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Autoimmune neurologic diseases are a new category of immune-mediated disease
demonstrating a widely varied spectrum of clinical manifestations. Recently, sleep
disturbances in patients with autoimmune neurologic diseases have been reported
to have an immense negative impact on the quality of life. Excessive daytime
sleep, rapid eye movement sleep behavior disorder (RBD), and narcolepsy
are the most frequent sleep disorders associated with autoimmune neurologic
diseases. Sleep disturbances might be the initial symptoms of disease or persist
throughout the course of the disease. In this review, we have discussed sleep
disturbances in different autoimmune neurologic diseases and their potential
pathophysiological mechanisms.
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INTRODUCTION

Sleep is one of the most important physiologic functions and sleep disturbances are common
in neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. Studies
from sleep centers have found that at least 40%–65% of patients with idiopathic rapid eye
movement sleep behavior disorder (RBD) will develop a defined neurodegenerative phenotype
over 10 years, indicating that RBD may be a biomarker of neurodegenerative diseases (Postuma
et al., 2013). Autoimmune neurologic diseases are a new category of disease associated with
antibodies against neuronal cell surfaces or synaptic proteins. The antigens are ion channels, cell-
adhesion molecules and ligand-gated receptors. These antigens are distributed at different levels
throughout the brain, with patients manifesting focal or general clinical features. Autoimmune
neurologic diseases, such as autoimmune encephalitis, can cause several neurological symptoms,
such as memory deterioration, seizures, psychosis and abnormal movement. Recently, sleep
dysfunction has been frequently reported in these patients. Moreover, some studies have reviewed
sleep disorders in autoimmune encephalitis (Blattner and Day, 2020; Iranzo, 2020; Munoz-
Lopetegi et al., 2020) and autoimmune neurological syndromes (Devine and St Louis, 2021).
Sleep disorders present as excessive daytime sleep, RBD, sleep-related breathing disorders, non-
rapid eye movement (NREM) sleep parasomnias or narcolepsy. These manifestations might be
the initial symptoms of disease or persist throughout the course of the disease. In this review,
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we discuss various sleep dysfunctions and their mechanisms in
autoimmune neurological disorders.

ANTI-N-METHYL-D-ASPARTATE
RECEPTOR ENCEPHALITIS

Anti-N-methyl-D-aspartate receptor (Anti-NMDAR)
encephalitis is one of the most common subtypes of autoimmune
encephalitis and preponderantly affects young women and
children with or without teratomas (Florance et al., 2009). This
subtype is characterized by serum and cerebrospinal fluid (CSF)
immunoglobulin G (IgG) antibodies against the NR1 subunit
of the N-methyl-D-aspartate receptor (NMDAR), presenting
with psychiatric and cognitive symptoms, movement disorders,
seizures, sleep disorders, autonomic failure and changes in
consciousness (Dalmau et al., 2008). An observational cohort
study reported that 38% of patients had an underlying neoplasm,
most of which were ovarian teratomas. Brain magnetic resonance
imaging (MRI) and electroencephalography (EEG) results were
found to be abnormal in 33 and 90% of patients, respectively
(Titulaer et al., 2013), which are usually indicative of non-
specific, slow and disorganized activity, sometimes accompanied
by electrographic seizures (Dalmau et al., 2011). Extreme delta
brush, characterized by rhythmic delta activity at 1–3 Hz with
superimposed bursts of rhythmic 20–30 Hz beta frequency
activity “riding” on each delta wave, was found in 30% of
patients and was associated with more prolonged hospitalization
and a trend toward worse outcomes (Schmitt et al., 2012).
A study has reported sleep disturbances such as insomnia,
hypersomnia, sleep-wake reversal, bad dreams/night terrors, and
decreased need for sleep in 21% of patients (Al-Diwani et al.,
2019). A systematic review reported that 39.5% of patients had
insomnia, a condition that presents very early in the course of
illness (Gurrera, 2019). Erratic sleep patterns, insomnia, and,
less frequently, hypersomnia have been reported in children and
adolescent patients (Florance et al., 2009). Another study has
reported that approximately 27% of patients have prominent
sleep dysfunction, including hypersomnia and inversion of sleep
patterns after recovery (Dalmau et al., 2008). In some cases,
sleep disturbance (insomnia) precedes the onset of dyskinesia
and persists for a long time, even after dyskinesia subsides
(Poloni et al., 2010), which suggests primary sleep disruption
rather than effects of mental confusion, motor agitation or
dyskinesia. A prospective observational single-centre study
based on video-polysomnography (PSG) and neuropsychological
evaluation revealed a temporal pattern of sleep disturbances
in anti-NMDAR encephalitis (Arino et al., 2020). In the acute
phase, 89% of patients reported insomnia, and after the acute
stage, 78% were found to have hypersomnia. Sedatives, with a
mean benefit of 67.4% per medication, were the most effective
drugs for symptomatic treatment (Mohammad et al., 2016).

The disease pathophysiology is complex and remains
undefined. NMDARs are ligand-gated excitatory ion channels,
located in the cortical neurons, hippocampus and cerebellum.
NMDARs play a key role in regulating central nervous system
(CNS) synaptic excitation and plasticity. NR1 subunit of the

NMDAR is the target of anti-NMDAR antibodies. A cell
electrophysiology study using cultured rat hippocampal neurons
showed that patients’ antibodies specifically decreased synaptic
NMDAR-mediated currents without affecting AMPA receptor-
mediated currents (Hughes et al., 2010). The loss of NMDARs
eliminates NMDAR-mediated synaptic function, resulting in
dysfunctions in learning, memory and other behavioral aspects.
Both in vivo and in vitro experiments demonstrated that the CSF
from patients with anti-NMDAR encephalitis caused a significant
decrease in the cell-surface dopamine D1 receptor and an increase
in D2 receptor clusters, and was accompanied by memory
impairment and a reduction of surface NMDARs (Carceles-
Cordon et al., 2020). The pathogenesis of sleep disorders in anti-
NMDAR encephalitis remains to be elucidated. Microinjection
of glutamate and NMDA into the rat tuberomammillary nucleus
(TMN), which plays a pivotal role in the regulation of sleep-
wake patterns, can increase wakefulness and decrease NREM
sleep (Yin et al., 2019). Interestingly, some clinical features
seen in anti-NMDAR encephalitis are similar to the effect of
phencyclidine (PCP) (Mozayani, 2003), an NMDAR antagonist,
which can induce hallucinations, seizures and sleep disruption.
The neuropsychiatric symptoms of PCP intoxication may be
associated with reducing GABAergic transmission via NMDAR
blockade and activating intracellular endoplasmic reticulum-
associated signal transduction, resulting in the enhancement of
monoaminergic transmission in the prefrontal cortex (Zhu et al.,
2004). Animal models of sleep disorders established using anti-
NMDAR antibodies are important for future research. Insomnia
that usually presents early in the acute stage is accompanied by
agitation, seizures and dysautonomia. This may be because a
decrease in NMDARs inactivates the GABAergic neurons, which
leads to disinhibition of the excitatory pathways and increase
of extracellular glutamate (Dalmau et al., 2011). Hypersomnia
during recovery may also present as part of the disease or a related
side effect of antiepileptic drugs and antidepressants (Arino et al.,
2020). Treatment of anti-NMDAR encephalitis includes first-
line immunotherapy (steroids, intravenous immunoglobulin, and
plasmapheresis), second-line immunotherapy (rituximab and
cyclophosphamide) and tumor removal (Titulaer et al., 2013).
Most patients respond to immunotherapy, and second-line
immunotherapy is usually effective when the first-line treatments
fail. Sleep disturbances such as insomnia and dream-enactment
behavior can be improved after immunomodulatory therapies
(Blattner et al., 2019).

ANTI-IgLON5 DISEASE

Anti-IgLON5 disease is a recently reported neurological disorder
characterized by unique NREM and rapid eye movement (REM)
parasomnia with sleep breathing dysfunction, as well as gait
instability and brainstem symptoms (Sabater et al., 2014). Anti-
IgLON5 disease does not show sex predominance and usually
begins in the sixth decade of life (range: 42–81 years) (Gaig
et al., 2018). Human leukocyte antigen (HLA) DRB1∗10:01
and HLA-DQB1∗05:01 are positive in 87% of patients, and the
calculated risk ratio indicated that DRB1∗10:01 was 36 times
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more frequent in patients who developed anti-IgLON5 disease
than in the general population (Gaig et al., 2017), and that
DRB1∗10:01-positive patients developed more frequent sleep
symptoms (Gaig et al., 2019a). IgLON5 proteins are highly
glycosylated immunoglobulin cell-adhesion molecules that attach
to plasma membranes via a glycosylphosphatidylinositol anchor
(Karagogeos, 2003).

The clinical manifestations of anti-IgLON5 disease are very
heterogeneous. Sleep disturbance is a prominent symptom that
presents as a complex sleep pattern characterized by abnormal
sleep initiation with undifferentiated NREM sleep or poorly
structured stage N2, RBD, periods of normal NREM sleep, stridor,
and obstructive apnea (Sabater et al., 2014; Gaig et al., 2019b).
All 22 patients in a retrospective clinical analysis eventually
developed parasomnia, sleep apnea, insomnia or excessive
daytime sleepiness (EDS) (Gaig et al., 2017). Undifferentiated
NREM sleep is defined by irregularly slow theta EEG activity
and the absence of vertex sharp waves, K complexes, sleep
spindles, delta slowing, and definite and recurrent REMs, such
as those typically seen in REM sleep. Poorly structured stage
N2 is characterized by definite K complexes or spindles at 12–
14 Hz, which is associated with excessive electromyography
(EMG) activity, movements or occasional bursts of REMs of
lower amplitude than those typically seen in REM sleep in the
same patient. REM sleep is absent or present only in the form
of RBD. Obstructive sleep apnea and stridor are also common in
these patients (Sabater et al., 2014). Other neurological symptoms
include bulbar dysfunction such as dysphagia, dysarthria,
sialorrhea, acute respiratory insufficiency, movement disorders,
oculomotor abnormalities, cognitive impairment, and autonomic
dysfunction (Heidbreder and Philipp, 2018).

The pathophysiology of anti-IgLON5 disease is unclear. The
protein function and pathophysiological function of IgLON5
remain unknown. However, despite this lack of clarity, autopsy
studies have revealed the absence of inflammatory infiltrates and
the presence of neuronal loss, as well as moderate gliosis and
extensive neuronal deposits of abnormally hyperphosphorylated
three-repeat and four-repeat tau isoforms, preferentially in the
hypothalamus and tegmentum of the brainstem, two structures
that are crucial for sleep-wake regulation (Sabater et al., 2014;
Gelpi et al., 2016). Autoantibodies binding to IgLON5 and tau
proteins deposit in the brain indicating the combination of
autoimmune and neurodegenerative pathogenesis; however, the
primary event is still debatable. A recent case report suggests
that tauopathy may be a late, secondary event (Erro et al.,
2020). In this study, a 71-year-old male presented with sleep
disturbance and bulbar symptoms, and IgLON5 antibodies were
detected in the serum and CSF. Histology showed the absence of
p-Tau deposits in the brainstem. The pathological changes in the
hypothalamus and tegmentum may contribute to sleep problems
in anti-IgLON5 disease. A study has reported that IgLON5
clusters were irreversibly decreased in cultured rat hippocampal
neurons exposed to the IgLON5 antibodies of patients (Sabater
et al., 2016). Recently, IgLON5 IgG was shown to disrupt
cytoskeletal organization in cultured rat hippocampal neurons,
resulting in dystrophic neurites and axonal swelling (Landa et al.,
2020). IgLON5 antibodies may lead to abnormal accumulation

of neurofilaments and neurodegeneration by disrupting the
crosstalk between the outside of the cell and the cytoskeleton.
Most patients were unresponsive to immunotherapy and showed
progressive impairment (Sabater et al., 2014). However, Brunetti
et al. (2019) reported a case study where immunotherapy with
IV immunoglobulins and azathioprine could improve REM sleep
and sleep organization with a decrease in the IgLON5-IgG titer,
suggesting that IV immunoglobulins may be the first-line therapy
for this condition (Logmin et al., 2019). Further studies are
required to clarify the effects of immunotherapy. Positive airway
pressure treatments may improve respiratory indices in patients
with obstructive apnea.

ANTI-LEUCINE-RICH GLIOMA
INACTIVATED 1 ENCEPHALITIS

Leucine-rich glioma inactivated 1 (LGI1) is a glycoprotein located
in the synapse and is expressed mainly in the hippocampus
and neocortex (Irani et al., 2010). It is a subunit of presynaptic
Kv1-voltage-gated potassium channels. Anti-LGI1 antibodies
are commonly found in adult limbic encephalitis (LE). LE
presents with acute to subacute onset seizures, memory loss,
confusion and other psychiatric symptoms. Approximately 80%
of patients with anti-LGI1 antibodies have pathognomonic
faciobrachial dystonic seizures (FBDs), which are stereotypical,
brief, posturing movements of the hand and ipsilateral hemi-
face that are characterized by their strikingly high frequency
(Varley et al., 2018). Serum hyponatremia is indicative of the
presence of anti-LGI1 antibodies. A study has reported high T2
and fluid-attenuated inversion recovery signals in the bilateral
temporal lobe and hippocampus in brain MRI (Wang et al.,
2017), which are consistent with the findings that LGI1 is
mainly expressed in the temporal cortex and hippocampus.
Dysfunction of temporal cortex and hippocampus may be
related to temporal epilepsy and cognitive deficits in anti-LGI1
encephalitis patients. Sixty-five percent of patients presented with
insomnia, and none of the patients scored high on the Epworth
Sleepiness Scale, which is a measure of daytime sleepiness
(van Sonderen et al., 2016b). Fifty-seven percent of patients
reported dream-enactment behaviors (Blattner et al., 2019).
A case report with sequential PSG assessment shows a drastic
reduction in total sleep time with complete loss of REM sleep and
alterations of slow-wave sleep (Peter-Derex et al., 2012). Delta
waves disappeared, whereas few sleep spindles and K-complexes
persisted. Recently, a retrospective study based on PSG found that
patients with anti-LGI1 encephalitis demonstrated a decrease in
total sleep time, sleep efficiency, N3 sleep and REM sleep (Lin
et al., 2020). RBD, periodic limb movements in sleep (PLMS)
and obstructive sleep apnea were also observed in anti-LGI1
encephalitis. Animal experiments reveal that LGI1 antibody
plays a neurotoxic role, which may be mediated through the
induction of apoptosis and reduction in calcium currents (Aysit-
Altuncu et al., 2018). The LGI1 gene is expressed wildly in the
hypothalamus, including the ventromedial nucleus (Herranz-
Perez et al., 2010), which contains glycine/GABA neurons and
receives direct synaptic input from the glutamatergic neurons
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in the sublaterodorsal tegmental nucleus. Silencing this circuit
was found to induce REM sleep without atonia (Uchida et al.,
2020). Antibodies binding hypothalamic neurons may induce
hypothalamic dysfunction, likely contributing to RBD and
insomnia. Immunomodulatory treatment may improve clinical
and PSG outcomes (Peter-Derex et al., 2012; Lin et al., 2020).

ANTI-CONTACTIN-ASSOCIATED
PROTEIN 2 ENCEPHALITIS

Anti-contactin-associated protein 2 (CASPR2) antibodies are
most common in patients with peripheral nerve hyperexcitability,
including those with rare Morvan syndrome (Lim et al.,
2015). CASPR2 is a neuronal cell molecule localized at the
juxtaparanodes in the myelinated axons (Irani et al., 2010) and is
crucial in the clustering of Kv1.1 and Kv1.2 at the juxtaparanode
(Gu and Gu, 2011). Morvan syndrome is a rare disorder in
which both the peripheral and CNSs are affected. Both anti-
CASPR2 and anti-LGI1 antibodies are found in patients with
Morvan syndrome, and the anti-CASPR2 antibody titer is higher
than that of anti-LGI1 antibodies (Irani et al., 2012; Nikolaus
et al., 2018). The clinical manifestations include neuromyotonia,
neuropsychiatric features, neuropathic pain and dysautonomia.

Sleep disorders are also common in patients with anti-
CASPR2 encephalitis, and 57% of patients showed insomnia
in a research study (Joubert et al., 2016; van Sonderen et al.,
2016a). Continuous insomnia was more common in patients
with anti-CASPR2 encephalitis than with anti-LGI1 encephalitis.
Dream-enactment behavior was reported during the acute phase.
PSG showed higher limb movement in sleep indexes and
status dissociates (Lin et al., 2020). Morvan syndrome has been
commonly reported in patients with anti-CASPR2 encephalitis.
Insomnia is obvious and prominent. Some patients even report
an almost complete absence of sleep (Cornelius et al., 2011).
Another review found that the occurrence of severe insomnia
was 86% in Morvan syndrome (Abou-Zeid et al., 2012), and PSG
results showed reduced or absent sleep spindles and K complexes
(typical features of stage 2 NREM sleep). Insomnia in Morvan
syndrome was also found to be characterized by REM sleep
without atonia and absent or severely reduced slow-wave sleep.
An intense reduction of sleep spindles and K complexes and the
transient loss of REM sleep atonia indicated agrypnia excitata
rather than REM sleep behavior disorder (Vale et al., 2017).
Agrypnia excitata is a clinical syndrome characterized by loss
of sleep, and autonomic and motor hyperactivation. It has been
documented in three different clinical conditions, namely fatal
familial insomnia (FFI), Morvan syndrome and delirium tremens
(Provini, 2013). The thalamus is the most severely affected brain
structure in FFI. Glutamatergic neurons of the paraventricular
thalamus (PVT) exhibit high activity during wakefulness, and
suppression of PVT neuronal activity causes a reduction
in wakefulness, indicating that PVT is a key wakefulness-
controlling nucleus (Ren et al., 2018). Functional blockade of
the thalamolimbic circuits regulating the sleep-wake cycle has
been suggested to contribute to agrypnia excitata (Baldelli and
Provini, 2019). Complex behaviors, such as stereotypical rubbing
of the hands and crossing the legs, have also been reported

(Vale et al., 2017). Anti-CASPR2 antibodies interact with
CASPR2, a membrane protein with a large extracellular sequence
consisting of multiple domains co-localized with voltage-
dependent potassium channels (Poliak et al., 2003). CASPR2
plays a role in maintaining K + channels in the juxtaparanodal
region. Kv3 type potassium channel-deficit mice present with
sleep loss and increased motor drive, indicating that absence
of the Kv3 channel subunits is primarily responsible for the
reduction in sleep time (Espinosa et al., 2004). Alleviation of sleep
dysfunction after immunotherapy (Cornelius et al., 2011; Peter-
Derex et al., 2012) is suggestive of functional changes in the neural
circuit instead of irreversible structural impairment in the CNS.
Immunotherapy includes treatment with immunoglobulins,
corticosteroids and plasmapheresis. Cyclophosphamide can be
used to treat anti-CASPR2 encephalitis.

ANTI-Ma2 PARANEOPLASTIC
ENCEPHALITIS

Ma1 and Ma2 are both onconeuronal target antigens associated
with paraneoplastic syndromes. Anti-Ma antibodies recognize
Ma1 and Ma2 proteins and are related to paraneoplastic
cerebellar degeneration and brainstem encephalitis in various
tumors. Anti-Ma2 antibodies react exclusively with Ma2 and are
predominantly associated with limbic and brainstem dysfunction
in testicular cancer (Voltz et al., 1999). They can be detected in
serum and CSF, and serum titers may be correlated to neurologic
symptoms (Blumenthal et al., 2006). The clinical manifestations
include isolated or combined limbic encephalopathy, and
diencephalic or brainstem dysfunction. Sleep disturbances in
anti-Ma2 paraneoplastic encephalitis include hypersomnia, RBD
and cataplexy. Somnolence is common in anti-Ma2-associated
paraneoplastic neurological syndromes (Ortega Suero et al.,
2018). Sleep disorders, including narcolepsy and RBD, have also
been reported (Adams et al., 2011), and other clinical symptoms
include memory deficits, ataxia and seizures. Thirty-two percent
of patients showed EDS, and two of them exhibited cataplexy
and hypnagogic hallucinations (Dalmau et al., 2004). Patients
with EDS have very low or undetectable CSF hypocretin levels
(Overeem et al., 2004), which are normal in individuals without
EDS. Hypocretin, also known as orexin, plays a vital role in
wake regulation (Shan et al., 2015). Hypocretin neurons are
mainly located in the lateral hypothalamus (LH). Approximately
90% of hypocretin neurons are lost in narcolepsy, a disease
that occurs in the setting of autoimmune encephalitis and
characterized by EDS, impaired night-time sleep, sleep paralysis
and cataplexy. Neuropathological and immunohistochemistry
results showed inflammation and tissue injury exclusively in the
hypothalamus in a patient with anti-Ma-associated diencephalitis
who presented sleepiness, cataplexy and RBD (Dauvilliers et al.,
2013). Cytotoxic CD8 + T lymphocyte-mediated responses
against hypocretin neurons may contribute to hypocretin
deficiency and result in narcolepsy. Severe hypersomnia, and
RBD and narcoleptic features have also been reported in a
patient with anti-Ma2 paraneoplastic encephalitis (Compta et al.,
2007). Hypothalamus dysfunction might cause sleep disturbance
in anti-Ma2 paraneoplastic encephalitis. Oncological therapy,
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immunotherapy and wakefulness-promoting agents such as
modafinil may be effective (Adams et al., 2011).

ANTI-DIPEPTIDYL-PEPTIDASE-LIKE
PROTEIN 6 ENCEPHALITIS

Boronat et al. (2013) first described anti-DPPX encephalitis,
a rare autoimmune encephalitis characterized by CNS
hyperexcitability (agitation, myoclonus, tremor, and seizures),
pleocytosis and frequent diarrhea at symptom onset. Cognitive
and mental alterations are common in this condition (Hara
et al., 2017). Patients with anti-DPPX encephalitis present with
sleep problems, progressive cognitive decline and psychiatric
problems, and can be treated using immunotherapy (Zhou
et al., 2020). Tobin et al. (2014) described brain or brainstem
manifestations of 20 patients with anti-DPPX encephalitis
and found disrupted sleep in nine patients: insomnia in six,
periodic limb movements in five, sleep apnea in three and
hypersomnia in two. Only one patient each had obstructive
sleep apnea and ambiguous sleep (REM and NREM sleep
occurring simultaneously). PSG results showed ambiguous
sleep characterized by REM and NREM sleep occurring
simultaneously. DPPX is a regulatory subunit of the Kv4.2
potassium channel complex responsible for transient, inhibitory
currents in the central and peripheral nervous system (Varley
et al., 2018). Incubation of hippocampal neurons with serum and
purified IgG from patients resulted in the decreased expression of
DPPX and Kv4.2 in neuronal membranes (Piepgras et al., 2015),
which may induce CNS hyperexcitability. In vivo studies show
that DPPX-KO mice lack the normal hippocampal dendritic
A-type K current gradient and that dendrites are hyperexcitable
(Sun et al., 2011). Decreased DPPX and Kv4.2 in neuronal
membranes may be a pathogenic effect of anti-DPPX antibodies,
inducing CNS hyperexcitability such as insomnia. The antibody-
induced decrease in DPPX and Kv4.2 protein levels in cultured
neurons could be reversed by the removal of the antibodies,
indicating the responsiveness of the disorder to immunotherapy
(Hara et al., 2017).

INFLUENZA- AND VIRUS-RELATED
NARCOLEPSY

Influenza is a viral infection that can induce functional
disturbances, such as daytime somnolence, in the CNS. An
increased incidence of narcolepsy was associated with the 2009-
2010 H1N1 influenza pandemic. Narcolepsy occurred after
many days or months. Han et al. (2011) reported a threefold
increase in narcolepsy during the 2009 H1N1 winter influenza
pandemic. A case-control study of the environmental risk factors
of narcolepsy revealed that influenza was a significant risk factor
(Picchioni et al., 2007). H1N1 influenza infection in mice lacking
B and T cells was found to lead to narcoleptic-like sleep-
wake fragmentation and sleep structure alterations, including
increased state episodes and stage transitions and decreased REM
sleep latency (Tesoriero et al., 2016). Four weeks after infection,

an EEG spectral power analysis showed increased slow-wave
sleep θ-band, which was similar to that observed in a conditional
ablation model of hypocretin deficiency (Tabuchi et al., 2014).
The mechanism of influenza-induced narcolepsy is complex.
After direct contact with the mucous membranes of the nasal
cavity, viruses invade the olfactory cells at the epithelial surface
and are anterogradely transported into the olfactory bulb. Next,
the viruses can be taken up by afferent terminals and transported
retrogradely along the axons of the hypocretin neurons in the
LH (Tesoriero et al., 2016). Moreover, infected neurons have
been found in the cholinergic basal forebrain (BF), histaminergic
TMN, dopaminergic ventral tegmental area (VTA), serotonergic
dorsal raphe nucleus (DRN) and noradrenergic locus coeruleus
(LC), which are all important wake-related brain areas in the
regulation of sleep and wakefulness (Brown et al., 2012; Scammell
et al., 2017). The secondary immune reaction after viral infection
may contribute to sleep disturbances.

Epidemiological data show that the risk of narcolepsy
increased in children and adolescents treated with Pandemrix
vaccine (Sarkanen et al., 2018). An increase in narcolepsy
diagnoses following the start of AS03-adjuvanted Pandemrix
vaccine was observed in Sweden and Finland (Wijnans et al.,
2013). The incidence of narcolepsy was 25 times higher after
vaccination than before, indicating that Pandemrix vaccination
may be a precipitating factor for narcolepsy, especially in
combination with HLA-DQB1∗0602 (Szakacs et al., 2013).
Increased narcolepsy occurred before or after vaccination
following the influenza pandemic, indicating an H1N1 virus-
derived antigen as a likely trigger (Partinen et al., 2014). CD4T
cell cross-reactivity between A/H1N1 pdm09 hemagglutinin
antigen and hypocretin might have played a role in the etiology
of narcolepsy (Cohet et al., 2019). Molecular mimicry with flu
antigens and T cell-mediated hypocretin cell loss was found
to contribute to narcolepsy (Luo et al., 2018). Cytotoxic CD8
T cells can destroy hypocretin cells, and the neuronal loss
induces clinical signs mimicking human narcolepsy (Bernard-
Valnet et al., 2016). The diagnosis can be established based on
a history of recent vaccination and typical sleep disturbances;
however, the treatment is difficult. Immunosuppression with
steroids and immunoglobulins and plasmapheresis were not
found to be beneficial.

ANTI-AQUAPORIN-4 RELATED SLEEP
DISORDERS

Neuromyelitis optica (NMO), an inflammatory and
demyelinating disorder of the CNS, is characterized by optic
neuritis and transverse myelitis. In the CNS, aquaporin-4
(AQP4) is distributed prominently in the spinal cord, optic
nerve and brainstem. Anti-AQP4 IgG antibodies are the
most important antibodies related to NMO and are usually
found in the serum and CSF of most patients with NMO.
Hypersomnia has been reported in a patient having anti-AQP4
antibodies (Suzuki et al., 2012). A permanent hypersomnia
status related to a coma-like state has been reported, and
the change in sleep architecture may have been caused by
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TABLE 1 | Clinical features, type of sleep disturbances, targets, and potential mechanisms of autoimmune neurologic diseases.

Clinical features Type of sleep disturbance Target Potential mechanism

NMDAR Psychiatric and cognitive
symptoms, movement disorders,
seizures

Insomnia, hypersomnia,
sleep-wake reversal, bad
dreams/night terrors, less need for
sleep

Ionic glutamate receptor NMDAR reduction, disinhibition of
excitatory pathways and increase in
extracellular glutamate Dalmau
et al., 2011

IgLON5 Sleep disturbances, bulbar
dysfunction, movement disorders,
oculomotor abnormalities, cognitive
impairment, autonomic dysfunction

Undifferentiated NREM sleep, RBD,
obstructive sleep apnea, stridor

Hypothalamus, tegmentum Neuronal loss, moderate gliosis,
tau-protein deposits in the
hypothalamus and tegmentum of
the brainstem Sabater et al., 2014;
Gelpi et al., 2016

LGI1 Limbic encephalitis, seizures,
FBDs, cognitive impairment

RBD, insomnia, periodic limb
movements in sleep, obstructive
sleep apnea

Kv1.1 Bind hypothalamic neurons,
hypothalamic dysfunction
Herranz-Perez et al., 2010

Caspr2 Neuromyotonia, neuropsychiatric
features, neuropathic pain and
dysautonomia

Insomnia, Morvan syndrome Kv1.1/Kv1.2 Voltage-dependent potassium
channel dysfunction Espinosa et al.,
2004

Ma2 Limbic encephalopathy,
diencephalic or brainstem
dysfunction

Narcolepsy, severe hypersomnia,
RBD

Hypothalamus Hypocretin deficiency Dauvilliers
et al., 2013

DPPX Agitation, myoclonus, tremor,
seizures

Insomnia Kv4.2 Kv4.2 reduction, CNS
hyperexcitability Piepgras et al.,
2015

Influenza, vaccine Chills, fever, fatigue, muscle aches,
headaches

Narcolepsy Wake-related brain areas such as
LH, BF, TMN, VTA, DRN, LC

T cell-mediated hypocretin cell loss,
wake-related neuron loss
Bernard-Valnet et al., 2016

AQP4 Optic neuritis, transverse myelitis Symptomatic narcolepsy,
hypersomnia

Periaqueductal and periventricular
areas, hypothalamus

Hypothalamic lesion Sekiguchi
et al., 2011

damage to the hypocretinergic hypothalamus and a decrease
in hypocretin (Carlander et al., 2008). A retrospective analysis
shows that patients with NMO had significantly lower serum
orexin-A levels than those with narcolepsy as well as healthy
controls (Kucukali et al., 2014). Orexin-A levels in the CSF
were markedly or moderately reduced (Kanbayashi et al.,
2009). A patient with a hypothalamic lesion even presented
hypersomnolence as an initial symptom (Deguchi et al., 2012).
In another case, EDS was observed in a 41-year-old woman
who had an isolated hypothalamic lesion (Sekiguchi et al.,
2011). Symptomatic narcolepsy was even listed as one of
the core clinical characteristics as the diagnostic criteria for
NMO spectrum disorders (Wingerchuk et al., 2015). These
findings indicate the functional relationship between AQP4
and hypothalamic damage. AQP4 is expressed throughout
the brain, especially in the periaqueductal and periventricular
areas, including the hypothalamus. Overall, sleep disturbance
in patients with NMO usually features hypersomnia, and the
pathological mechanism might be attributed to hypocretinergic
hypothalamus involvement. High-dose glucocorticoids and
plasma replacement are useful treatment options. Although data
from published cases indicate that glucocorticoids may improve
hypersomnia and even increase CSF orexin levels (Deguchi
et al., 2012; El Otmani et al., 2018), further research on a larger
population is needed.

FUTURE DIRECTIONS

Autoimmune neurologic diseases, including autoimmune
encephalitis, have become newly recognized diseases in the past

few years. The clinical signs vary and likely depend on the type
of antibodies. We summarized the clinical features, types of sleep
disorders, targets, and underlying mechanisms of autoimmune
neurological diseases (Table 1). Sleep disorders are common in
these patients and might serve as an important feature to help
recognize these disorders or confirm the diagnosis. For example,
NREM and REM parasomnia with sleep breathing dysfunction
might be the main characteristic of IgLON5 disease. Antibodies
that damage the sleep-wake regulation areas of the brain may
contribute to sleep disturbances in autoimmune neurologic
diseases. Improved identification and treatment of sleep
disorders may reduce morbidity associated with AE and improve
long-term outcomes (Blattner et al., 2019). Further systematic
prospective studies are needed to definitively understand the
spectrum of sleep disturbances. The development and use of
animal models is crucial to more accurately understand the
underlying pathophysiological mechanisms and implications of
therapeutic approaches.
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