of false negatives lie
between 0 and 2%, and false positives between 1 and 3%.

Testing for Longitudinal Consistency

A key test of segmentation performance is the consistency of
ICC segmentation for serial scans of the same subject, where
little change is expected. Figure 7A shows the dispersion of raw
volume differences in cubic centimeters for ICC segmentations of
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11 Cohort Model Performance by CNN Stage Count

3 0.90-
a

0.80 -

' '
2 Stages 3 Stages

Model Stages

FIGURE 5 | Performance vs. number of stages. Dice similarity performance against test set ground truth (N = 939) based on number of stages in the CNN, using
the full 11 cohort training set. Red line is the median value 0.9848 achieved by the 4-stage architecture to allow easy comparison with the other models. Dashed line
indicates DSC = 0.95; dotted line is DSC = 0.975. Boxes show lowest 25%, median, and 75% thresholds.
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successive same-subject MRI scans. We tested performance on 13
subjects for which longitudinal data was available and not used
in CNN model training. CNN mask volume estimates differed
by less than those for atlas-based masks. The medians of the
maximum same-subject volumetric differences were on the order
of 6 cm® for CNN-based GT. Figure 7B plots CNN-estimated
max differences against those of atlas GT.

Generalization Across Imaging Cohorts

Figure 8 presents granular results by cohort for distributions
of Dice similarity coeflicients in individual imaging cohorts.
Test results come from the full test set. Aggregate results
of these performances across our ensembles of cohorts were
presented in Figure 4. Here, we illustrate the performance
by cohort for a single model, the 5-stage architecture trained
on 11 cohorts. Figure 8A displays boxplots of DSC scores
by cohort; Figure 8B shows distributions of percent volume
differences with GT. It is noteworthy that these show a
trend toward volume overestimation of around 1% on average
by the CNN method.

Resource Usage

With the 5-stage model trained on 11 cohorts, we predicted
ICC masks in about 10 s per image, with an additional average
10 min of human QC. The computer and human resource
use for CNN prediction contrasts with a range of 15-27 CPU
hours followed by 15-45 min of human QC for atlas-based
ICC masks.

DISCUSSION

Summary of Findings

This paper has focused on the aspects of architecture, data and
training involved in high-throughput production, rather than on
innovation of new CNN approaches. The experiments described
here have outlined an effective CNN configuration and training
to attain production-level performance of ICC segmentation.
For the task of segmenting intra-cranial cavities, we report the
following findings: (1) A variety of imaging cohorts is more
important than sheer numbers of training subjects, with results
reaching close to a plateau at 4 cohorts in the training sets
for summary measures (Table 3), although training with 8
cohorts achieves a more robust performance in which DSC and
volumetric difference dispersions indicated that every trained
model performed very similarly to the use of 11 training set
cohorts (Figure 4 and Table 3). Thus, training across multiple
cohorts above a threshold number confers an excellent ability
to generalize successful predictive power (Figure 8) that is
insensitive to variability from the broad range of MR machines,
models and field strengths studied here. (2) Architectures with
four or five stages both perform very well, and both are
markedly better than two stages (Figure 5). This suggests that
above a threshold number of stages, performance is consistently
good and is not sensitive to variations in CNN architecture.
(3) Performance for three image similarity measures (Figure 6)
showed generally low HD distance and very small percentage of
false positive and negative mismatches, suggesting good shape
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FIGURE 6 | Three metrics of model performance. In a randomly selected subset of the data, the best performing model was evaluated against GT masks using
(A) Hausdorff distance (B) False negatives as a percentage of GT mask volume missed by CNN prediction and (C) False positives as a percentage of the CNN
prediction incorrectly labeling areas outside GT mask. Results are depicted by probability density functions for each of three cohorts.
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FIGURE 7 | CNN model performance on same-subject repeated scans. (A) Distributions of maximum volume differences in estimated same-subject ICC masks. Left
entry: the max volume differences for ground truth sets using atlas-based masks. Right: the same performance metric for CNN prediction masks. (B) Plots of CNN
vs. atlas estimated max differences by subject. The straight line is a regression fit of the plots, suggesting that average CNN-predicted differences are roughly

resemblance (HD) and reduced human cleanup times to fill in or
erase incorrect labeling. (4) The CNN predictions attain excellent
longitudinal consistency that exceeds the performance of atlas-
based ground truth sets (Figure 7). The CNN predictions attained
median volumetric ICC differences over same-subject scans of
about 4 cm? (Figure 7) or roughly 0.4% in a putative brain of
1000 cm?, suggesting that analyses based on these outputs could
offer excellent statistical power.

Comparisons With Previous Approaches

Our performance findings appear promising when compared
to recent other CNN applications for brain extraction. Over
large evaluation sets containing a variety of imaging cohorts
with variable MR machinery (Table 2) our best model
median Dice scores were 0.9846 with tiny mean variance
(Table 3 and Figure 5). For comparison, the auto-context
CNN brain extraction scores (Salehi et al., 2017) were 0.977
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FIGURE 8 | CNN performance by imaging cohort. These show matching scores for the best performing model in Figure 4 (5-stage, 11 cohort). (A) Box plots of
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and 0.9762 over the LPBA40 and OASIS datasets, respectively.
Meanwhile the other recent CNN brain extraction algorithm
(Kleesiek et al., 2016) reported a combined Dice score over IBSR,
LPBA40 and OASIS of 0.958. These articles also compared their
CNN segmentation against other, standalone brain extraction
tools on the same datasets and found their CNN DSC scores
to be the best. A direct comparison between our results and

the other two CNN approaches, as well as with the standalone
tools to which those were compared, was not possible because
we segmented different regions: the ICC rather than a brain
mask. Our DSC scores therefore measure matches with ICC
ground truth, whereas the DSC scores in other studies reflected
brain mask GT. However, these studies provide a context
suggesting that our scores are appreciably better over much larger
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datasets that have undergone rigorous human quality control.
This highlights the need for large and variable GT data sets to
attain robust production quality. In sum, while those studies
demonstrated direct superiority over standalone tools on small,
relatively homogeneous data, they did not show that their trained
models were ready to perform robustly over large and highly
variable imaging datasets.

The Role of Large Datasets

The scarcity of very large medical imaging data sets has
spurred recent approaches toward developing innovative CNN
architectures able to generalize from small samples. These
have included fully 3D image recognition involving versions
of U-Net architectures (Kleesiek et al., 2016; Salehi et al.,
2017) for brain segmentation discussed in this paper. But
other approaches, for example to segment brain white matter
hyperintensities, have proposed 2D patch inputs (Ghafoorian
et al., 2017b) or 3D approaches (Ghafoorian et al, 2017a),
each also accompanied by input location information; or multi-
modal image inputs (Moeskops et al., 2017). Those approaches
perform well. However, the findings of our project suggest
that those may be algorithmic “workarounds” necessitated by
data unavailability, and that if large amounts of high-quality
GT are available, then a useful, high throughput production
pipeline is attainable. This paper thus fills a gap in the literature
of techniques for MRI image processing (Akkus et al., 2017;
Litjens et al., 2017; Lundervold and Lundervold, 2019). To our
knowledge, this is the first report of systematic experiments
documenting the variability of datasets, a CNN architecture
and training protocols that in combination have achieved
production levels of brain extraction, an indispensable pipeline
step for MRI processing.

The Interplay Between Data

Heterogeneity and Algorithmic

Complexity

Results of our study suggest an inverse relationship between
CNN complexity and data heterogeneity that together can attain
consistent, high-quality predictions. Figures 4A,B indicated that
cohort diversity was more important than raw training size
for generating tight distributions of predictions with our 5-
stage CNN model. Figure 5 suggested that CNN models of 3,
4 and 5 stages all performed comparably based on 11-cohort
training. Combined, they suggest the hypothesis that high-
quality predictions from training on heterogeneous data sets are
relatively insensitive to variations in CNN architecture, as long
as this is beyond a threshold level of complexity. Explorations
of this hypothesis could include using the 42-training protocol
for our CNN architectures having less than five stages in order
to test whether lower-stage architectures generate a pattern of
prediction matches similar to Figure 4. It could also involve
similar experiments using publicly available CNN architectures
trained on our data. Because of current limitations of time and
resources, we were not able to carry out such experiments for
the current project, but this would be a promising line for
future research.

Limitations

A main limitation of our study is the inability to directly compare
the performance of our trained CNN models against other
CNN or non-machine learning algorithms, because currently
these are aimed at segmenting the brain itself rather than ICC.
However, by comparing our similarity metrics with those of
previous approaches and showing reliability of ICC volumes over
longitudinal scans, we have strong indirect evidence that our
approach provides more robust outputs than previous methods.
This hypothesis will need to be verified by direct comparisons
in the future. But such a comparison will only be relevant when
other CNN architectures are trained to segment the ICC mask
using comparably small-sized data sets as have been reported,
while ours is trained with a large dataset such as described here.
This would be a direct test of the finding that datasets of sufficient
size and variability make a crucial difference regardless of the
CNN architecture employed, beyond some level of complexity
(in our experiments, beyond 4 layers). This leads to the second
limitation, which is the atypical size itself of the dataset we used.
We recognize that many labs do not have access to large datasets,
and this may seem to undermine the apparent relevance of our
work. Two responses are pertinent here. The first is that given
the rarity of large datasets, novel approaches for use with small
training cohorts are appropriate and necessary. But this is not
the problem we aimed to address. Instead, we aimed to show that
with adequate data and training (which does exist although rare)
we can settle the question of a usable, production-level pipeline
for data processing. The second response is that despite lack of
training data, the larger community may still benefit by using
our CNN model on their own images. And we may benefit by
evolving our training set with images upon which the model
fails in wider use.

Model Availability

Our CNN model will be available by request. Because we are
unable to release the entirety of our data set, and efficient training
also requires significant hardware investment, we will make
available our current best performing model for those interested
in generating their own ICC segmentations on T1w whole head
MRIs. Prediction times will vary depending on platform, but
CPU-based predictions are on the order of 1 min. We invite
this interest in order to improve the model by finding and
incorporating images on which it performs poorly, as we work
toward a more generalized stable model for wide public release.

CONCLUSION

This article has put forward two main points, First, we have
achieved a robust, practical method of ICC extraction, bringing
the goal of very large MRI dataset production within reach.
Based on our findings and experience in our laboratory, we have
deployed the segmentation described here as part of our routine
production, replacing our previous atlas-based method. Second,
our results suggest that for this task, the importance of sufficient
data heterogeneity outweighs CNN algorithm complexity, at least
beyond a threshold level. This hypothesis merits further research.
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