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INTRODUCTION

Structural magnetic resonance imaging (MRI) provides a powerful and financially favorable
imaging modality, with the additional benefits of its high spatial resolution and plausible multiscale
measurements of brain morphometry (Madan and Kensinger, 2016; Lu, 2020). With the use
of MRI-based morphometry, region-specific cortical features have been found to enhance the
accuracy of diagnosis, and even predict the treatment responses (Bartlett et al., 2018). Of all the
advanced modalities of non-invasive brain stimulation (NIBS), transcranial magnetic stimulation
(TMS) is an FDA-cleared technique for the treatments of the main types of brain disorders through
non-invasive modulation of brain activities using a magnetically induced electric field (E-field)
(Rossi et al., 2009). Although using individualMRI images to guide TMS has improved the accuracy
of localizing the stimulation targets, the treatment response still greatly varies between individuals,
particularly in the patients with age-related neurodegenerative diseases (Polanía et al., 2018).
Among the factors that determine the variability of TMS-induced effects, stimulation intensity and
individual cortical morphometry were highlighted as brain stimulation-specific factors (Polanía
et al., 2018).

WHY SHOULD COMPUTATIONAL MODELING BE CONSIDERED?

In clinical practice, optimized and personalized TMS treatments are impeded by the heterogeneity
of cortical morphometry (Caulfield et al., 2020). Fundamental questions persist regarding the
landscape of the reconstructed scalp and cortex (Figure 1A) that are based on geometric
models of the cortical surface and the identification of the borders between different tissue
types. Certainly, the process of reconstruction and how the reconstructed features of scalp
and cortex will substantially affect the magnitude and intensity of the TMS-induced E-field,
especially when considering the geometry of cortical surface (Polanía et al., 2018). Although
volumetric measures have great promise with respect to clinical translation, its low sensitivity
to geometric space may limit its utility for navigating brain stimulation. Of note, this challenge
has been addressed by recent advances in the analytical methods applicable to quantitatively
measure the geometric features of targeted cortex (Lu et al., 2019; Aberra et al., 2020).
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FIGURE 1 | The proposed geometric model of network-based transcranial brain stimulation. (A) Based on high-resolution T1-weighted structural MRI data,

surface-based morphometry analysis will be performed to measure the cortical and subcortical structures. (B) MRI data will be imported to the neuronavigation

system for constructing scalp and cerebral cortex, localizing the targeted cortical regions, measuring the scalp-to-cortex distance (SCD) and establishing the

simulation model of SCD-dependent electric field (E-field).

Indeed, computational modeling is a powerful tool for
examining the biophysical mechanisms of TMS as well as for
optimizing the parameters for engaged target and personalized
dosage. Previous efforts focused on calculating the spatial
distribution of E-field are based on the MRI images of young
adults with an average brain size (Lee et al., 2016; Huang et al.,
2017). However, this standard model is lack of the representation
of the TMS induced E-field in individuals with brain atrophy.
Thus, the head model of TMS should be constructed in the
combination of the morphometric features capturing the inter-
and intra-individual variability related to the stimulation targets.

THE IMPORTANCE OF GEOMETRIC
FEATURES

To optimize the TMS protocols, a geometric measure, also
a key parameter of NIBS, scalp-to-cortex distance (SCD),
combined with cortical thickness, should be considered in the
construction of head model for the individuals with age-related
neurodegenerative diseases, such as Alzheimer’s disease (AD)
(Figure 1B). The importance of combining SCD and cortical
thickness in the geometric model can be explained from three
aspects: (1) Location: SCD is a vector-like indicator that links
the point on the scalp to the point on the cortical surface,

gyrus in particular. Cortical thickness is calculated as an average
of the distance from the inner surface of gyrus to the closest
point on the outer surface of gyrus and from that point back
to the closest point to the inner surface of gyrus, consisting of
six layers featured with cytoarchitectonic subdivisions (Amunts
et al., 2013). Regarding the mechanisms of TMS (Terao and
Ugawa, 2002), interneurons embedded in different cortical layers
are the targets related to specific neuropsychiatric symptoms or
cognitive dysfunction. Thus, the combination of scale-dependent
geometric features (i.e., mm) might be critical to accurately
modulate the activities of layer-specific neurons. (2) Dimension:
After reconstructing the scalp and cortex, the locations of
predefined stimulation targets are commonly determined by the
coordinates in three-dimensional (3D) space, such as Montreal
Neurological Institute (MNI) space. It should be noted that
except for the three spatial dimensions (i.e., x, y, z) of stimulation
target, the orientation of the TMS coil has another three
rotational dimensions, that are roll (xcoil), pitch (ycoil), and yaw
(zcoil). Presumably, thus, the precise measurement of the SCD
also reflects the optimal placement of the TMS coil with six
dimensions correspondingly. (3) Dosage: When evaluating the
treatment response of TMS, dosing is one of the fundamental and
key variables that varies in individuals (Lisanby, 2017). Generally,
the TMS system is capable of reliably and quickly determining the
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amount of electromagnetism each individual needs to detect the
electromyography (EMG) threshold levels in the thumb through
single-pulse TMS to stimulate the primary motor cortex (M1)
(i.e., motor threshold). Later, this value will be used to determine
the TMS output of the targeted regions, such as dorsolateral
prefrontal cortex (DLPFC). Prior evidence has shown that the
motor threshold is highly dependent on the SCD of M1 (Stokes
et al., 2007). Moreover, the observed differences of the SCDs
betweenM1 and DLPFC across disease-specific populations raise
the concerns about the existence of the individual variability of
TMS dosage (Lu et al., 2019).

To sum up, a high-resolution structural MRI is an invaluable
and cost-effective imaging modality that has enormous potential
in studies of brain stimulation. Quantitative measurements of
stimulation target-related morphometric and geometric features
demonstrate a promising utility for improving the current head
model of TMS.

FUTURE DIRECTIONS

Based on high-resolution MRI data, TMS treatment will
eventually be conducted and evaluated at the individual level.
Importantly, a novel approach named reverse-calculation E-
field allows researchers to transfer traditional fixed dosage
based on published studies to personalized dosage based on a

computational model (Caulfield et al., 2020). Beyond imaging
modality, a multiscale head model that is incorporated with
geometric features can improve the localization of stimulated
region, increase the power of TMS effects, and open the
gate of in-depth understanding the mechanisms of TMS in
neurodegenerative diseases.
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