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The cochlear implant (Cl) allows profoundly deaf individuals to partially recover hearing.
Still, due to the coarse acoustic information provided by the implant, Cl users have
considerable difficulties in recognizing speech, especially in noisy environments. Cl
users therefore rely heavily on visual cues to augment speech recognition, more so
than normal-hearing individuals. However, it is unknown how attention to one (focused)
or both (divided) modalities plays a role in multisensory speech recognition. Here we
show that unisensory speech listening and reading were negatively impacted in divided-
attention tasks for Cl users—but not for normal-hearing individuals. Our psychophysical
experiments revealed that, as expected, listening thresholds were consistently better
for the normal-hearing, while lipreading thresholds were largely similar for the two
groups. Moreover, audiovisual speech recognition for normal-hearing individuals could
be described well by probabilistic summation of auditory and visual speech recognition,
while ClI users were better integrators than expected from statistical facilitation alone.
Our results suggest that this benefit in integration comes at a cost. Unisensory speech
recognition is degraded for Cl users when attention needs to be divided across
modalities. We conjecture that Cl users exhibit an integration-attention trade-off. They
focus solely on a single modality during focused-attention tasks, but need to divide their
limited attentional resources in situations with uncertainty about the upcoming stimulus
modality. We argue that in order to determine the benefit of a Cl for speech recognition,
situational factors need to be discounted by presenting speech in realistic or complex
audiovisual environments.

Keywords: multisensory integration, focused attention, divided attention, cochlear implant, audiovisual, speech
perception

INTRODUCTION

Speech recognition is a challenging task. First, the speech signal itself might be hard to recognize
due to poor pronunciation, variable spectral and temporal cues across talkers (such as fundamental
frequency, formant frequencies, and voice onset time), semantic ambiguities and highly variable
and rapid articulation rates (>200 words/min; Miller, 1982). Second, in common everyday
environments, even highly salient speech signals are frequently embedded in acoustic background
noise and are masked by other talkers. During face-to-face conversation, non-acoustic cues from
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seeing a talker’s mouth can improve speech recognition in
those situations, through the integration of visual and auditory
information (Sumby and Pollack, 1954; Summerfield, 1992;
Bernstein et al., 2004; Helfer and Freyman, 2005; Peelle and
Sommers, 2015).

Multisensory integration is beneficial for normal-hearing and
normally sighted individuals, whenever multisensory stimuli
are in spatial-temporal congruence. The effects of audiovisual
integration are clearly evident from goal-directed behavior
and include behavioral benefits, such as shorter reaction
times (Corneil et al, 2002; Bremen et al, 2017; Colonius
and Diederich, 2017), increased localization accuracy and
precision (Corneil et al, 2002; Alais and Burr, 2004), and
reduced ambiguity (McDonald et al., 2000). These behavioral
effects are typically reflected by enhanced neuronal activity
(Stein and Meredith, 1993; van de Rijt et al., 2016; Colonius
and Diederich, 2017). This also applies to more complex
auditory stimuli; supplemental visual input enhances speech
perception, and audiovisual speech recognition embedded in
noise is considerably better than for auditory speech alone
(MacLeod and Summerfield, 1987; Sommers et al., 2005; Ross
et al, 2006; Bosen et al, 2018). Even when stimuli are
incongruent, a visual influence on auditory perception can
be observed in illusory phenomena, such as the McGurk
effect (McGurk and MacDonald, 1976) and the ventriloquist
effect (Jack and Thurlow, 1973; Alais and Burr, 2004). The
necessity to integrate non-acoustic information to improve
performance becomes especially clear for individuals with
hearing impairments, such as profoundly deaf individuals using
a cochlear implant (CI). The CI typically recovers hearing to
an extent that allows the CI user to understand speech in
quiet situations, yet performs poorly under more challenging
listening conditions (e.g., noisy surroundings). In these cases,
the CI user should rely more on the information obtained from
lip reading. Evidence suggests that CI users are indeed better
able to integrate visual information with the degraded acoustic
information than normal-hearing individuals (Schorr et al., 2005;
Rouger et al., 2007).

Due to all the observed benefits of multisensory integration,
one may forget that it requires paying attention to multiple
sensory modalities at the same time. Attention is a neural
mechanism by which the brain is able to effectively select a
relevant signal from a multitude of competing sources (e.g.,
finding someone with a red coat in a busy street). When attention
is fully focused on a particular sensory modality, say auditory,
performance in auditory selection tasks will markedly increase,
but visual stimuli will likely be missed, because attention has
limited capacity. The opposite occurs when attention is focused
on vision. In natural environments, however, the most relevant
sensory modality of a potential target may not be known in
advance, and therefore focusing attention on a single sensory
modality may not be an optimal strategy to maximize perceptual
performance. Instead, in such cases, attention should be divided
across the relevant modalities. In case of speech perception,
these modalities are auditory (listening) and visual (lipreading)
signals. Dividing attention across modalities will allow the brain
to integrate the multimodal signals when they originate from

the same source, and filter out the distracting background from
unrelated sources.

However, because of its limited capacity, dividing attention
in an uncertain sensory environment may lead to decreased
performance for stimuli that happen to be unisensory, as each
modality will receive less attentional amplification than during a
fully focused attention task. Here we compared word-recognition
performance during focused and divided attention tasks users
and normal-hearing individuals, by presenting unisensory and/or
bi-sensory spoken sentences in different sensory-noise regimes.
Because CI users have more difficulty to process the degraded
auditory input, more effort (i.e., more attention) will be required
to understand auditory speech. Therefore, we reasoned that in
a divided-attention task, the reduced attention to audition (and
vision) may lead to poorer unisensory performance scores in CI
users. In principle, the same reasoning may hold for normal-
hearing participants. So far, it remains unclear from the literature
whether CI users can successfully divide their attention across
modalities, and whether divided attention affects their speech-
recognition abilities.

MATERIALS AND METHODS

Participants

Fourteen native Dutch-speaking, normal-hearing participants
(mean age: 22.3 years £1.8, 10 female) and seven native
Dutch-speaking, post-lingually deaf unilaterally implanted CI
users (mean age 64.1 years £5.3, 3 female) were recruited to
participate in this study. All CI users had at least 1 year of
experience with their CI, with a mean of 3.6 years £1.8. Five
CI users were implanted on the left. The cause of deafness was
progressive sensorineural hearing loss for all but three CI users
(Méniere’s disease, sudden deafness and hereditary hearing loss).
Additional contralateral hearing aids were turned off during the
experiment. The unaided pure tone average (range 1-4 kHz) of
the non-implanted ear ranged between 70 and >120 dB Hearing
Loss. However, no CI users had any speech intelligibility for
words in quiet with their non-implanted ear at levels <90 dB
Sound Pressure Level (SPL). All normal-hearing participants
were screened for normal hearing (within 20 dB HL range
0.5-8 kHz). All participants reported normal or corrected-to-
normal vision. All participants gave written informed consent
before taking part in the study. The experiments were carried
out in accordance with the relevant institutional and national
regulations and with the World Medical Association Helsinki
Declaration as revised in October 2013. The experiments were
approved by the Ethics Committee of Arnhem-Nijmegen (project
number NL124364.091.08, October 18, 2011).

Stimuli

The audiovisual material was based on the Dutch version of the
speech-in-noise matrix test developed by Houben et al. (2014).
In general, a matrix test uses sentences of identical grammatical
structure in which all available words are taken from a closed set
of alternatives. The sentences are syntactically fixed (subject, verb,
numeral, adjective, object), but semantically unpredictable.

Frontiers in Neuroscience | www.frontiersin.org

July 2021 | Volume 15 | Article 683804


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

van de Rijt et al.

Multisensory Trade-Off in Cl Users

The audiovisual material (Figure 1) including the masking
speech-shaped noise is reported previously van de Rijt et al.
(2019). Briefly, the stimulus material consisted of digital video
recordings of a female speaker reading aloud the sentences in
Dutch. Auditory speech (Figures 1A,C) was presented with
varying levels of acoustic background noise (Figure 1B). Visual
speech consisted of the video fragments of the female speaker
(Figure 1D). Saliency of the visual speech was altered through
blurring, by filtering every image of the video with a 2-D Gaussian
smoothing kernel at several pixel standard deviations.

Set-Up

The experiments were performed in an experimental room, in
which the walls and ceiling were covered with black acoustic foam
that eliminated echoes for sound frequencies >500 Hz (Agterberg
et al, 2011). Stimulus presentation was controlled by a Dell
PC (Dell Inc., Round Rock, TX, United States) running Matlab
version 2014b (The Mathworks, Natick, MA, United States).
Participants were seated in a chair 1 m in front of a PC

screen (Dell LCD monitor, model: E2314Hf). Sounds were played
through an external PC sound card (Babyface, RME, Germany)
and presented through one speaker (Tannoy, model Reveal 502)
placed above the PC screen, 1 m in front of the participant (30°
above the interaural plane). Speaker level was measured with an
ISO-TECH Sound Level Meter, type SLM 1352P at the position
of the participant’s head, using the masking noise.

Paradigm

All participants were tested on a closed set of 6 Matrix lists of 20
sentences of 5 words each. Participants were instructed to select
words from the Matrix list which they recognized.

Familiarization

To familiarize participants with the Matrix test procedure and to
obtain an initial estimate for the auditory threshold, 40 unique
auditory-only sentences were presented. The signal-to-noise ratio
varied adaptively in accordance with the Brand and Kollmeier
procedure (Brand and Kollmeier, 2002) and the auditory 50%
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FIGURE 1 | Example sentence. (A) Temporal waveform of the auditory speech signal “Tom vond tien kleine munten” (translation: Tom found 10 little coins.)

(B) Waveform of the auditory noise. (C) Spectrogram of the recorded sentence. (D) Five video frames around the onset of the word, untouched (top), moderately
blurred (middle, 20 pixels), and extensively blurred (bottom, 70 pixels, used as a unisensory auditory condition in the divided-attention task). Dark blue lines denote
the approximate onset of each individual word. Written informed consent for the publication of this image was obtained from the individual shown.
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speech recognition threshold was calculated as the average signal-
to-noise ratio of the last nine sentences. This threshold was used
to individualize the signal-to-noise ratios in focused-attention
experiment. For normal-hearing participants, the noise level was
fixed, while for the CI users the speech level was fixed, both at
60 dB(A). This was also true for both experiments.

Focused-Attention Task

In this experiment participants listened to auditory-only
sentences in one block and viewed visual-only sentences in
another block. The participants were asked to accurately indicate
the words heard after each sentence (10-alternative, open-
ended choice; 10 alternatives were available for each word, but
participants were allowed to not pick any alternative). Each trial
was self-paced. Participants either heard 60 (for the first three
participants) or 40 unique sentences in each block.

In the auditory-only block, the auditory speech was presented
in acoustic background noise with uninformative visual input
(i.e., a black screen for six normal-hearing participants; or
a heavily blurred video (70 pixel blur) for eight normal-
hearing participants and all CI users; no differences on
performance between the black screen and the blurred screen
were qualitatively observed or reported, and the blurred screen
seemed to be a static image). For each sentence, the signal-to-
noise ratio was pseudo-randomly picked from 4 to 12 values, that
were selected individually based on the results from the adaptive
tracking procedure.

In the visual-only block, the video fragments of the female
speaker were shown on the screen together with the acoustic
background noise [at 60 dB(A)] and without auditory speech
signal. For each sentence, the standard deviation of the Gaussian
blurring kernel of the video images was pseudo-randomly picked
from 5 to 10 values; the five most common values were 0, 6, 12, 16,
and 20 pixels both for normal-hearing participants and CI users.

Notably, the trials in these two blocks contained a single
unisensory informative signal (auditory vs. visual) in the
presence of an uninformative stimulus from the other sensory
modality. This makes these trials similar to the unisensory
trials from the second experiment regarding sensory stimulation
(see next section).

To avoid priming effects of sentence content (but not
word content), a sentence was never repeated within a block.
For each participant a different set of random signal-to-noise
ratios, spatial blurs, and sentence permutations were selected.
Importantly in this experiment, participants should focus on
one sensory modality, and ignore the other, in order to reach
maximum performance.

Divided-Attention Task

In this experiment, audiovisual sentences (80-120 trials) were
presented in one block. This experiment was conducted on
another day than the focused-attention experiment. For each
sentence, a visual blur and an auditory signal-to-noise ratio
were chosen in pseudo-random order from 5 values, yielding 25
audiovisual stimulus combinations, selected in pseudo-random
order. These values were selected individually based on the
performance in the focused-attention experiment. We aimed for

a unisensory speech-recognition performance of 0, 25, 50, and
75% for each participant, but as the maximum performance did
not always reach 75%, other values were then chosen by the
experimenter. The most common values were the same as for
the previous experiment. In the unisensory trials of this task,
the visual blur was extreme with a standard deviation of 70
pixels for the acoustic-only trials (this blur led to a subjective
percept of static image), and the visual-only trials only contained
auditory noise and no signal. Importantly, in contrast to the
focused-attention task, participants could use information from
both the auditory and visual modality in order to recognize words
throughout most of the experiment, although some sentences
were only informative in one sensory modality, but not in the
other due to either extreme visual blurring (70-pixel blur) or
absence of an acoustic signal.

Data Analysis

For graphical purposes, the proportion of words correct
responses are plotted in raw form pooled across participants
for each group as mean and 95%-HDI in Figures 2, 3 for the
most common signal-to-noise ratios and blurs. For quantitative,
statistical analysis, we evaluated psychometric functions fitted
to data (as explained in the next sections), rather than directly
testing the raw psychophysical results (correct answer- and
lapse-rates) by means of conventional significance tests, such as
ANOVA. The primary reason for this, is that the psychometric
functions represent a suitable model for the data at hand;
e.g., one can include a monotonic relationship with signal-to-
noise ratio and blur, the model includes a binomial response
distribution, it allows for the inclusion of existing, quantitative
models of audiovisual integration, and one can fit all (uni- and
multisensory) data with the same model. Conventional models
have to be modified extensively and/or need to have their data
transformed, both of which are non-trivial.

Unisensory Psychometric Functions

To relate each participant’s responses to the intensity of the
unisensory stimuli (i.e., auditory signal-to-noise ratio or visual
blur), x, we fitted a psychometric function F to the unisensory
data, the shape of which depended on the sensory modality,
m (auditory vs. visual). For the auditory-only data, a logistic
function was fitted (Kuss et al., 2005; van de Rijt et al., 2019):

Ty -t
FA(xA;GA,m)Z(l—i-e( w (a eA))) 1)

where F4(xa; 04; w4) characterizes the change in auditory word
recognition rate as a function of the auditory signal-to-noise
ratio, xa; 64 is the auditory recognition threshold, the signal-
to-noise ratio at which the words are expected to be correctly
recognized in 50% of the time; and w, is the width of auditory
recognition function, the signal-to-noise ratio range in which F4
ranges from 0.1 to 0.9.

For the visual-only data, an exponential function Fy was taken
with only a single parameter:

2
*y

Fy(xv; 0y) =e * )
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FIGURE 2 | Unisensory speech recognition. (A,C) Auditory-only speech recognition (proportion correct) as a function of signal-to-noise ratio (dB) for (A)
normal-hearing participants (n = 14) and (C) Cl users (n = 7) in the focused- (red circles) and divided-attention (blue diamonds) tasks for auditory-only trials (visual
blur is 70 pixels). The trials in the focused-attention sessions contained informative stimuli of a single modality, while in the divided-attention task, trials with auditory,
visual and audiovisual informative stimuli were randomly interleaved. Only data from unisensory auditory and visual trials are shown in these figures. Note that
although the unisensory stimuli were the same for both tasks, Cl users recognized more auditory words correctly in the focused-attention task (red) than in the
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O

divided-attention task (blue). This effect was absent for the normal-hearing participants. (B,D) Visual-only speech recognition as a function of spatial blur (in units of
pixel standard deviations) for (B) normal-hearing participants and (D) Cl users in the focused- (red circles) and divided-attention (blue diamonds) tasks for visual-only
trials (no auditory signal is presented). Note that due to the large similarity in visual recognition scores for both tasks, a single psychometric curve was fitted through
the combined data (black curve and patch). Symbols and bars indicate mean and 95%-confidence intervals, respectively, of the raw data (proportion correct) pooled

across participants. The data were binned to four signal-to-noise ratios and five blurs (as indicated by the abscissa value) for graphical purposes. Curves and
patches indicate means and 95%-HDI, respectively, of the psychophysical-function group-level fits.

where Fy(xy;6y) characterizes the change in visual word
recognition rate as a function of the visual blur, xy; 0y is the visual
recognition threshold, the blur at which the words are expected to
be correctly recognized in 36.8% of the time, i.e., for xy = 6y.
The blurs xy and visual threshold 0y are only defined for values
larger than or equal to 0.

The exact shape of the functions of Eqgs. 1, 2 are chosen
slightly arbitrarily. However, both functions (Eqgs. 1, 2) have a
sigmoidal shape that is typical for psychometric data, both have
few free parameters (2 and 1), fitted their corresponding data well
(i.e., Figure 1), and yielded meaningful parameter values (i.e., a
positive visual threshold).

Lapse

To infer the probability of correct-word recognition ¥, we
included a lapse probability, X, to the psychometric function F
for both modalities m:

\Pm,e = (l_lm,e)Fm (3)

The lapse probability, 4, accounted for the less-than-perfect
recognition probability for visual words without blurring
and for auditory words at the highest signal-to-noise ratios,
both for the CI users and the normal-hearing participants.
With probability A¢ue a participant has a momentary lapse
(i.e., makes a choice independent of stimulus intensity) for
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FIGURE 3 | Multisensory speech recognition. Individual data and fit for (A) normal-hearing (NH) participant NH3 and (B) Cl user Cl4. All data was obtained from the
divided-attention task. For the visual and audiovisual sentences, the video blur was 10 pixels. Symbols and bars indicate mean and 95%-confidence intervals,
respectively, of the raw data (proportion correct) pooled across participants. The data was obtained (by definition) from the divided-attention task. Curves and
patches indicate means and 95%-HDI, respectively, of the psychophysical-function population fits. For comparative purposes, we show the fitted speech reading
performance level as a horizontal brown line. (C) Audiovisual speech recognition scores as a function of acoustic signal-to-noise ratio (dB) for normal-hearing
participants (blueish diamonds) and Cl users (reddish diamonds) for four blur values (as indicated by contrast). (D) Multisensory enhancement index (MEI) as a
function of acoustic signal-to-noise ratio (dB) for normal-hearing participants (blue colors) and Cl users (red colors) for four blur values (as indicated by contrast). The
MEI quantifies the multisensory enhancement of the trade-off model over strict probability summation.
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modality m during experiment e (focused-attention vs. divided
attention). With probability (1—A4) the participant does not
have a lapse and has a chance of F, to give the correct
answer. The lapse probability could reflect several issues: e.g.,
a momentary lapse of attention, blinking during the visual
trials, or the lack of increase in information with increasing
stimulus intensity due to for example processing issues of the
cochlear implant.

Crucially, the estimate for the lapse probability was, at first,
inferred separately for the experimental tasks (focused-attention

vs. divided), as we hypothesized that the separate tasks could
differentially affect attentional demands, potentially leading to
observed differences in attentional lapses.

We modified this slightly, as we observed no significant
differences in the visual lapse probability between experimental
tasks (Figure 2). Thus, the final fitted model (Eqs. 1-3), as
reported here, included the auditory lapse probability as the
only parameter that was free to vary between experimental
tasks. Constraining the model in such a way had no effect on
the conclusions.
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Multisensory Psychometric Function
Defined by Probability Summation

We modeled the audiovisual speech recognition as a mere
statistical-summation effect that is distinct from true neural
audiovisual integration. In this model of probability summation
(see section “Introduction”), participants recognize a word from
either the auditory-only or the visual-only condition, which are
considered independent processing channels. Thus, if a subject
fails to recognize a word from either one of the modalities, the
probability of failure is (1—¥4) x (1—Yy). It then follows that
the probability of word recognition in the presence of the two
modalities without integration is given by:

Youm = 1_Pfail
=1-(1-Y4) x (A1-¥y) = Ya + Yv—¥a x ¥v (4

where W, is the probability to successfully recognize a word
according to the summation model, ¥, is the probability to
recognize an auditory word in the auditory-only condition,
and Wy is the probability of recognizing a visual word. From
this, one can observe that having both modalities available,
rather than one, automatically increases the probability of
stimulus recognition.

We chose to fit this model because previous evidence (van de
Rijtetal., 2019) showed that speech recognition of the audiovisual
materials could be described well by probability summation.
Importantly, the data was accurately fitted by this model (see
section “Model Selection”), with one caveat: the fit was better if
the lapse probabilities for the audiovisual stimuli (by definition,
only presented in the divided-attention task) were estimated from
the unimodal lapse probabilities as found in the focused-attention
task, rather than from the divided-attention task.

This meant that this model could only predict an enhancement
of speech recognition for multisensory stimuli through a
combination of mere statistical facilitation and a change in
auditory lapse probability across experimental tasks. To visualize
this (Figure 3D), we determined the multisensory enhancement
index (MEI):

‘Ptmdefoﬁr 1

MEI = (5)

strict

with W,ir and Phrade—off being the probability to successfully
recognize a word according to the summation model with
an auditory lapse probability taken from the divided-attention
(strict) and focused-attention (trade-off) tasks, respectively. An
MEI close to zero is in line with statistical facilitation, and no
change in lapse probability. Positive values are evidence for an
observed multisensory enhancement and an increased auditory

lapse probability.

Guess Probability

We also included a guess rate of 10% that accounts for a fixed
probability of 0.1 of correctly choosing 1 of the 10 alternatives
by chance alone (0.9 + 0.1). This was the same for every
participant, modality and experimental task, as it depended on
the design of the Matrix test itself.

Approximate Bayesian Inference

Parameter estimation was performed using approximate
Bayesian inference. The models described by Eqs. 1-4 were
fitted on all data simultaneously. The parameters were estimated
for every participant, which depended on the estimation of
overarching group parameters, separately for the normal-hearing
participants and CI users, in a hierarchical fashion.

The estimation procedure relied on Markov Chain Monte
Carlo (MCMC) techniques. The estimation algorithms were
implemented in JAGS (Plummer, 2003) through matJAGS
(Steyvers, 2011). Three MCMC chains of 10,000 samples were
generated. The first 10,000 samples were discarded as burn-in.
Convergence of the chains was determined visually, by checking
that the shrink factor R is less than 1.1 and by checking that the
effective sample size is larger than 1,000 (Gelman et al., 2013).
From these samples of the posterior distributions, we determined
the mean and the 95%-HDI as a centroid and uncertainty
estimate of the parameters, respectively.

Model Selection

To test for the appropriateness of the models in Eqs. 1-4, we
compared them against less-restrictive models. To that end,
we performed a qualitative check via visual inspection (c.f.
Figures 1, 2), but we also quantitatively determined the Bayesian
Information Criterion (BIC) for each model:

BIC = In (n) k—2In(L) (6)

where k denotes the number of parameters of the model, n the
number of samples and L the maximized value of the binomial
likelihood function.

RESULTS

Overview

Fourteen normal-hearing participants and seven post-lingually
deaf unilaterally implanted CI users were asked to identify words
(Matrix test) (van de Rijt et al,, 2019) presented acoustically
and/or visually. We varied task difficulty in both experiments,
by blurring the video, and by presenting acoustic background
noise at several levels. The sentences were either presented in two
separate unisensory blocks, or in one large randomized uni- and
multisensory block, which we termed the focused- and divided-
attention experiments, respectively. In the focused-attention
experiment (Figure 2; red), the sentences were either presented
in an acoustic-only block (Figures 2A,C, red circles), or in a
visual-only block (Figures 2B,D, red circles), and the participant
could focus solely on listening or lipreading, respectively.
In the divided-attention experiment auditory (Figures 2A,C,
blue diamonds), visual (Figures 2B,D, blue diamonds) and
audiovisual (Figure 3) sentences were presented in pseudo-
random order, all interleaved in one block. Importantly, in each
trial of the divided-attention task, participants had no prior
knowledge on how informative each modality would be. In this
task, participants were free to focus on one modality, or to divide
attention across both modalities.
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To estimate parameters of interest, such as the signal-to-
noise ratio and blur at which performance level was 50%
and (attentional) lapse probabilities, we fitted psychophysical-
function curves through the data (as fully explained in the
section “Materials and Methods”). We report on the mean
and 95%-highest-density interval (HDI) of the fitted estimate
distributions of the group-level parameters, and show both
the fitted curves for each group and the data averaged across
participants in the figures.

Unisensory Speech Perception

When sentences were presented only acoustically (with no visual
information) (Figures 2A,C), the two groups clearly differed
in their ability to recognize words, as expected. Typically, the
normal-hearing participants (Figure 2A) recognized 50% of the
words correctly in the unisensory hearing condition at a signal-
to-noise ratio (auditory threshold, Eq. 1) of -12 dB (HDI = [~
12.4,-11.5] dB) vs. -3.1 dB for the CI users (HDI = [-44,
-1.7] dB, Figure 2C), independently of whether the unisensory
trials were embedded amongst multisensory trials or not (i.e.,
for both the divided-attention and focused-attention tasks, blue
and red). For both participant groups, the proportion of correctly
recognized words strongly depended on the actual signal-to-
noise ratio; to increase performance levels from 5- to 95%-word
recognition (psychometric curve width), the signal-to-noise ratio
needed to be increased by 7.4 dB on average for the normal-
hearing participants (HDI = [6.5, 8.5] dB; Figure 2A) and slightly
more for CI users by on average 10.4 dB (HDI = [8.8, 12.2] dB;
Figure 2C). As expected, both these results confirm that listening
in background noise for CI users is considerably more difficult
than for normal-hearing participants.

The parameter of main interest in this study is the lapse
probability (Eq. 3), i.e., the probability of not recognizing words
even at the highest signal-to-noise ratio and without blur. Lapses
occurred even in the focused-attention task as evidenced by
the non-perfect saturation performance at the highest signal-
to-noise ratios; the average performance of normal-hearing
participants and CI users saturated at around 90 and 84% correct,
respectively (Figures 2A,C, red; HDI = [85, 94] and [74, 92%]).
A larger lapse probability for the CI users compared to the lapse
probability for the normal-hearing participants may be expected
due to technical limits of the cochlear implant and the maximal
comfortable loudness levels experienced by the CI users, but note
that evidence for any difference was actually small (mean 5%,
HDI = [-5, 17]%).

More importantly and more clearly, in the divided-attention
task the CI users recognized 22% (HDI = [6.7, 38]%) fewer
words than in the focused attention task (Figure 2C, blue vs.
red). This difference was not clearly evident for the normal-
hearing participants (mean difference 3.9%, HDI = [-4.0,
14]%; Figure 2A, blue vs. red). Evidence for group differences
in auditory lapse probability during the divided-attention
experiment was substantial (on average, the lapse probability for
normal-hearing participants was 24% lower than for the CI users,
HDI = [8, 41]%).

When sentences were presented only visually (with no
acoustic information) (Figures 2B,D), the proportion of correctly

recognized words depended on the amount of blur, and were
largely similar for both groups; the visual threshold (i.e., the blur
at 36% of the maximal lipreading performance, Eq. 2 was on
average 17.7 and 18.3 pixels for CI users (Figure 2D) and normal-
hearing (Figure 2B) participants, respectively (HDI = [16.0, 19.7]
and [15.2, 21.8] pixels, respectively) for both tasks. Of course,
lipreading abilities were far from perfect even without blurring.

No major difference in lipreading performance was observed
for the visual lapse probability, so we pooled the data from both
tasks to estimate this parameter. Normal-hearing participants
(Figure 2B) had a lapse in word recognition in 54% of
the cases (HDI = [42, 65]%), while CI users (Figure 2D)
incorrectly recognized unblurred visual words in 46% of the cases
(HDI = [36, 56]%). While one may expect CI users to be better lip-
readers than normal-hearing participants, differences between
groups were actually small (on average 8%, HDI = [-8, 23]%).

In summary, largely in contrast to the normal-hearing
participants, the CI users experienced more speech-recognition
problems when attention had to be divided between more
than one sensory modality. These problems were especially
conspicuous for listening, the sensory modality that faced the
largest difficulties for the CI users.

Multisensory Integration

We next analyzed whether speech perception of audiovisual
stimuli would be enhanced for both groups of participants
in the divided-attention task (Figure 3). Figures 2A,B show
examples of individual participants (NH3 and CI4) in the
divided-attention task at a visual blur of 10 pixels. The unisensory
data and fits for these two participants (Figures 2A,B brown
and blue for speech reading and listening, respectively) are
in line with the group-level data and fits as described in the
previous section (cf. Figure 2, blue). The audiovisual speech
recognition (Figure 3A, blue and Figure 3B red for NH3
and CI4, respectively) outperforms or equals either unimodal
speech recognition; for very low and high signal-to-noise ratios,
audiovisual performance tends to equal visual or auditory
performance. For intermediate signal-to-noise ratios, audiovisual
performance is clearly enhanced. Such an enhancement of
multisensory performance could potentially be due to mere
statistical facilitation, if the participants would recognize a word
by using either the available auditory, or visual information,
without actually integrating both inputs. The percept is then
determined by whichever sensory channel wins the race
(probability summation) (van de Rijt et al., 2016, 2019; Colonius
and Diederich, 2017). The audiovisual enhancement would then
be fully determined by the unisensory auditory and visual
recognition performance during the divided-attention task. To
check for this possibility, we compared the data to the prediction
from this probability-summation model (Figures 3A,B, black
curve, see section “Materials and Methods”). For the normal-
hearing participant (Figure 3A; cf. black markers and blue
curve), the model’s prediction corresponded quite well to the
data. Hence, despite the improvement in audiovisual recognition
rates, the normal-hearing participant did not seem to benefit
from multisensory integration. In contrast, although the CI user
evidently had difficulty to recognize a pure auditory speech
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signal in the multisensory divided-attention task (Figure 3B,
blue; note the increased threshold and the larger lapse probability
compared to the data shown in Figure 3A), they outperformed
the probability-summation model for the combined audiovisual
speech signals by about 10% at the highest signal-to-noise ratios
(Figure 3B, compare red vs. black curves).

We quantified the audiovisual performance for all participants
of both groups (visualized as a function of the acoustic signal-
to-noise ratio for four different magnitudes of visual blur,
Figure 3C) by fitting a probability-summation model that
was fully determined by the unisensory auditory and visual
recognition performance (Eqgs. 1-4). Typically, the observed
multisensory enhancement should be compared to probability-
summation of unisensory performance obtained from the same
experimental regime, which in the current experiment would be
from the divided-attention task. We term this model the strict
probability-summation model, and it contains only parameters
(such as the auditory lapse probability) that are estimated
from the divided-attention task to predict audiovisual speech
recognition scores. In Figure 3C, we show the results of
an alternative model, that actually captures the multisensory
enhancement by using the unisensory data obtained during the
focused-attention task. We did this because the increased lapse
probability for listening by the CI users in the divided-attention
task over the focused-attention task (Figure 2C) appeared to
reflect the multisensory enhancement over the strict probability-
summation model (e.g., Figure 3B, compare the red fit curve
to the black curve). Participants basically seem to trade-off
their ability to focus for a multisensory enhancement, which is
why we designate this model the trade-off model. In essence,
the difference in recognition scores between the two tasks was
captured by the difference in auditory lapse probability, the single
alternative model parameter free to vary between tasks.

Nevertheless, the trade-off model describes the data for
both tasks quite well (Table 1, see section “Materials and
Methods,” and Figures 2A,B). Note that the pooled data generally
appear to be at higher performance levels than the group-
level fits of the trade-off model, at least for the normal-hearing
participants (Figure 3C, blue). This follows from the fact that
we individualized the stimulus parameters for each participant;
the data was obtained at lower signal-to-noise ratios and higher
blurs more often for the better performers. The group-level fits
better describe the expected overall group performance through
extrapolation to a larger range of signal-to-noise ratios and blurs.
By comparing the fits to the audiovisual data (Figure 3C) to the
unisensory fits (cf. Figure 2), one can observe that audiovisual
speech recognition is better than unisensory speech recognition;
even at a blur of 20 pixels and a signal-to-noise ratio of -15 dB for
the normal-hearing and of 7.5 dB for the CI users (around 0.2 vs.
0.35 for unisensory and multisensory stimulation, respectively).

To illustrate the benefits of multisensory stimulation more
clearly, we determined the multisensory enhancement index
(MEL Eq. 5). This index quantifies by how much multisensory
performance of the trade-off model was improved over the strict
probability-summation model (Figure 3D). A MEI close to zero
is in line with strict statistical facilitation, while positive values
are evidence for audiovisual enhancement due to multisensory

integration. The index shows marginal improvement for the
normal-hearing group (between 0.005 and 0.036, depending
on signal-to-noise ratio and blur, Figure 3D), and a far
more prominent benefit for CI users that was about 4-6
times larger (0.023-0.22). A larger MEI for lower-informative
stimuli or poorer-performing individuals would be evidence for
inverse effectiveness (Stein and Meredith, 1993; Bremen et al.,
2017). This effect seemed to occur for the groups and the
blurs; CI users exhibited more enhancement than the normal-
hearing participants (Figure 3D, red vs. blue) and the relative
multisensory improvements were largest for the highest blurs
(Figure 3D, e.g., the MEI for the 0-pixel blur was lower than
for the 20-pixel blur, especially for the CI users). In contrast, for
acoustic information a direct, rather than an inverse, relationship
was observed: the lowest signal-to-noise ratios elicited the
smallest enhancements (Figure 3D, the MEI curves all decline for
lower signal-to-noise ratios).

DISCUSSION

Summary

Results show that CI users benefit from multisensory integration
in a divided-attention task (Figure 3), but that their unisensory
performance under such conditions deteriorates when compared
to listening under focused attention (Figure 2). Interestingly,
their multisensory benefit matches the prediction obtained
from probability summation of their (better) focused-attention
performance (Figure 3). In contrast, the normal-hearing
participants do not have poorer unisensory performance in
a divided-attention task, and their multisensory scores are
accounted for by strict probability summation. Normal-hearing
participants reached higher auditory recognition scores than the
CI users. As expected, these results confirm the well-known
fact that listening for CI users is considerably more difficult.
Factors that likely contribute to the difficulties in understanding
auditory speech in noise environments are the lack of access
to finely detailed spectral and temporal information and a
limited dynamic range (Friesen et al, 2001). In contrast, CI
users and normal-hearing participants had similar lipreading
skills (Figures 2B,D). This was slightly unexpected, as others

TABLE 1 | Model comparison.

Normal-hearing Cl users
ABIC Trade-off 0 0
Strict 12 35
R? Trade-off 0.89 0.78
Strict 0.89 0.75
Mean signed error Trade-off 0.00 0.01
Strict 0.00 0.05

The relative Bayesian Information Criterion ABIC, the coefficient of determination
R2, and mean signed error are shown for both the trade-off and strict probability-
summation model for both participant groups. All measures indicate the trade-off
model performs better for the Cl users than the strict model. For the normal-hearing
participants, the ABIC favors the trade-off model, while the other two measures
indicate there is no difference.
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have reported better lipreading abilities by CI users (Bernstein
et al, 2000; Rouger et al, 2007). The current experiment,
however, entailed recognition of a limited closed-set matrix
sentences of five words with 10 options per word. This potentially
makes lipreading for normal-hearing individuals, who might be
unaccustomed to lipreading in general, easier than in open sets
with many more alternatives. Also, both the CI users and normal-
hearing participants do have normal vision. As such, one might
perhaps expect similar visual, lipreading skills.

Individual vs. Group Performance

We have focused on a group-level analysis, even though it
is well-known that performance levels can vary widely across
individuals, both for normal-hearing lip-reading abilities (van de
Rijt et al., 2019) and for speech-listening abilities of CI users. We
do present individualized signal-to-noise ratios and blurs, and
our fit procedures do account for individual variability. However,
we feel that due to the limited number of participants, our data
does not allow to draw conclusions on whether idiosyncratic
unisensory perceptual abilities influence multisensory integration
or attention. This, of course, would be highly relevant for
individualized counseling of CI users.

Note that the pooled data generally conform well to the
group level fits, but may be off for certain conditions (i.e.,
Figure 2C, red-CI speech listening; Figure 3C, blue-normal-
hearing, multisensory speech recognition). As mentioned in the
Results, this follows from individualized stimulus parameters for
each participant; the pooled data was influenced by the individual
data of the better performers at the lower signal-to-noise ratios
and higher blurs, and therefore may indicate better performance
than the group-level fit lines. The individual fit always conformed
well to its corresponding data (e.g., Figures 3A,B and Table 1).

Age Mismatch

The largest confound in this study is the age difference between
the groups. We chose to have a participant group with normal,
optimal hearing and sight to contrast to the CI group. This led
to the inclusion of younger individuals in the normal-hearing
group compared to the CI group, since elderly individuals have a
high probability of suffering from presbycusis. As such, observed
differences between groups may be due to either sensory deficits
that are different for each group or attentional deficits that vary
with age. Irrespective of which deficit underlies the observed
differences between groups, we feel that the results for the
CI users are still highly relevant, as they typically are older
when receiving a CI.

Attentional Lapse in Unisensory

Performance

Cochlear implant users missed fewer words when they could
focus on listening alone (in the focused-attention task, Figure 2C)
than in situations with uncertainty about the modality of the
upcoming stimulus (in the divided-attention task). Note that
this is precisely the sensory condition of every-day life. This
may suggest that due to impoverished sensory information more
effort is required by CI users to be able recognize speech at

higher performance levels. However, the extra effort cannot be
maintained by CI users if attention has to be spread out across
multiple, potentially informative sensory modalities. The CI users
seem to have reached the limits of attentional resources in
the divided-attention task. These limits are not reached when
sensory information is not impoverished, i.e., for normal-hearing
individuals and for lipreading 1A, B, D; lapse probabilities are
similar across tasks). To be clear, this does not necessarily imply
that CI users have less attentional resources than normal-hearing
individuals; they need to address those resources more. Of course,
due to the rather advanced ages of the CI users, such a difference
between groups might not be surprising. However, in an earlier
study by Tye-Murray et al. (2016), the multisensory benefit in
speech recognition seemed entirely driven by age-related changes
in auditory and visual abilities. Note that this is in line with our
observations that only the auditory lapse probability significantly
changed across tasks for the CI users, and that visual performance
remained the same. This may suggest that the group differences
are not due to general-attention mechanisms, but are related
specifically to the impaired sense.

Multisensory Integration

Following this line of reasoning, one may wonder why CI users
attempt to lipread at all. Barring any other benefits, the optimal
decision would be to focus on the most-informative sensory
modality, and ignoring the other. Even for CI users, listening
is generally (i.e., in quiet environments) the far better modality
for the purposes of speech recognition. Probabilistic, uninformed
switching between listening and lipreading would lead to an
overall worse performance (Ege et al., 2018). One benefit to offset
this drawback could be that switching enables individuals to
scan the specific environment and determine whether listening
or lipreading would be the most informative modality for the
given situation (Berniker et al., 2010; Ege et al., 2019). Obviously
from the current experiments, another benefit could be that the
detriment in listening is accompanied by an enhancement of
speech recognition for multisensory stimuli. Indeed, although CI
users had poorer unisensory recognition scores in the divided-
attention task than in the focused attention task (Figure 2),
they outperformed the strict probability-summation model
(Figure 3D). Conversely, the normal-hearing individuals do
follow strict probability summation (van de Rijt et al., 2019).
Because of this, CI users appear to be better multisensory
integrators than the normal-hearing individuals (Rouger et al.,
2007; Figure 3D).

Integration-Attention Trade-Off

Intriguingly, the trade-off model suggests that the exact
compensation of the listening decline (Figure 2C) by
multisensory enhancement (Figure 3D) may be explained
by an integration-attention trade-off mechanism for CI users.
To benefit from multisensory integration, attention needs to be
divided across all relevant signals. Only then will integration be
able to enhance source identification and selection by filtering
out irrelevant noise sources. The cost of this benefit is the decline
in attentional amplification of unisensory signals. In our model,
this is fully and solely captured by the change in auditory lapse
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probability (Eq. 3), which amounted to be about 22% on average
for CI users (see section “Results’-subsection “Unisensory
Speech Perception”). The multisensory enhancement seems
inversely proportional to this increase in lapses. This inverse
proportionality was captured by the trade-off probability-
summation model (Egs. 4, 5) that used the lapse rates in
the focused-attention task rather than in the divided-attention
task. A direct comparison between multisensory enhancement
and the change in auditory lapse probability is impossible, as
enhancement depends on the strength of the visual and acoustic
signals (Figure 3D), while the lapse rate does not. However, in
the ideal case, i.e., for the weakest visual signals and strongest
auditory signals, the multisensory enhancement should equal the
lapse rate difference in magnitude for the weakest visual signals
and strongest auditory signals; note that the MEI is 0.22 for the
highest blur at a signal-to-noise ratio of 0 dB.

CONCLUSION

Normal-hearing participants can attend extensively on auditory
and visual cues, while (post-lingually deaf) CI users need to
divide their attentional resources across modalities to improve
multisensory speech recognition-even though this leads to a
degradation in unisensory speech recognition. We argue that in
order to determine the acoustic benefit of a CI toward speech
recognition per se, situational factors need to be discounted by
presenting speech in realistic audiovisual environments. If in
every-day life, no reliable prior information is available on the
upcoming presence of auditory, visual or audiovisual speech, then
CI users would be better off to avoid lipreading and make do
with what they hear.

AUTHOR’S NOTE

Deaf individuals using a cochlear implant require significant
amounts of effort to listen in noisy environments due to
their impoverished hearing. Lipreading can benefit them and
reduce the burden of listening by providing an additional
source of information. Here we show that the improved
speech recognition for audiovisual stimulation comes at a cost,
however, as the cochlear-implant users now need to listen and
speech-read simultaneously, paying attention to both modalities.
The data suggests that cochlear-implant users run into the
limits of their attentional resources, and we argue that they,
unlike normal-hearing individuals, always need to consider
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