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Mingyue Zeng, Yongli He, Chenxi Zhang and Qing Wan*
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Neuromorphic devices that can emulate the bionic sensory and perceptual functions
of neural systems have great applications in personal healthcare monitoring, neuro-
prosthetics, and human-machine interfaces. In order to realize bionic sensing and
perception, it's crucial to prepare neuromorphic devices with the function of perceiving
environment in real-time. Up to now, lots of efforts have been made in the incorporation
of the bio-inspired sensing and neuromorphic engineering in the booming artificial
intelligence industry. In this review, we first introduce neuromorphic devices based on
diverse materials and mechanisms. Then we summarize the progress made in the
emulation of biological sensing and perception systems. Finally, the challenges and
opportunities in these fields are also discussed.

Keywords: neuromorphic devices, artificial neural systems, artificial intelligence, bionic sensing and perception,
neuromorphic engineering

INTRODUCTION

In addition to the achievements of artificial intelligence (AI), the engineering community has
been trying to learn and imitate biological neural systems from almost all aspects, such as neural
networks and robots, in order to seek artificial general intelligence (AGI). Biological neural
systems have the characteristics of in-memory computing structure, large-scale parallel processing
and event driven operation (Kuzum et al., 2013; Indiveri and Liu, 2015; Furber, 2016). Such
characteristics allow us to perceive and react precisely when confronting to events of the real
world in robust, fault tolerant and energy efficient modes (Merolla et al., 2014). Because of these,
biological neural systems are more efficient and faster than any hardware/software computing
platforms can accomplish for the given scale (Lohman, 1989; Picard et al., 2001). As the solution
for efficient processing of enormous dataset sizes, electrical implementation of neural systems
has been an important approach for external information acquisition (e.g., sensor), and more
significantly, the external information processing and execution through cognitive processes
(e.g., neuromorphic computing systems) (Delbruck et al., 2014). Artificial synapses can control
information flow, data processing and memory function by modulating the synaptic weight (Voglis
and Tavernarakis, 2006; Gkoupidenis et al., 2015). Hardware implementation of synaptic/neuronal
functions represents a new-concept paradigm (Park et al., 2020).

The biological neural systems play the leading role in the regulation of physiological functions
of vertebrates’ body. Such systems are mainly divided into two parts: central neural system (CNS,
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FIGURE 1 | (A) Biologically neural systems for sensing and perception. (B) Hierarchical functional framework of information processing in neuromorphic neural
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i.e., the brain and spinal cord) and peripheral neural system (PNS,
i.e., the sensory and motor nerves) (Lee and Lee, 2019). The CNS
conducts high-level activities such as learning, memorizing and
planning, and dominates the activities of the body in response
to the information received from PNS. The PNS perceives and
reacts to stimuli, e.g., light, sound, chemicals and pressure, and
transmits this information between CNS and other parts of the
body (Anderson, 2010). It's worth noting that PNS can perform
some low-level activities such as reflex and muscle activation
directly (Wang et al., 2020). In other words, such sensory signals
don’t need to be sent to the brain, and a perceptual decision is
made immediately once the sensory signal reaches the spinal cord
(Figure 1A). Compared with the brain, PNS processes low-level
perceptual activities in a decentralized and localized manner.
Localized processing cannot only quickly respond to external
stimuli to maintain survival, but also reduce the computational
burden of the brain (He K. et al., 2020; Tuchman et al., 2020;
Figure 1B). Due to such merits, localized processing has been
employed in interactive robotics (Groothuis et al., 2018; Wang
et al., 2020).

As we know, neuromorphic engineering aims to build bio-
inspired cognitive systems to emulate biological neural sensing
and processing capabilities; in the meantime, neuromorphic
engineering derivates synaptic devices (Field, 1994; Cohen
et al,, 1997; Kandel, 2001). When performing tasks like pattern
classification and feature extraction, artificial neural network

based on synaptic devices can effectively implement machine
learning algorithms (Lumpkin and Caterina, 2007; Dahiya et al.,
2010; Abraira and Ginty, 2013). Inspired by the mentioned above,
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FIGURE 2 | Schematic diagram of chemical synapse, that is composed of
presynaptic membrane, synaptic cleft, and postsynaptic membrane.
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the incorporation of bio-inspired sensing and neuromorphic
engineering technologies for emulating the functions of CNS
and PNS may open up a new era for artificial intelligence. In
pursuit of mimicking the CNSs and PNSs, two methods have been
adopted: the development of synaptic devices with capabilities
of information processing and detection of stimuli such as light,
sound, chemicals and pressure; the development of artificial
synaptic devices integrated with sensing elements (e.g., light,
touch) (Park et al.,, 2020). The approach of device integration
has been widely demonstrated for constructing artificial neural
systems in recent years, and this method has the potential to be
applied on next-generation wearable electronics, robotics, and
neuro-prosthetics (Hammock et al., 2013; Wan et al., 2018). For
example, artificial neural systems can help to replace damaged
neurons, or they can be employed as tools in neuroscience to
study sensory/motor neuronal disorders. Furthermore, artificial
neural systems can be developed to realize sensory information
extraction and analysis, as well as to settle problems in uncertain
settings. These systems that able to perceive the environment and
react accordingly will cast significant impact on the progress of
artificial intelligence.

Here, recent progress in the development of neuromorphic
devices for mimicking the bionic sensing and perception
functions will be discussed. Firstly, we introduce the properties
of the biological synapses and the diverse synaptic characteristics

that should be mimicked by neuromorphic devices. Second, we
discuss the neuromorphic devices based on various materials and
operation mechanisms. Third, bionic sensing and perception for
personal healthcare monitoring, robotics and neuro-prosthetics
are reviewed. Last, we summarize the review and give a brief
outlook. We are looking forward to providing a guideline for the
future development of neuromorphic perception systems.

BIOLOGICAL PROPERTIES OF SYNAPSE

In the biological nervous system, synapses are divided into
electrical synapses and chemical synapses; the former commonly
exist in fish and amphibians, while the latter are common
in mammals (Schmitt et al., 1976; Connors and Long, 2004;
Pereda, 2014; Park et al., 2020). The origin and development
of synaptic devices are inspired by the human brain, so only
chemical synapses will be discussed. Synapses are composed
of three parts: presynaptic membrane, synaptic cleft and
postsynaptic membrane (Tsodyks et al, 1998; Pereda, 2014).
When an action potential is transmitted to the synaptic
corpuscle through axons, the permeability of the presynaptic
membrane to Ca?t increases. Then Ca’?T in the synaptic
cleft enter the synaptic corpuscle, which promotes the close
fusion between synaptic vesicle and presynaptic membrane

TABLE 1 | Summary of 2-T artificial synaptic devices based on various materials and mechanisms.

Mechanism Active LTP STDP Application References
Phase change Nd:AINO v v - Wan et al., 2019
Metallic filament SiOx:Ag - Nociceptor Yoon et al., 2018
Metallic filament+ Phase change Lignin 50s - - Park and Lee, 2017
lon migration pMSSQ:Cut v v - Wu et al., 2017

lon migration Collagen - v - Raeis-Hosseini et al., 2018
Redox reaction PEDOT:PSS 10%s v Face recognition Wang et al., 2018b
Ferroelectric P(VDF-TrFE)/PFO - - Image recognition Tuetal., 2018
Ferroelectric BiTiO3 >10%s v - Ma et al., 2020
Charge trapping PVPy/AuNPs v - - Zhang S.-R. et al., 2019
Oxygen vacancy WOy 100 s v - Linetal., 2018
Oxygen vacancy MgO/ZnO 10%s v - Dang et al., 2018
Electron spin CoFeB/MgO/CoFeB - - Handwritten digital recognition Zhang et al., 2016

TABLE 2 | Summary of 3-T artificial synaptic devices based on various materials and mechanisms.

Mechanism Substrate Gate insulator Channel LTP STDP Application References
semiconductor

lon migration Glass Water 1GZO - - - Wan et al., 2016b

lon migration PET Nanogranular 1GZO - - - Zhou et al., 2015

Electrochemical reaction Paper Chitosan 1ZO - - Wu et al., 2014

Electrochemical reaction PET Nafion PEDOT:PSS/PEI >9 x 10%s - Pavlovian Learning van de Burgt et al., 2017

Image recognition

Electrochemical reaction Si PEO/LICIO4 Graphene v v - Sharbati et al., 2018

Ferroelectricity PET/PDMS P(VDF-TrFE) Pentacene v v - Jang et al., 2019

Charge tunneling and trapping PET Al O3/PMMA:Cego Pentacene 388 s - - Ren et al., 2018

Charge trapping Pl Al O3 IWO - - - Tiwari et al., 2018
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(Mayford et al., 2012). The neurotransmitters in the vesicle are causing excitatory postsynaptic potential/current (EPSP/EPSC)
released into the synaptic cleft (Figure 2). Finally, they reach or inhibitory postsynaptic potential/current (IPSP/IPSC) (Neher,
the postsynaptic membrane through diffusion, and immediately ~ 1992; Mayford et al., 2012). The spatial sum of EPSC and IPSC
bind to the protein receptors on the postsynaptic membrane, (i.e., the sum of postsynaptic potentials that appear at different
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FIGURE 3 | (A) Schematic diagram of Ag»S inorganic synapse and the formation mechanism for STP and LTP. Right side: The signal transmission of biological
synapse. (B,C) STP and LTP characteristics of the Ag»S inorganic synapse when input pulses were applied with the intervals of 20 and 2 s (adapted from Ohno
etal., 2011).
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FIGURE 4 | (A) Schematic diagram of the crossbar array architecture of the PCM synapses. (B) Different forms of STDP learning rules (adapted from
Kuzum et al., 2012).
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positions of the neuron) and the time sum of EPSC and IPSC
(i.e., the sum of postsynaptic potentials that occur repeatedly at
each synapse) are the criterions to judge whether they can trigger
action potentials or not (Ferster and Jagadeesh, 1992; Thomson
and Deuchars, 1994; Lewis et al., 2011; Pereda, 2014).

The efficiency of information transmission between anterior
and posterior neurons is defined as synaptic weight (synaptic
strength), and the numerous mechanisms in changing the
synaptic weight are collectively called synaptic plasticity (Martin
et al., 2000; McGaugh, 2000; Mayford et al., 2012; Liao et al,
2014). Synaptic plasticity is grouped into STP (short-term
plasticity) and LTP (long-term plasticity) by the retention time,
and both of them have potentiation and depression states. The
duration of STP occurs between milliseconds and minutes, which
is related to the computational functions of neural network
and short-term memory (STM) (Morris, 1999). PPF (paired-
pulse facilitation), defined as 100% x A2/Al, where Al and
A2 are the amplitudes of the first and the second postsynaptic
current corresponding to two consecutive spikes that divided
by a time interval At, is a form of STP. PPF participates
in neuronal tasks, such as simple learning and information
processing (Regehr, 2012; Bornschein et al, 2013). LTP can
produce plastic changes that last for a few hours even longer;
LTP is related to learning and long-term memory (LTM)

(Bear and Malenka, 1994; Linden, 1994; Kullmann and Lamsa,
2007; Ho et al,, 2011). Hebb hypothesized that continuous and
repeated stimulation from presynaptic neurons to postsynaptic
neurons could cause an increase in the efficiency of synaptic
transmission (Morris, 1999). The concept of STDP (spike-
timing-dependent plasticity) further improves Hebb’s theory,
pointing out that the time relationship between presynaptic
and postsynaptic spikes can modulate the synaptic weight (Bi
and Poo, 1998; Dan and Poo, 2006; Caporale and Dan, 2008).
SRDP (frequency-dependent-synaptic plasticity) is another basic
learning mechanism for LTP in the brain, i.e., synaptic weight
can be modulated by controlling the frequency of presynaptic
spikes (Bliss and Lomo, 1973; Bear et al., 1987; Dudek and
Bear, 1992; Law and Cooper, 1994). For instance, high-
frequency (20-100 Hz) trains of presynaptic spikes will generate
LTP, whereas low-frequency (1-5 Hz) trains result in LTD
(Bear and Malenka, 1994).

The development of “brain-like” computing is inseparable
from the exploration of brain functions by neurologists.
Synapses serve as functional connections between neurons,
thence synaptic devices are essential for the emulation of the
neural functions mentioned above. In recent years, circuits based
on lots of silicon transistors have been explored to mimic
synaptic functions, proving its possibility in the application of
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learning curves of different shapes (adapted from Boyn et al., 2017).
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neuromorphic engineering (Ramakrishnan et al., 2011; Bamford
et al, 2012). In order to reduce hardware cost and power
consumption, in this review, we focus on the realization
new-concept neuromorphic devices for bionic sensing and
perception applications.

NEUROMORPHIC DEVICES BASED ON
VARIOUS MATERIALS AND

MECHANISMS
Numerous materials (e.g., electrochemical metallization
materials, phase-change materials, ferroelectric materials,

ionic/electronic hybrid materials) have been employed to
fabricate artificial synapses for constructing neuromorphic
network. To mimic bio-synaptic functions, diverse
configurations of synaptic devices have been proposed, including:
two-terminal (2-T) devices and three-terminal (3-T) devices.
2-T devices have the advantage of small physical size and easy
large-scale integration (Jo et al., 2010; Prezioso et al., 2015; Xu
et al.,, 2016a; Lee et al., 2019). 3-T devices can perform signal
transmission and self-learning functions simultaneously (Yuan
et al,, 2010; Wu et al.,, 2014; Wan et al,, 2015; Kim et al., 2016,

2017; Zhu et al.,, 2016; Gkoupidenis et al., 2017; Dai et al., 2018;
Jerry et al., 2018; He Y. et al,, 2020). Multi-terminal synaptic
devices with multiple presynaptic terminals can be adopted to
emulate information processing (Liu Y.H. et al., 2015; Feng et al.,
2017; Jiang et al., 2017). In the section, the recent progresses
of the synaptic devices will be introduced. More detailed
information will be shown in Tables 1, 2.

Electrochemical Metallization Materials
Electrochemical metallization (ECM) memory composed of top
electrode/active layer/bottom electrode sandwiched structure is
an important resistive switching memory. ECM memory shows
the resistive switching based on the formation/rupture of metallic
filament, which generates from the oxidation of active electrode
(e.g., Ag, Cu), transport of metal cations through active layer,
and reduction at noble metal electrode. The filament dissipates
may due to spontaneous diffusion, Joule heating or ionization.
Diverse electrochemical metallization materials have been used to
fabricate ECM memory, including chalcogenide (Hasegawa et al.,
2010; Ohno et al., 2011; Zhang et al., 2013), nitride (Yang et al,,
2012), amorphous silicon (Zhang et al., 2017), and polymer (Li
et al., 2013; Kim and Lee, 2018).
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switching (adapted from Tian et al., 2019).
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In 2011, an inorganic synapse with the Pt/Ag,S/Ag structure
was fabricated to emulate the synaptic functions of STP and
LTP, see Figure 3A (Ohno et al,, 2011). In such synaptic device,
the temporal enhancement of conductance occurred before the
entire formation of a metallic bridge, and the reduction of
the conductance is due to the deformation of instable metallic
bridge (Figure 3B). When a robust metallic bridge was formed,
a non-volatile conductance enhancement can be obtained, which
corresponds to LTP (Figure 3C). In 2017, an ECM memory
with Cu/ZnS/Pt structure was fabricated for artificial synapse
application, and STP and LTP functions were successfully
emulated (Hu et al, 2017). In 2018, single-crystalline SiGe
epitaxial random-access memory (epiRAM) exhibited superior
spatial/temporal uniformity, and linear weight update based on
the confinement of conductive filaments (Ag) into dislocations in
SiGe was also observed (Choi et al., 2018).

Phase-Change Materials

Phase-change materials have been widely explored for memory
application (PCM: phase-change memory) because of its
scalability, controllable multi-level resistance states and fast

read/write speed (Ovshinsky, 1968; Lankhorst et al., 2005; Bichler
et al,, 2012; Suri et al., 2012; Ambrogio et al., 2016, 2018; Boybat
et al, 2018). PCM can be switched from amorphous phase
[i.e., high-resistance state (HRS)] to crystalline phase [i.e., low-
resistance state (LRS)] by Joule heat (Burr et al.,, 2016). The
application of SET voltage on the PCM causes Joule heating,
subsequently raises the material temperature to crystal transition
temperature but below melting temperature. As for the RESET
operation, material temperature is raised above the melting
temperature and then quickly quenched to room temperature;
the material solidifies into amorphous phase. By precisely
controlling the transition process between amorphous and
crystalline states, multi-level intermediate states can be generated
to emulate biological synapses (Ielmini et al., 2004; Nakayama
et al., 2007; Nirschl et al., 2007). Chalcogenide glass such as
Ge,SbyTes (GST) (Ambrogio et al, 2016) and GeTe (Bichler
etal., 2012) are commonly applied in phase change memory.
Nanoscale electronic synapses based on GST active layers
were fabricated (Figure 4A; Kuzum et al, 2012). Different
from biological action potentials, the pre-spike was composed
of potentiation (set) pulses with decreasing amplitude and
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depression (reset) pulses with increasing amplitudes; the post-
spike was a continuous pulse with 120 ms duration and with a
low negative amplitude pulse of 8 ms in the center. The difference
between the pre- and post-spike (Vpre — Vpos) decided the
programming voltage applied on the synaptic device at each
point. By controlling the time interval in the —50 to 50 ms
range, the STDP curve was obtained, which matched with the
data measured by Bi and Poo (1998). In addition, the time
constant of STDP could be changed by adjusting the amplitude
and time spacing of the pulses in the pre-spike. Various STDP
characteristics were also demonstrated via swapping the order of
depression and potentiation pulses in the pre-spike (Figure 4B).
All the synaptic functions displayed by the PCM synapse
benefitted from the consecutive transition between intermediate
resistance states. Such nanoscale device showed picojoule level
energy consumption, making a significant step toward achieving
the compactness and energy efficiency traits of brain for future
neuromorphic system.

Ferroelectric Materials

Ferroelectric materials have the properties of high dielectric
constant and spontaneous polarization (Chanthbouala et al,
2012; Boyn et al., 2017; Shin et al,, 2017; Tu et al,, 2018). The
polarization states of the ferroelectric materials can be modulated
by the applied voltage, so these materials can be used as the active
layer in synaptic devices. What’s more, a certain pulse sequence
causes the fine polarization states of the ferroelectric material,

so multiple conductance states can be obtained in these synaptic
devices. The multilevel changes of channel conductance will
meet the emulation of various synapse functions. Ferroelectric
materials could help synaptic devices improve ON/OFF ratio and
linearity of weight updates (Kim and Lee, 2019).

An inorganic memristor based on ferroelectric tunnel
junctions was constructed to harness the STDP (Boyn et al,
2017). The super-tetragonal BiFeOs (BFO) active layer was
sandwiched between Co top and (Ca,Ce)MnOs3; (CCMO)
bottom electrodes, composing the ferroelectric artificial synapse
(Figure 5A). As sketched in Figure 5B, well-defined voltage
thresholds were shown in the hysteresis loop due to the
inherent inhomogeneous polarization switching in the BFO.
That made it possible for implementing STDP. By applying
various voltage waveforms on the artificial synaptic device,
various types of activities between the pre- and post-neuron were
realized (Figure 5C).

Transistor with ferroelectric material as the gate insulator
could be applied as a 3-T memristor device (Yoon et al,
2011; Nishitani et al., 2013). An organic synaptic transistor
with ferroelectric poly (vinylidene fluoride/trifluoro ethylene)
[P(VDF-TrFE)] was fabricated to mimic synaptic functions
(Figure 6A; Tian et al, 2019). The conductance of the
device could be modulated alternately between decrement and
increment by adjusting the polarity of applied voltages. Thus,
the potentiation and depression of synaptic weight could be
realized in the device (Figure 6B). STDP was demonstrated by
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FIGURE 10 | (A) Schematic diagram of the photonic neuromorphic transistor loaded with a resistor. (B) PPF realized in the synaptic transistor with light input pulses.

by a series of 50 light pulses under different Vg (adapted from Yang Y. et al.,
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designing the waveforms. The combined waveform temporarily
exceeded the threshold voltage, engendering the strengthening
(AG > 0) or weakening (AG < 0), depending on the time interval
between the pre- and postsynaptic signals (Figure 6C). As shown
in Figure 6D, after 10 cycles of stimulation of high voltage pulse
(£ 20V, 1 ms), the channel conductance could still be modulated
to the same highest/lowest states under similar positive voltage
and a little increased negative voltage. That organic ferroelectric
synaptic transistor has relatively good endurance properties.
Other ferroelectric materials are also utilized as the gate
insulator in synaptic devices. For example, Kaneko et al. (2014)
used inorganic Pb(Zr,Ti)O3 (PZT) ferroelectric film to construct
synaptic device for realizing STDP function. Although PZT
based ferroelectric transistor exhibits great plasticity in emulating
synapses, their inherent Pb content will inevitably bring harm
to human beings and environment. HfO, is another feasible
candidate for non-volatile memory because of its ferroelectricity
and anti-ferroelectricity (Boescke et al., 2011; Park et al., 2015).
Recently, ferroelectric material HfZrOx was employed in a
synaptic transistor, the ferroelectric transistor exhibited excellent
plasticity potentiation and depression (Kim and Lee, 2019).

lonic/Electronic Hybrid Materials

Ionic/electronic hybrid materials are utilized in field-effect
transistors (FETs). Gate dielectric (electrolyte) and channel
materials constitute the ionic/electronic hybrid materials. Gate

electrolytes have been acted as by diverse materials, such as
polyelectrolytes (Yu et al., 2018; He et al,, 2019), ion gel (Qian
et al., 2016; Xu et al., 2016b), ion liquid (Yang et al., 2017; Yang
J.T. et al,, 2018), and inorganic oxide (Wan et al., 2013, 2016a).
Channel materials can be served as by both inorganic and organic
materials, such as IZO (Wan et al., 2016a), IGZO (Zhou et al,,
2015), and MoO3 (Yang et al., 2017); carbon nanotubes (CNTs)
(Kim et al,, 2013; Feng et al., 2017); graphene (Tian et al., 2015;
Sharbati et al., 2018), MoS; (Jiang et al., 2017; John et al., 2018),
and PEDOT:PSS (Gkoupidenis et al., 2015, 2017; van de Burgt
et al., 2017). For synaptic FETs, gate electrolytes have good ionic
conductivity, in which ions can move randomly, but electrons
are not allowed. Synaptic FETs with such gate electrolytes can
form electric-double-layer (EDL) at the interface of the channel
layer and gate electrolyte. The EDL has a large capacitance value
(~nFcm™?2 magnitude), so the conductance of the channel layer
can be modulated by a small gate voltage, indicating that the FETs
could work at a low voltage.

In 2013, a carbon nanotube (CNT) synaptic transistor with
poly (ethylene glycol) monomethyl ether (PEG) gate dielectric
was proposed (Figure 7A; Kim et al., 2013). In the initial state,
the hydrogen ions in the polymer were randomly distributed.
When a positive voltage pulse was applied on the gate, the
hydrogen ions began to move toward the CNTs channel,
and an EDL was formed due to the electrostatic coupling
effect, causing the channel current increased (Figure 7B). The

FIGURE 11 | (A) Phototransistor under illumination of blue, green, and red light. (B) Variation trend of photocurrent in the phototransistor under RGB light illumination
time. (C) Distinction of the photocurrents in the phototransistor under constant red light ilumination with respect to time in four measurement. (D) Photosensitivity of
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transistor successfully emulated typical synaptic function PPF
(Figure 7C). Other typical synaptic characteristics such as LTP
and LTD were also demonstrated (Figure 7D). The CNT synapse
had the potential that was integrated in large-scale circuit to
emulate the parallel signal processing and learning features of
biological neural network.

Wan group invented oxide-based electronic/protonic
hybrid transistors with in-plane gate configuration. As
shown in Figure 8A, an indium-zinc-oxide (IZO) based
electronic/protonic hybrid transistor was self-assembled on
phosphorus (P)-doped nanogranular SiO, proton conductive
films (Zhu et al., 2014). No bottom conductive layer was needed,
and the gate voltage could be directly coupled to the IZO channel
laterally through only one lateral EDL capacitor. When the
in-plane gate was utilized as the presynaptic terminal and the
IZO channel with S/D electrodes was acted as the postsynaptic
terminal, an artificial synaptic transistor was proposed. The
device was employed to imitate a series of short-term plasticity
behaviors, including PPE, high-pass filtering behavior and the
spatiotemporal correlation dynamic logic (Figures 8B-D).
In addition, the laterally coupled synaptic transistor can be
easily extended to multiple input gates to realize the function
of synaptic interaction. The laterally coupled IZO transistor
based on proton conducting electrolyte is of great significance to
synaptic electronics and neuromorphic engineering.

Recently, Wan group demonstrated a multiterminal IGZO-
based neuro-transistor for dendritic discrimination of different
spatiotemporal input modes (Figure 9A; He et al, 2019).
Chitosan electrolyte was used as the gate dielectric. The IGZO
channel layer, multiple in-plane ITO gate, and ITO source/drain
electrodes were deposited by different metal shadow masks.
In such neuro-transistor, the synaptic weight can be tuned
by the modulatory gate due to the strong lateral electric-
double-layer capacitive coupling effect in the electrolyte film.
PPF and EPSC behaviors were successfully mimicked in the
multiterminal synaptic transistor (Figures 9B,C). In the nervous
system, STP contributes to temporal filtering by facilitating or
inhibiting the synaptic transmission. Since a larger PPF ratio
was obtained with shorter time interval, high-pass temporal
filtering could be realized in the transistor (Figure 9D). Various
temporal and spatial input patterns of dendrite recognition
were also achieved in such multi-terminal neuro-transistor. This
kind neuro-transistor can be used as the temporal and spatial
information processing unit of basic cortex computing, greatly
improving the efficiency of artificial neural network.

SENSORY APPLICATIONS OF
NEUROMORPHIC DEVICES

With the improved understanding of biological sensing process
and the development of neuromorphic devices, the application
of neuromorphic devices in bionic sensing and perception comes
naturally. In the section, we will first introduce synaptic devices
that can sense external stimuli: light (Li et al., 2016; Lee et al.,
2017; Qian et al, 2018; Wang et al., 2018¢,d; Ahmed et al,
2019), sound (He et al., 2019), chemicals (Giordani et al., 2017;

Song et al, 2019), and PH (Liu N. et al, 2015; Liu et al,
2019). Such devices can convert the external stimuli to the
electrical signals, which can play a monitoring role for human
to avoid being hurt. Then the incorporation of synaptic and
sensing devices is displayed. Finally, the artificial sensory neuron
systems are shown.

Synaptic Devices With Sensing
Capabilities

The employ of light-sensitive materials in neuromorphic devices
is favorable for artificial sensory neuron, because photonic
synapses have the merits of large bandwidths and no electrical
energy loss at interconnections (Sun et al., 2018; Dai et al., 2019;
Wang et al., 2019). Yang Y. et al. (2018) proposed an IGZO-
based synaptic transistor in series with a 10 MQ resistor to
realize photo-sensing application (Figure 10A). The light pulse,
the output potential (Voyr) and conductance of the channel
were regarded as input, post-synaptic potential (PSP) and
synaptic weight, respectively. When incident light illuminated
the IGZO channel layer, the channel conductance was reduced,
and photocurrent could be generated. Two successive light
spikes (405 nm, 232 mW cm™2, 20 ms) were applied on the
channel, PPF characteristic was mimicked (Figure 10B). The
PPF index gradually decreased with the increasing inter-spike
interval (Figure 10C). Figure 10D displayed EPSP triggered
by light pulse could be modulated by gate voltage. Besides,
depression to potentiation mode transition was also displayed by
gate voltage modulation.

Except for artificial synaptic functions, biological behaviors
at sensory receptors are highly demanded on synaptic devices.
A synaptic phototransistor based on the hybrid structure
of transition-metal dichalcogenide (TMD) and mixed halide
perovskite [CsPb(Broslps)3] emulated the human sensory
adaptation to constant light (Figure 11A; Hong et al., 2020).
The lessening in the sensitivity of sensory system toward a
constant stimulus over time was called sensory adaptation.
The combination of TMDs and perovskite overcame the weak
light absorption of TMDs, because the photoexcited charges
transferred from the perovskite to the MoS; channel via the
differences in band edge. As time went by, the photocurrent of the
synaptic device under red light illumination degraded drastically
within 3 min (Figure 11B). The phenomenon indicated the
device could be applied for sensory-adaptation; the time-
resolved photo-response of the device under continuous red-light
illumination (Figure 11C) confirmed this. The synaptic device
could also mimic the reversibility behavior of sensory-adaptation
(Figure 11D), even though the recovery rate dropped slightly as
the sequence repeated. The photosensory adaptation behavior of
the device with selective light can be applied to intelligent sensors,
and biomedical imaging.

The sound location function of human brain was mimicked
by artificial neural network based on a multi-terminal IGZO
neuromorphic transistor (He et al., 2019). The schematic diagram
of locating sound was shown in the Figure 12A. Sound azimuth
detecting function was realized by a neural system that was
consisted of two gate electrodes (PREN1 and PREN2) and two
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FIGURE 12 | (A) Schematic diagram of sound location by binaural effect in human brain. (B) Sound location in artificial neural network based on the transistor.
(C) Postsynaptic currents of POSTN2 and POSTN1 when sound comes from right direction. (D) |posT2/lposT1 changes with time interval and sound azimuth
(adapted from He et al., 2019).
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FIGURE 13 | (A) Schematic image that shows different injuries of hazardous gas on human and organs and olfactory. (B) Schematic of the operation concept of the
artificial organ-damage device. (C) Typical response/recovery characteristics of the device to 20 ppm NO>. (D) Real-time Ips to two successive 20 ppm NO» pulses
at time interval 1,000 and 300 s, respectively, and the PPF index as the function of pulse interval (adapted from Song et al., 2019).

pairs of S/D terminals (POSTN1 and POSTN2). PREN1 and diagonal, implying that one POSTN processed spikes transmitted
PREN2 were regarded as the left and right ears, respectively, and by the synapses in a strong/weak order while the other processed
were fully connected to POSTN1 and POSTN2 (Figure 12B). information in the opposite sequence. When the sound was from
The connection strength between PREN and two POSTNs were  the right direction, POSTNI1 first processed the signal transmitted
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by a weak synapse and then processed the signal transmitted
by a strong synapse. While POSTN2 processed information in
the opposite. Consequently, the amplitude of Iposr; was larger
than that Ipos, (Figure 12C). The ratio of the amplitude of
Ipost2/Ipost1 as the function of (tpren2 — tpreni) and the
sound azimuth was shown in Figure 12D. This time-dependent
recognition shows the potential that the artificial neural network
can detect the sound azimuth.

An organic transistor which had the function of detecting
hazardous gas (NO,) leakage paved the way of human health
monitoring (Song et al., 2019). As depicted in the Figure 13A,
human organs would be damaged under the influence of toxic
gas. A large number of studies have shown that prolonged
exposure to toxic gas environments could have varying degrees
of health effects: respiratory diseases and even lung cancer
(Ezratty et al., 2014; Hettfleisch et al,, 2017; Mentz et al,
2018). The flexible toxic gas detection device was fabricated
with PVA dielectricc, PCDTPT channel, gold back-gate and
source/drain electrodes (Figure 13B). Hazardous gas acted as
the input pulse, PCDTPT channel layer was used as the gas
sensing and storage layer. NO, molecules had the property

of withdrawing electron. When there was 20 ppm NO;, the
captured NO, remained on the surface of the channel, acting
as electron trapping centers, contributed to the increase of holes
in the channel, and resulted in the mounting of Ij. After
removing the pulse for 600 s, I had a greatly slow decay
process, and did not restore to the original value (Figure 13C).
That was the reason of the absence of external energy such
as thermal/photo energy at room temperature. The PPF was
demonstrated in Figure 13D. The functions implemented by the
device provide great potential for human health monitoring and
non-invasive diagnosis.

As shown in Figure 14A, a pH-sensing 1ZO-based synaptic
transistor with multiple gate electrode was demonstrated. An
Ag/AgCl reference electrode immersed into a pH buffer solution
droplet acted as the sensing gate (G;). In-plane Al gate electrodes
were used as control gates (Liu N. et al., 2015). The IZO channel
could be efficiently tuned by the sensing and control gates,
because of the electric field that was coupled by sensing and
control gates. As the pH increased, the magnitude of EPSC
decreased (Figure 14B). Since the hydrogen ions in the solution
would generate a charge repulsion reaction with the protons
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at the electrolyte interface, and more protons accumulated in
the area below the channel, the EPSC was relatively increased.
It could be inferred that an appropriate negative bias applied
on the sensing gate would increase the sensitivity of the device
(Figure 14C) and lessen the energy dissipation (Figure 14D).

Artificial Synapses Combined With
Sensors

The achievable functions of sensory synaptic devices under
limited material selection are relatively simple and cannot show
diverse synaptic characteristics. Hence, higher level of device
structures needs to be designed to make up for this shortcoming
(Chen et al, 2018; Seo et al., 2018; Wang et al, 2018a). By
integrating with various sensors, the external stimuli can be
utilized as the inputs of synaptic devices to realize the emulation
of more complex biological functions. The combination of
the two parts promotes the development of neuromorphic
engineering in the direction of sensory applications.

Human visual system is essential for the knowledge
acquisition, which via eyes to sense light and brain to

storage image information. Herein, structure of the device
that integrated image sensor and memory to emulate visual
memory was shown in the Figure 15A (Chen et al.,, 2018).
In, O3 was chosen for the functional material to detect UV
light, for it was light-sensitive; Al,O3 was exploited as the
memory material on account of the excellent bipolar resistive
switching feature. When In,O3 was irradiated with UV light,
the charge carrier concentration in InyOs increased. So,
resistance state of the image sensor was transformed from high
resistance to low resistance, due to the connection with the
image sensor, the resistance switching state of the memory
from OFF to ON. Even after the UV was removed, the state
of the memory remained until the application of the reset
potential, implying that the lighting information was stored
in the memory. Visual memory arrays composed of 10 x 10
pixels were fabricated to exhibit imaging and memorizing a
butterfly-like pattern (Figure 15B), each pixel was formed by
image sensor and memory to compose a visual unit. Only the
pixels exposed to the patterned UV light worked normally, and
ultimately form the targeted pattern which could retain for 1
week (Figure 15C).
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Wang and co-workers presented a light-triggered organic
neuromorphic device (LOND) to emulate the retinal
functionalities (Wang et al, 2018a). A flexible array was
composed of 5 x 6 pixels then were curved into hemispheric
surface to imitate the retinal functions. The NIR and green light
with the identical frequency (64 Hz) and intensity (10.80 mW
cm™?2) were shed on the array. In contrast, green light evoked a
higher current level, even after 1,800 s, still had 65% of original
signals. As mentioned above, the LONDs could achieve the goal
of wavelength-recognition, that was expressed by the degree
of non-volatility.

Tactile sense is indispensable for normal human activities. It
has the functions of protecting the human body from injury
and diagnosing diseases. In recent years, there have been an
amount of studies on emulating haptic function. Yet the single
function imitations of synaptic devices lack the functional
memory of tactile, such devices are awkward when reacting to
the same motion (Tabot et al., 2013; Foley, 2016). Therefore,
the development of tactile-sensing system is of great significance
for prosthetics and robotics (Zang et al., 2017; Kim et al., 2018;
Zhang C. et al., 2019; Zhang et al., 2020).

In 2016, Zang et al. (2017) demonstrated a dual-organic-
transistor (DOT) based tactile perception element (TPE)
to achieve the goal that dynamic signal transduction and
information processing work in a device. A suspended-gate
organic field-effect transistor was employed as the pressure

sensing element, and integrated with a synaptic device, forming
a prototype DOT-TPE (Figure 16A). The equivalent electrical
circuit of the DOT-TPE was exhibited in Figure 16B. When
there was an external pressure on the sensor, causing a change
in capacitance of the dielectric. Consequently, the conductivity
of the sensor was tuned, resulting in the transport of presynaptic
spike to the synaptic transistor. Tactile information was collected
by monitoring the EPSC of synaptic transistor. A 3 x 3 pixels
DOT-TPE array was constructed to emulated the perception of
dynamic mechanical pressure, and four bias cycles of retentive
pressure at mounting frequencies were applied on pixel 1-9
(Figure 16C). Figure 16D showed a falling EPSC of the first press
action (A1) from pixel 1-9, because the increased frequency made
the contact time shorter. To the opposite, the gain A4/A1 of every
pixel grew from 1.2 to 1.8, indicating the high-pass temporal
filtering feature of the tactile-perception system.

The movement of human limbs benefits from the movement
of muscles contracting and pulling bones to produce joints, and
also requires the adjustment of the nervous system (Graziano,
2006; Urgesi et al., 2006; Stefan et al., 2008). Integrating motion
sensor and memory had great significance for robotics and health
monitoring systems (Figure 17A; Liu et al., 2017). A hybrid
substrate that was spatially separated into different mechanical
properties was introduced. Therefore, both fragile memory device
and flexible sensor could be combined as a uniform unit
(Figure 17B). The memory was based on ZIF-8, and gold film
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with microcrack morphology/Ag worked as the B/T electrode. It et al., 2012; Liu et al., 2014). The I-V characteristic curves
was worth noting that gold film with microcrack morphology had ~ of the memory showed typical resistance switching property,
a good ductility under stretching (Lacour et al., 2003; Graudejus ~ which implied its non-volatile feature (Figure 17C). For the
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purpose of monitoring and storing the information of the elbow
telescopic state, a simple circuit was built as shown in Figure 17D.
The strain sensor and memory device were fabricated on the
mechanical hybrid substrate, and the LED connected with the
memory was adopted to observe the state of HRS and LRS. The
circuit chip was attached onto the arm near the elbow. When
elbow was in the extension state, the telescopic state of the sensor
had not changed, i.e., the conductance remained original, so the
memory showed HRS and the LED was dark. Correspondingly,
the flexing of elbow caused the elongation of the sensor, which
switched the memory to the “on” state, and lighted the LED until
a reset voltage was applied.

Integration for Constructing Artificial
Neural Systems

The previous section introduced the combination of sensors
and synaptic devices to achieve more complex functionalities.
Nevertheless, the postsynaptic signals of the synaptic devices

have not been employed to display practical functions such as
motor behavior, distinguishing and identifying tasks. This section
will introduce artificial neurons that are constructed by sensors,
synaptic devices and proper electric elements. Such artificial
neurons can utilize their postsynaptic signals to achieve some
sophisticated bionics functions. The artificial neural systems
play the key role in the field of artificial intelligence to mimic
the “cognitive” function of human (Langley, 2011; Jordan and
Mitchell, 2015; Zhang C. et al., 2019).

A neuromorphic tactile processing (NeuTap) system
composed of resistive pressure sensor, ductile ionic cable
and synaptic transistor was exerted to mimic the sensory
neuron (Figures 18A,B; Wan et al.,, 2018). The applied voltage
on Vpp generated a voltage drop on PVA wires/pressure
sensor/semiconducting channel. Once pressure was applied
to the sensor, the resistance decreased rapidly to produce a
voltage drop via the PVA wires, that was equivalent to applying
a voltage on the PVA wires. The voltage created an EDL at the
IWO/PVA interface, tuning the IWO channel conductance.
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A NeuTap with two sensing terminals was fabricated to mimic the synaptic photo-memristors were connected in the form
the integrated functions for spatiotemporal correlated sensory of optical was that spike coding was more robust than
stimulation. As a proof-of-concept, tactile pattern recognition voltage coding (Burke and Ivory, 2008; Kim et al, 2018).
was completed via one sensing terminal in the NeuTap neuron, A 5 x 5 sensors array was connected with an ADC-LED and
the neuron was attached to a finger for the experiment. Two a synaptic photo-memristor in order to recognize handwriting
patterns in a row were used for recognition; the convex pattern through training (Figure 19C). To simplify the handling of
was marked as “1” and the flat patterns was as “0,” so that each  information, instead of processing the 25 data streams, the
set of patterns could be labeled as “00,” “01,” “10,” and “11” in the  spiking proportions(P), defined as P = spiking! writing of the five
form of binary code (Figure 18C). The typical current responses  synaptic photo-memristors was extracted as a five-dimensional
of the NeuTap with three various pattern pairs were depicted (5D) feature for the recognition and learning processes. The
in Figure 18D. Supervised learning method was employed in  PSCs of the five photo-memristors corresponding to the input
NeuTap to imitate the perceptual learning process. The change of the alphabet (Figure 19D). The recognition accuracy was
in channel conductance was defined as the recognition index improved from ~58% after the first training cycle to 84%
(RI) (Figure 18E). RI data and their corresponding labels were after 10 training cycles. The successful implementations of
employed as the training data, which were imported into the the functions in the above work provide great examples
computer program to partition the boundaries for each pattern. of brain-like learning and promote the development of
The unlabeled RI data were inputted into the computer, then artificial intelligence.
the computer compared the values with “learned” boundaries An artificial afferent nerve based on flexible organic
to infer the labels of the patterns. The 44% error rate could be  electronics was demonstrated and used to emulate the function
decreased to 0.4% after six learning times, that resembled the of slowly adapting type I (SA-I) sensory neurons (Pruszynski
perceptual learning process. and Johansson, 2014; Kim et al., 2018). The artificial afferent
An optoelectronic spiking sensory neuron system with nerve achieved the imitation of biological afferent nerves
pressure sensing, perceptual learning and memory ability by the components of resistive pressure sensors/organic ring
has been reported recently (Tan et al., 2020). The system oscillators/a synaptic transistor corresponding to the receptor,
was operated by MXene-based flexible receptors, analogy to nerve fiber, biological synapse, respectively. The pressure sensors
E-skin, to detect the external pressure and convert it to were connected to a ring oscillator to convert external tactile
voltage signal. Subsequently, the signal was transmitted to the stimulation into voltage pulses, then the electrical signals were
(analog-to-digital) ADC&LED section, and finally integrated integrated and transformed to the synaptic transistor by multiple
into the synaptic photo-memristors in the form of optical electrodes. Ultimately, by the process above, the pressure stimuli
spikes (Figures 19A,B). The reason of the receptors and were output in the form of postsynaptic currents. The highlight
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of this work was that a discoid cockroach was connected with the
artificial afferent nerve to constitute a monosynaptic reflex arc
(Figure 20A). The applied pressure information was collected,
converted by the artificial afferent nerve, and finally outputted to
a detached cockroach leg in the form of post-synaptic current.
The post-synaptic current would actuate the tibial extensor
muscle of cockroach leg (Figure 20B). The successful application
of the artificial afferent nerve on the legs of cockroaches is of great
significance for prosthetics and neurorobotics, and sets a solid
foundation for the construction of neural networks.

Similarly, an artificial sensorimotor nervous system was
constructed (Figure 21A; Lee et al, 2018). In the system,
photodetector converted optical signals to voltage spikes that
were applied to a synaptic transistor as the presynaptic input
signals to trigger EPSCs, and a polymer actuator was connected
with the above synaptic transistor via a transimpedance circuit;
the polymer actuator was controlled by the EPSCs of the
synaptic transistor (Figure 21C). Therefore, the artificial nervous
system could achieve biomimetic natural motion. The electrical
characteristics of the stretchable synaptic transistor under 0 and
100% strains were almost the same (Figure 21B), indicating
the transistor was stable even under strain. The sensorimotor
synaptic system would promote the development of next-
generation bioinspired soft electronics, neural prostheses, and
neurologically inspired robotics.

SUMMARY AND PERSPECTIVES

In this review, we have introduced various neuromorphic
devices based on various materials, such as electrochemical
metallized materials, phase-change materials, ferroelectric
materials and ionic/electronic hybrid materials. 2-terminal
devices have the merits of simple structure, small physical size,
and easily to be integrated on a large scale. three-terminal
(3-T) devices have the merits of relatively controllable test
parameters, clear operating mechanism. Through appropriate
material optimization and structural design, 3-T neuromorphic
transistors can convert external stimuli (light, pressure, PH, etc.)
into electrical signals efficiently. Multi-terminal neuromorphic
transistors can spatiotemporally integrate input signals
from multi-presynaptic terminals and facilitate synergistical
sensing and perception.

For mimicking the functions of neural perception,
neuromorphic devices that can sense the external environment
accurately (light, sound, chemical, PH) are essential. Afterward,
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