AUTHOR=Yang Yang , Han Yu , Hu Xintao , Wang Wen , Cui Guangbin , Guo Lei , Zhang Xin TITLE=An Improvement of Survival Stratification in Glioblastoma Patients via Combining Subregional Radiomics Signatures JOURNAL=Frontiers in Neuroscience VOLUME=Volume 15 - 2021 YEAR=2021 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.683452 DOI=10.3389/fnins.2021.683452 ISSN=1662-453X ABSTRACT=Purpose To investigate whether combining multiple radiomics signatures derived from the subregions of glioblastoma (GBM) can improve survival prediction of patients with GBM. Methods In total, 129 patients were included in this study and split into training and test cohorts. Radiomics features were extracted from each tumor region then radiomics scores were obtained separately using least absolute shrinkage and selection operator (LASSO) COX regression. A clinical nomogram was also constructed using various clinical risk factors. Radiomics nomograms were constructed by combing a single radiomics signature from the whole tumor region with clinical risk factors or combing three radiomics signatures from three tumor subregions with clinical risk factors. The performance of these models was assessed by the discrimination, calibration and clinical usefulness metrics, and was compared with that of the clinical nomogram. Results Incorporating the three radiomics signatures into the radiomics-based nomogram improved the performance in estimating survival (C-index: training/test cohort: 0.758/0.826) compared with that of the clinical nomogram (C-index: training/test cohort: 0.657/ 0.791) and that of the radiomics nomogram based on single region radiomics signatures (C-index: training/test cohort: 0.716/0.801). Conclusions The multiregional radiomics nomogram exhibited a favorable survival stratification accuracy.