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Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an
established therapy for epilepsy and an emerging application for stroke rehabilitation
and brain-computer interfaces. However, the electrophysiological mechanisms that
result in a therapeutic effect remain unclear. Patient-specific computational models
are promising tools to predict the voltages in the brain and better understand the
neural and clinical response to DECS, but the accuracy of such models has not been
directly validated in humans. A key hurdle to modeling DECS is accurately locating the
electrodes on the cortical surface due to brain shift after electrode implantation. Despite
the inherent uncertainty introduced by brain shift, the effects of electrode localization
parameters have not been investigated. The goal of this study was to validate patient-
specific computational models of DECS against in vivo voltage recordings obtained
during DECS and quantify the effects of electrode localization parameters on simulated
voltages on the cortical surface. We measured intracranial voltages in six epilepsy
patients during DECS and investigated the following electrode localization parameters:
principal axis, Hermes, and Dykstra electrode projection methods combined with 0,
1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth
between the electrode and cortical surface increased model errors and decreased
predicted voltage accuracy. The electrode localization parameters that best estimated
the recorded voltages across six patients with varying amounts of brain shift were the
Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression
slope = 1.21). These results are the first to quantify the effects of electrode localization
parameters with in vivo intracranial recordings and may serve as the basis for future
studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and
other emerging closed-loop applications.

Keywords: direct electrocortical stimulation, electrocorticography, finite element modeling, bioelectricity
simulation, patient-specific modeling
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INTRODUCTION

Direct electrocortical stimulation (DECS) is used for many
clinical, therapeutic, and research applications: mapping
eloquent cortex before resection surgery (Berger et al., 1989;
Ojemann et al., 1989; Berger and Ojemann, 1992), treating
neurological disorders such as epilepsy (Davis et al., 1983;
Elisevich et al., 2006; Velasco et al., 2009; Child et al., 2014;
Bergey et al., 2015; Lundstrom et al., 2016), promoting
rehabilitation after stroke (Brown et al., 2006; Huang et al., 2008;
Levy et al., 2008, 2016), and incorporating sensory feedback into
brain-computer interfaces (Suminski et al., 2010; O’Doherty
et al., 2011; Klaes et al., 2014; Dadarlat et al., 2015; Cronin
et al., 2016; Caldwell et al., 2019). All these applications require
targeted electrical stimulation of specific anatomical brain
regions; however, the mechanisms of DECS that result in a
therapeutic effect such as seizure arrest remain unclear. Thus,
it is a complex and challenging task to select DECS parameters
(active contacts, frequency, pulse width, amplitude, and polarity)
that provide optimal clinical benefit.

Computational models of DECS that simulate the voltage
generated in the brain are promising tools to understand the
electrophysiological response to DECS and optimize stimulation
parameters (Guler et al., 2018). The predicted neural response to
DECS is dependent on the modeled voltages in the brain; thus,
it is essential to understand the effect of modeling parameters
on the predicted voltages in the brain. DECS computational
models typically use finite element methods (FEM) to represent
the three-dimensional geometries of the intracranial tissue
and implanted electrodes, while simultaneously incorporating
assumed electrical properties of the electrode-tissue interface.
Earlier iterations of computational models of DECS used a partial
model of the brain, or extruded slab model, to represent a
single gyrus and the neighboring sulci to simulate the voltage
in motor cortex and the resulting neural activation (Manola
et al., 2005, 2007; Wongsarnpigoon and Grill, 2008, 2012; Kim
et al., 2011, 2014). These simplified models revealed that the
width of the gyrus strongly influences the neural activation
distributions below the electrode (Wongsarnpigoon and Grill,
2008). Additionally, these studies found that the electrode
polarity and location relative to the gyrus or sulcus activate
distinct neuronal populations. These findings highlight the
sensitivity to geometric parameters and necessitate the need for
models that incorporate patient-specific geometries.

Recent advances in clinical imaging and computing power
now enable patient-specific models with geometries extracted
from their neuroanatomical imaging data. Several groups
have used patient-specific computational models to study
neuronal responses in motor cortex (Kim et al., 2012, 2014; Seo
et al., 2015, 2016; Fiocchi et al., 2018). However, the predicted
voltages have not been validated in humans, presumably due
to the challenges of acquiring invasive intracranial voltage
recordings during DECS.

Modeling DECS from subdural electrocorticography (ECoG)
electrodes introduces unique technical challenges that may have
limited the more widespread use of these models. One such
challenge is localizing the ECoG electrodes in pre-operative
magnetic resonance imaging (MRI) anatomical space using

post-operative imaging, typically from computed tomography
(CT). During ECoG monitoring, electrodes are placed directly
on the cortex to record the underlying electrical activity. In
the case of invasive epilepsy monitoring, these recordings help
identify the brain regions where seizures occur and whether these
regions can be safely resected. Knowing the electrode location
in relation to cortical anatomy is imperative to interpret the
recorded voltages accurately.

Two factors that contribute to electrode location uncertainty
are (1) post-implantation brain shift, and (2) the unknown
depth of the cerebral spinal fluid (CSF) between the electrode
and the cortical surface. The first of these, brain shift, stems
from various causes: brain swelling, brain movement due to the
addition of electrodes, CSF drainage, and deformation due to
gravity (Hastreiter et al., 2004). The magnitude of brain shift
varies on a patient-specific basis and can be as substantial as
one or more centimeters (Hill et al., 2000; Dalal et al., 2008).
Multiple electrode localization methods address brain shift by
projecting the electrodes from their CT post-implant positions
to the cortical surface in pre-operative space (Grzeszczuk et al.,
1992; Winkler et al., 2000; Morris et al., 2004; Hunter et al.,
2005; Sebastiano et al., 2006; Tao et al., 2009; Hermes et al., 2010;
LaViolette et al., 2011; Dykstra et al., 2012; Brang et al., 2016). The
second factor contributing to uncertainty in electrode location
is the depth of the CSF between the electrode and brain tissue,
which cannot be determined from postoperative clinical imaging
due to the metal artifact around the electrodes and limited image
resolution. Furthermore, the CSF depth beneath each electrode
may change over time as the brain shifts (LaViolette et al.,
2011). CSF is highly conductive compared to brain tissue, and
computational studies have shown that the CSF depth affects the
current distribution in the brain from DECS (Manola et al., 2005;
Wongsarnpigoon and Grill, 2008). However, there are substantial
gaps in understanding the consequences of different electrode
projection methods and unknown CSF depths on patient-specific
DECS model accuracy.

The objective of this work was to validate patient-specific
FEM models of DECS that account for brain shift and test
model accuracy as a function of CSF depth between the electrode
and brain tissue. We modeled the voltages within the brain
during DECS for six epilepsy patients with varying levels of
brain shift and explored the effects of three established electrode
projection methods and three CSF depths on the predicted
voltages. We validated these model predictions against clinically
recorded voltages measured in vivo during DECS and identified
the model parameters that predicted the most accurate voltages.
These findings will empower future studies with accurate and
robust models to investigate the underlying mechanisms of DECS
therapy for epilepsy, stroke rehabilitation, and brain-machine
interface applications.

MATERIALS AND METHODS

Participants
Six patients with intractable epilepsy underwent acute clinical
monitoring with implanted ECoG electrodes at Harborview
Medical Center (Seattle, WA, United States) for consideration
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of surgical resection of epileptogenic tissue. The ECoG grids
and strips had an exposed electrode diameter of 2.3 mm and
an inter-electrode distance of 1 cm center-to-center (Ad-tech
Medical, Racine, WI, United States). They were implanted at
locations determined by the clinical team to be most likely to
identify seizure foci. All patients provided informed consent
for the protocol approved by the University of Washington
Institutional Review Board.

Stimulation and Recording
Biphasic, bipolar current-controlled stimulation was delivered
across two neighboring electrodes on the ECoG grid (Figure 1D)
with a pulse width of 1.2 ms. Table 1 outlines the electrode
pair, stimulation amplitude, and number of stimulation pulses
delivered for each patient. The 62 passive (i.e., non-stimulating)
grid electrodes were recorded at a sampling rate of 12,207 Hz.
We baseline-corrected each stimulation pulse to the mean pre-
stimulus signal from 50 to 5 ms before stimulation onset.

We extracted a single voltage at each electrode to compare
against the predicted volume conduction voltages with an
automated algorithm that identified the quasi-static interval of
each stimulation pulse. We calculated the mean over all the
recorded stimulation pulses for each channel, and found the
differentiated averages as the first difference of those means.
We converted each sample in the differentiated averages to
their z-score equivalents: near zero during the middle of each
phase, and substantially non-zero near phase onsets and offsets.
We used a threshold of ±1.5 on the z-scored differentiated

averages to determine the start and end of each pulse phase. We
determined the average steady-state voltage between onset and
offset, shortened by three samples in each direction to ensure
that our extracted voltages were within the quasi-static interval of
the stimulation pulse. This signal extraction algorithm has been
previously validated with a saline phantom using our recording
setup (Caldwell, 2019).

Patient-Specific Models
We built nine whole-brain finite element meshes per patient to
assess the effects of electrode projection method and CSF depth
on predicted voltages. The different models incorporated three
common electrode projection methods to account for brain shift:
principal axis (Brang et al., 2016), Hermes (Hermes et al., 2010),
and Dykstra (Dykstra et al., 2012). We combined each projection
method with three depths of the CSF from the electrode to the
cortical surfaces. The CSF depth between the dura and cortical
surface varies across the brain and across patients and has been
reported as 2–3 mm (Wagner et al., 2004). The thickness of the
ECoG grid, 0.5 mm, presumably reduces this depth. We therefore
modeled CSF depths of 0, 1, and 2 mm.

Image Registration and Tissue Segmentation
We rigidly co-registered the postoperative CT to the pre-
operative T1-weighted structural MRI using BRAINSFit rigid
registration (Johnson et al., 2007) implemented in 3D Slicer1

1https://www.slicer.org/

FIGURE 1 | Patient-specific modeling pipeline for a representative patient, patient 4. (A) Merged co-registered magnetic resonance imaging (MRI) and computed
tomography (CT). The thresholded electrodes from the CT are shown in red. Due to brain shift, some electrodes appear to be inside the brain and require projection
to the closed gray matter surface. (B) Anterior view of the rigid electrode centroids (black) with a vector to the projected Hermes localization (green). (C) The
geometry of the volumetric mesh: cerebral spinal fluid (CSF) (transparent), gray matter (gray), and insulating sheet (green). The electrodes are shown in black on the
underside of the insulating sheet. (D) The predicted voltage on the cortical surface during bipolar stimulation between the black electrodes.
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TABLE 1 | Stimulation parameters applied in the cohort.

Patient Stimulation
amplitude (mA)

Electrodes
stimulated (−/+)*

Number of
stimulation pulses

1 3.50 B4/B3 10,005

2 1.75 A1/B1 10,000

3 2.50 A3/B3 3,014

4 0.75 B5/B6 10,000

5 1.75 C6/D6 3,001

6 0.75 A6/A5 7,014

*See Figure 5B for visualization of grid coordinates.

(Fedorov et al., 2012; Figure 1A). We segmented the T1-weighted
image and created surface meshes–of the gray matter, white
matter, and ventricles–with the command line tool mri2mesh in
the SimNIBS software package (Thielscher et al., 2015). We then
checked the automated segmentations for accuracy against the
MRI and manually made necessary segmentation edits in Seg3D2.
If edits were made, a second run of mri2msh incorporated those
edits into the surface meshes. We generated a closed gray matter
surface onto which we could project the electrodes with 3DSlicer’s
closing filter. This filter performed a morphological dilation-
then-erosion to the volumetric gray matter segmentation output
from mri2mesh. This segmentation filled in the sulci, ensuring
the ECoG electrodes would be projected onto a closed cortical
surface and not into a sulcus. The resulting closed gray matter
segmentation was then dilated to produce the CSF segmentation,
using the 3DSlicer Segment Editor module. We then exported the
closed gray matter and CSF segmentations as triangular surfaces
for volumetric meshing.

Electrode Localization
After co-registering the pre- and post-operative images, some
electrodes appeared to be inside the brain, making it necessary
to account for brain shift by projecting the electrodes to the
closed gray matter surface (Figures 1A,B). The electrodes were
localized by first calculating the “rigid” centroid of each electrode
from the thresholded electrode artifact in the CT. Each centroid
was projected to the closed gray matter surface using three
electrode projection methods–principal axis (Brang et al., 2016),
Hermes (Hermes et al., 2010), and Dykstra (Dykstra et al., 2012;
Figure 2)–to contrast their effects on the simulated voltages in the
brain. Briefly, the principal axis method calculates each electrode’s
longitudinal axis from its artifact and projects each electrode
independently along its respective principal axis. The Hermes
method projects each grid electrode in the direction normal to
the plane constituting the electrode and its nearest neighbors. The
Dykstra method implements a constrained energy-minimization
algorithm that minimizes both electrode displacement and inter-
electrode distance deformations. For each method, resulting
electrode locations were used for the models with a CSF depth
of 0 mm. We modeled each electrode as a 2.3 mm diameter
disk of 73 nodes, oriented parallel to the nearest triangular
element of the closed gray matter surface. We then moved each
electrode 1 or 2 mm along the normal vector of the nearest

2www.seg3d.org

triangle surface for models with a CSF depth of 1 and 2 mm,
respectively. All projection methods were implemented with
MATLAB and Python.

Head Model and Simulations
Our meshing approach incorporated surface meshes that
segmented each region into the final volumetric mesh. This
approach advantageously maintains clean boundaries between
regions but necessitates nested surfaces. We used the gray
matter, white matter, and ventricle surfaces from the mri2mesh
output and the CSF surface from “Image Registration and
Tissue Segmentation.” We then created an ECoG grid/strip
surface mesh for each projection method and CSF depth. Our
major challenge was constructing the insulating sheet around
the projected electrodes while following the contours of the
closed gray matter surface. We triangulated the nodes of the
projected electrodes and mapped the triangulated surface onto
the closed gray matter surface. We extruded the resulting
closed gray matter patch 0.5 mm to create a three-dimensional
surface mesh. The final insulating sheet mesh for each electrode
localization followed the contours of the closed gray matter
surface and incorporated the projected 2.3 mm diameter
electrodes (Figure 1C). We then generated tetrahedral finite
element meshes for each projection method and CSF depth
in SCIRun 5.03 with the InterfaceWithTetGen module (Si,
2015). The resulting volumetric meshes had approximately 0.9
million nodes and 4.9 million elements per mesh. Isotropic
conductivities taken from the literature were used for each tissue
and electrode compartment (Table 2). To simulate the bipolar
stimulation applied during the clinical session, we calculated
the voltage at each node in the tetrahedral mesh using the
Poisson equation, ∇ · σ∇Ve = −i for x in �C, where �C is
the volumetric mesh, and electrode current source i = I0δx0
of stimulation amplitude I0 as reported in Table 1. We used
Neumann boundary conditions, ∂0Ve = 0 for x in 0Neu, where
0Neu is the mesh boundary. The system of equations was
solved with SCIRun 5.0 using the conjugate gradient solver,
Jacobi preconditioner, and an error tolerance of 1 × 10−8.
A representative solution is shown in Figure 1D. We repeated
this process for all nine meshes for each of the six patients.

Rigid Model
Volume conduction and, therefore, the recorded voltages are
highly influenced by the stimulation and recording electrodes’
relative spacing, which we manipulate when we project the
electrodes onto the closed gray matter surface. To evaluate the
effects of electrode spacing, we additionally built a “rigid” head
model with the original electrode locations in CT space. The
rigid model preserves the physical inter-electrode distances of
the ECoG grid. However, it sacrifices the accuracy of the gray
matter-CSF interface, which divides regions with a ∼five-fold
difference in conductivities. After co-registration to the pre-
operative MRI, some rigid electrode locations appear to be inside
the brain (Figure 1A). Therefore, we manually edited the gray
matter segmentation by removing any tissue voxels above the

3www.scirun.org
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FIGURE 2 | Electrode localization methodology. (A) An example of each electrode projection method for a single electrode in the electrocorticography (ECoG) grid.
The centroids for the rigid electrode localizations from the CT are shown in black with respect to the transparent closed gray matter surface used as the final
destination for projection. The principal axis method independently projected each electrode centroid along the principal axis of the electrode artifact from the CT.
The Hermes method projected each electrode in the direction normal to the plane defined by the electrode and its nearest neighbors. The Dykstra method
implemented the shown constrained energy-minimization algorithm. This algorithm minimized both electrode displacement (‖ ei − ei0 ‖

2) and inter-electrode
distance deformations (aij(dij − dij0)2) where aij = 1 for neighboring electrodes and 0 for distant electrodes. (B) Schematic representation of the CSF depth below
the electrode. Each electrode was modeled with 0, 1, and 2 mm of CSF between the electrode and closed gray matter surface (the surface boundary of the light
gray area) for each electrode projection method. The gray matter is shown in dark gray and the insulating grid is shown in green for each CSF depth.

electrode grids and strips. Thus, the rigid model resulted in a
clipped version of the pre-operative brain surfaces covered by
the ECoG electrodes. Simulations were performed with the same
methods as described in “Head Model and Simulations.”

Model Validation and Statistical Analysis
To assess the level of brain shift across the ECoG electrodes, we
calculated the projection distance, the length of the vector from
the rigid electrode centroid to the projected centroid, for each
electrode for all projection methods. To determine if the inter-
electrode distances were affected by projection, we quantified
the inter-electrode distance between neighboring electrodes for
all projection methods. The Brown-Forsythe test assessed the
equality of variance in projection distances and inter-electrode
distances between the principal axis and Hermes projection
methods for each patient (α= 0.05) (Brown and Forsythe, 1974).
The Wilcoxon signed-rank test assessed the paired difference
in projection distance and inter-electrode distance between the

TABLE 2 | Head model conductivities of each compartment.

Compartment Conductivity (S/m) References

Gray matter 0.330 Haueisen et al., 1997

White matter 0.142 Haueisen et al., 1997

Ventricles 1.790 Baumann et al., 1997

CSF 1.790 Baumann et al., 1997

Silicone insulating sheet 1 × 10−10 Wei and Grill, 2005

principal axis and Hermes projection method for each patient
(α= 0.05).

We then considered how different projection methods and
CSF thicknesses affected the simulated voltages at the electrodes.
We evaluated the absolute error, |Vrec − Vsim|, between the
simulated voltages (Vsim) and recorded voltages (Vrec). The
Wilcoxon signed-rank test assessed the equality of the voltage
absolute error distributions, compared for each projection
method at all CSF depths (0, 1, and 2 mm; α = 0.05). The Holm-
Bonferroni procedure controlled for multiple comparisons. Next,
we performed a linear regression to predict each patient’s
recorded voltages based on their simulated voltages. We used the
Pearson correlation coefficient to measure the similarity between
the two distributions of voltages, and the slope of the regression to
evaluate the similarity of the magnitudes of the voltages. Finally,
we performed a linear regression across the entire population by
normalizing each subject’s experimental data to the voltages that
would have been each recorded in response to 1 mA stimulation,
presuming linear scaling.

RESULTS

Electrode Localization and
Quantification of Brain Shift
We first visualized the rigid and projected electrode localizations
across projection methods (Figure 3). The number of localized
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grid and strip electrodes per patient ranged from 72 to
101. The Dykstra projection method did not converge for
patients 5 and 6 due to substantial brain shift. Because this
method was not reliable across all patients, only the principal
axis and Hermes methods were used for further analyses
(see Supplemental Figure for additional Dykstra results). We
observed similar centroid locations between projection methods
for most electrodes (Figure 3). However, for some electrodes,
the principal axis and Hermes projection methods yielded
noticeably different centroid locations, occasionally even on
different gyri (Figure 3C). For some patients, the centroid
locations were similar between projection methods across most
of the brain (Figure 3, e.g., patient 4). In other patients,
the centroid locations from the distinct projection methods
converged in some brain regions but diverged in others (Figure 3,
e.g., patient 6).

We then quantified the distribution of projection distances
at a single CSF depth of 0 mm across electrodes as a metric
for brain shift. We observed significantly different distributions
of projection distances within patients, where the projection
distances for the Hermes method were less than those for the
principal axis method for all patients (Figures 4A,B). Differences
in the projection distance variances between the principal axis
and Hermes projection methods were not statistically significant
for any of the patients (Figure 4A). Median projection distances
varied across patients; patients 5 (4.90 mm) and 6 (7.80 mm)
had a greater median Hermes projection distance than patients
1, 2, 3, and 4 (2.75, 2.89, 2.90, and 3.44 mm, respectively;
Figure 4A). Projection distances are shown for the Dykstra
method in Supplementary Figure 1A.

We found that projection of the electrodes increased the
distances between neighboring electrodes beyond the 10 mm
actual value of the physical grid; the range of median inter-
electrode distances across patients was 10.27–10.76 mm for the
Hermes electrode projection and CSF depth of 0 mm (Figure 4C).
We found no significant paired difference in inter-electrode
spacing between the principal axis and Hermes methods for
any patient (Figure 4D). Although projecting the electrodes
resulted in less than a millimeter increase in median inter-
electrode distance, individual inter-electrode distances ranged
from 2.80 to 19.98 mm across patients (Figure 4C). We observed
a larger spread in inter-electrode distances for patients with
larger projection distances (i.e., greater brain shift). The Hermes
method yielded inter-electrode distances with significantly less
variance than the principal axis method for 4 of 6 patients (2, 4, 5,
and 6), most notably for the patients with larger projection
distances (Figure 4C). Inter-electrode distances are shown for the
Dykstra method in Supplementary Figure 1B.

Simulated Voltages and Voltage Errors
We then evaluated the spatial voltages and error between the
simulated and recorded voltages. Results are shown for a Hermes
projection with 0 mm CSF for a representative patient, patient
3 (Figures 5A,B). We found that the electrodes (A2, A4, B2,
B4, and C3) nearest to the two stimulation electrodes (A3 and
B3) had a larger amplitude raw error compared to electrodes
farther from the stimulating electrodes (Figures 5B,C). This

trend persisted across all patients for all electrode projection
methods and CSF depths.

We compared the projected electrode models, which had
an increased inter-electrode distance, to the “rigid” model that
retained the original inter-electrode spacing of 10 mm but
sacrificed accurate cortical anatomy. For patient 3, the simulated
voltages for both the rigid and Hermes model closely follow
the recorded voltage. However, for larger potentials–i.e., closer
to the stimulating electrodes–the Hermes model under predicts
the voltage (Figure 5C). For clarity, Figure 5C shows only
the voltages predicted with the Hermes method; a complete
summary for principal axis and Dykstra methods is shown in
Supplementary Figure 2A. We calculated the absolute error
across CSF depths to determine which CSF depth predicted more
accurate voltages. Figure 5D shows the data for a representative
patient, patient 3. We found the median absolute error increased
with increasing CSF depth for both the principal axis and Hermes
methods (Figure 5D). Supplementary Figure 2B includes
voltages predicted by the Hermes projection method at each
electrode for all three CSF depths. In summary, models of patient
3 that included 0 mm of CSF between the electrodes and cortical
surfaces yielded the most accurate simulations.

We next compared the absolute error at different CSF
depths across patients: the median absolute error increased
with increasing CSF depth for all three projection methods
(Figure 6A). The absolute error distributions were significantly
different for all pairwise comparisons after correction for
multiple comparisons.

Linear Regressions
We then examined the linear regressions across all patients for
the three-electrode projection methods and CSF depths. The
slopes of the linear regressions are shown in Figure 6B; slopes
closer to one better predict the magnitudes of the recorded
voltages. For all three electrode projection methods, the CSF
depth with the slope closest to one, and therefore the depth
that resulted in the best fit to the data was 0 mm. The slope
increased with CSF depth for all electrode projection methods.
We note that the Dykstra regressions are across the four patients
where the method converged whereas the principal axis and
Hermes methods are across all six patients. Based on the results
showing that models with a CSF depth of 0 mm have less absolute
error and better predict the magnitude of the recorded voltages
(slopes closer to one), moving forward we present data only for
simulations with 0 mm CSF.

We then examined the squared residuals of the linear
regressions for electrode localization methods. We show the
cumulative distribution function (CDF) of the squared residuals
for each electrode localization method on the left of Figure 6C.
The squared residuals were significantly greater for the Dykstra
method compared to all other methods (Figure 6C-right;
α= 0.05, Holms-corrected pairwise comparisons).

We report slopes of 1.25, 1.21, and 1.26 for the principal axis,
Hermes, and Dykstra electrode projection methods, respectively,
at a depth of 0 mm CSF across patients (Figure 6B). The
electrode projection method that resulted in the best patient-
specific linear fit was Hermes in 4/6 of the patients (patients
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FIGURE 3 | Electrode localization and quantification of brain shift. Final electrode localization for all projection methods for 0 mm CSF depth in each patient. The
centroids indicate the final electrode localization on the patient-specific gray matter surface: principal axis (red), Hermes (green), and Dykstra (blue) (left) and the
anterior view of the rigid electrode localization from the CT (black) with a vector to the projected Hermes localization on the gray matter surface (right). Both strip and
grid ECoG electrodes are shown. Note that the Dykstra method did not converge for patients 5 and 6. Across projection methods, the centroid locations were
similar for many of the patients (A), but varied in others by converging (B), and diverging (C) in separate brain regions.

1, 3, 5, and 6), principal axis for 1/6 patients (patient 4), and
Dykstra for 1/6 patients (patient 2). Because the Hermes method
best predicted the magnitudes of the recorded voltages for the
majority of patients, we show the patient-specific linear fits
and correlation values for the Hermes projection method in
Figure 7A, with additional regression statistics in Table 3. For the
Hermes projection method, the mean correlation was 0.94± 0.03
(SD) and the mean slope was 1.53 ± 0.64 (SD) across all six
patients. Simulated voltages nearly matched recorded voltages for
5/6 patients. For patient 2, however, the recorded voltages were
2.9× greater than those predicted by simulation.

We then performed a correlation and linear regression
analysis across all patients for a stimulation amplitude of 1 mA
for all electrode localization methods. We show the results for
the Hermes and rigid methods in Figure 7B. The correlation
coefficients were 0.92 for both the rigid and Hermes models,

with slopes of 0.86 and 1.21, respectively. The linear regression
statistics are shown in Table 3.

DISCUSSION

In this study, we validated patient-specific FEM models of
DECS with recorded voltages in humans. We determined the
modeling parameters that best predicted the recorded voltages
across six patients were a CSF depth of 0 mm and the
Hermes projection method. Three main results serve as the
basis for this determination. First, models with 0 mm of
CSF between the electrode and closed gray matter surface
resulted in the least absolute error between the simulated and
recorded voltages for 5/6 patients. Second, the Hermes projection
method better-preserved inter-electrode distances (i.e., closer to
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FIGURE 4 | Projection and inter-electrode distances. (A) Boxplots of the principal axis (red/left) and Hermes (green/right) projection distance for all electrodes within
a patient. Distribution variances were not significantly different between projection methods (α = 0.05). Patients are ordered from least to greatest median Hermes
projection distance. (B) Boxplots of the pairwise projection distance difference: principal axis–Hermes. In all patients the projection distance was significantly smaller
for the Hermes method. (C) Boxplots of the inter-electrode distances for the principal axis (red/left) and Hermes (green/right) projection methods. Each data point
represents a pair of neighboring electrodes on the ECoG grid. The inter-electrode variance was statistically less for the Hermes method for patients 2, 4, 5, and 6.
(D) Paired inter-electrode distance differences (principal axis–Hermes) were not statistically significant (α = 0.05). For (A,C), significantly different variances between
the principal axis and Hermes methods are denoted with *p < 0.01; **p < 0.001. For (B,D), significantly different paired distances are denoted with ‡p < 0.01;
‡‡p < 0.001. All distances are for the 0 mm CSF models.

10 mm) than the principal axis method (Figure 4C). Third,
the Hermes method had a lower median absolute voltage error
than the principal axis and Dykstra methods across patients
(Figure 6A). We further validated this model across patients
with a linear regression predicting the recorded voltages based
on the simulated voltages and found a strong linear relationship
(correlation of r = 0.92 and β1 = 1.21). Together, these results
support using the Hermes projection method to account for brain
shift, and that using 0 mm of CSF below the electrode results in
more accurate voltage estimation.

Electrode Localization Uncertainty
Failing to project electrodes to account for post-implantation
brain shift often results in obviously erroneous electrode

locations, including within the brain; to rectify this situation,
electrodes can be projected to the closed gray matter surface.
Although validating the projected electrode locations was outside
the scope of this study, previous studies have validated these
projection methods with a combination of known electrode
geometries and intra-operative photos. A study validating the
principal axis method reported a mean error of 0.4 mm across
10 patients (Brang et al., 2016), while a different study validating
the Hermes method reported a median error of 2.4 mm across
six patients (Hermes et al., 2010). The errors reported in these
validation studies are on the order of a single electrode diameter
(2.3 mm), making it likely that the projected electrodes result in
localization to the true anatomical landmark (gyrus or sulcus)
necessary for accurate interpretation of ECoG recordings.
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FIGURE 5 | Voltage and error for patient 3. (A) Predicted voltage on the gray matter surface (left) and recorded voltage at each recording electrode (right). (B) Raw
error (predicted voltage subtracted from the recorded voltage) at each electrode. (C) Predicted voltage for the Hermes method with 0 mm CSF (green), rigid model
(gray), and recorded voltage (purple). Each gray region marked with a letter represents a row of electrodes on the ECoG grid [labels shown in panel (B)]. (D) Violin
plot of the absolute error between the predicted and recorded voltages for each electrode localization method: rigid (gray), principal axis (red), Hermes (green), and
Dykstra (blue) with 0, 1, and 2 mm of CSF from left to right for each method. The dashed line is the median, and smaller dashed lines demark the interquartile range.

However, we note that different methods occasionally
projected the same electrode onto two distinct gyri, particularly
for patients with greater projection distances, i.e., patients 5 and
6 (Figure 3). Features of each projection method underlie the
differences in projection location. The principal axis method
occasionally resulted in noisy projection vectors seemingly
because each electrode is projected independently based on
its surrounding artifact in the CT image. Therefore, poor
imaging quality or resolution may introduce more uncertainty
in the projection vector. This sensitivity may explain the
significantly larger projection distances for the principal axis
method compared to the Hermes method for all patients
(Figure 4B). A projection vector that is slightly off could result
in an increased distance to the closed gray matter surface. In
contrast to the principal axis method, the Hermes and Dykstra
methods incorporate information from neighboring electrodes,
making spurious projection vectors for a single electrode less
likely. We do not recommend the Dykstra projection method as
it did not converge for patients 5 and 6. This nonconvergence
likely stems from the substantial brain shift observed for these
patients. For the other projection methods, the median and
range of the projection distances were greater for these patients
compared to the other four patients (Figure 4A). The constrained

energy-minimization Dykstra algorithm may have failed to
converge because such large projection distances were necessary
across a majority of the electrodes.

For all projection methods, intraoperative imaging could
help validate electrode localization errors (Pieters et al., 2013).
However, ECoG electrodes may slide an average of 4.0 mm
relative to the cortical surface throughout acute monitoring
(LaViolette et al., 2011). It is unknown if CT imaging throughout
the monitoring period, instead of directly after implantation as
was done in our study, would significantly influence projected
electrode locations. This information would be valuable to
understanding the dynamics of brain shift, but it may not
justify the additional radiation exposure from CT imaging.
Combined with evidence from the aforementioned validation
studies, our results support that our electrode localizations
are accurate to within the limits of existing clinical imaging
and enable interpreting ECoG recordings within anatomical
landmarks (Hermes et al., 2010; Brang et al., 2016). Until
we better understand how ECoG electrodes shift throughout
the course of implantation, applying caution when interpreting
ECoG recordings with inherent uncertainty in the true location
of the electrode is warranted. This uncertainty in electrode
location also applies to chronic ECoG electrodes implanted for
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FIGURE 6 | Absolute errors and linear regression results across patients. (A) Violin plots of the absolute error between the predicted and recorded voltages for each
electrode localization method: principal axis (red), Hermes (green), and Dykstra (blue) at–from left to right within each method–0, 1, and 2 mm of CSF. Results for the
principal axis and Hermes methods summarize all six patients; results for Dykstra comprise only the four patients for whom that method converged. Dashed line is
the median, and smaller dashed lines bound the interquartile range. (B) The slope of the linear regression of the predicted and recorded voltages at a stimulation
amplitude of 1 mA across all patients for each electrode localization method and CSF depth. The linear regressions are across six patients for the principal axis and
Hermes methods, and across four patients for the Dykstra method. The error bars show the 95% confidence interval of the slope. Slopes closer to one better predict
the magnitudes of the recorded voltages. (C) The squared residuals of the linear regression of the predicted and recorded voltages at a stimulation amplitude of
1 mA across the four patients for whom all electrode localization methods worked (patients 1–4). Shown are both the empirical cumulative distribution function of the
squared residuals (left) and violin plots of the squared residuals (right). Significant pairwise comparisons between (A) CSF levels within a projection method and (C)
between electrode projection methods after correction for multiple comparisons are shown with *p < 10-4.

closed-loop applications and may influence the optimal time to
acquire post-operative imaging for patient-specific FEM models
for these applications.

Influence of Projection on
Inter-Electrode Spacing and Model
Accuracy
Although electrode locations enable accurate ECoG data
interpretation, the effects of electrode projection on inter-
electrode spacing were previously unknown. Volume conduction
is dependent on the relative distance between stimulating
and recording electrodes; thus, the best projection methods

would maintain both inter-electrode spacings and accurate
neuroanatomical locations. To understand the effects of altering
the inter-electrode spacing, we created the rigid model, which
retains an ECoG grid’s correct geometry. This approach requires
altering the brain geometry. Therefore, the rigid method
sacrifices correct anatomical information. Without an accurate
spatial interpretation of brain activity, our computational model
predictions have no context for therapeutic interpretations that
require precise targeting to specific anatomical regions.

Knowing that the inter-electrode spacing is important for
accurate volume conduction modeling, we wanted to minimize
the change in inter-electrode spacing after electrode projection.
We found that the inter-electrode distances between the Hermes
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FIGURE 7 | Predicting the recorded voltage. (A) Linear regression of the predicted voltage using the Hermes projection method and the clinically recorded voltages
for each patient. (B) Linear regression across all patients, with a normalized stimulation amplitude of 1 mA, for the rigid method and Hermes method. Each data
point represents a single electrode on the ECoG grid. The red dashed line is unity, and the shaded gray region is the 95% confidence interval. Slope (β1) and
Pearson correlation coefficient (r) are shown on each plot, and additional statistics are available in Table 3.

and principal axis method were not significantly different, but
the Hermes method had a significantly smaller inter-electrode
variance in 4/6 patients. The Hermes method’s smaller variance
retained inter-electrode distances closer to the median values–
ranging from 10.27 to 10.76 mm–across all electrodes, thus
outperforming the principal axis method (Figure 4C). These
results are likely because the Hermes method had significantly
smaller projection distances than the principal axis method,
allowing the inter-electrode distances to remain more tightly
bound around the rigid distance of 10 mm. Additionally,
neighboring electrodes’ projection vectors were likely more
similar between neighboring electrodes because these electrodes

defined the plane normal to the projection vector, whereas
the principal axis projection vector was treated independently
for each electrode.

We additionally considered the effects of increased inter-
electrode distances on voltage predictions by comparing the
Hermes model to the rigid model. Our regression results
across all patients suggest that the rigid model, which by
design preserves precise inter-electrode spacings, overestimates
recorded voltages with a slope of 0.86 (Figure 7B). In contrast,
the Hermes model underestimated the same voltages with a
slope of 1.21. The rigid model overestimates may be due to
decreased CSF in the sulci due to the closed gray matter surface,
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TABLE 3 | Predicting the recorded voltage: linear regression statistics.

Patient Slope (β1) Standard Error of β1 t p(t) R2 F p(F)

Hermes, 0 mm CSF

1 0.99 0.03 36.24 <0.001 0.96 (1,60) = 1313 <0.001

2 2.91 0.16 18.31 <0.001 0.85 (1,60) = 335 <0.001

3 1.41 0.03 42.05 <0.001 0.97 (1,60) = 1769 <0.001

4 1.16 0.06 18.99 <0.001 0.86 (1,59) = 361 <0.001

5 1.20 0.07 16.56 <0.001 0.82 (1,60) = 274 <0.001

6 1.57 0.09 17.54 <0.001 0.84 (1,60) = 308 <0.001

All patients 1.21 0.03 44.64 <0.001 0.84 (1,368) = 1992 <0.001

Rigid

All patients 0.86 0.02 45.36 <0.001 0.85 (1,368) = 2057 <0.001

whereas CSF is present in the sulci of the 0 mm CSF models.
The differences in these models’ results do not support any direct
conclusions about the influence of altered inter-electrode spacing
on estimated voltages in the brain. However, we would like to
highlight the importance of accurate neuroanatomical locations
in the context of therapeutic applications over maintaining the
inter-electrode spacing: i.e., accurately estimating the voltage at
a recoding electrode is moot if that electrode is modeled at the
incorrect brain location.

DECS Model Validation
Computational models are powerful tools to quickly and cost-
effectively predict electrophysiological and clinical responses
to DECS; however, there has been limited validation of their
application in humans. Phantom models are often used to
validate measurements that are challenging to obtain in humans.
Previous work by Kim et al. (2015) used an Agar/NaCl phantom
based on a human MRI to record voltages during DECS and
an FEM model to predict the phantom voltages. They found
an average relative difference between predicted and measured
voltages throughout the brain of 10.3%. However, the use
of a phantom model eliminated the need to address post-
implantation brain shift.

To better understand the effects of conductivity selection and
automated segmentation pipelines, electric field models have
been validated against in vivo measurements from intracranial
contacts during transcranial electrical stimulation (Huang et al.,
2017; Puonti et al., 2020). These studies co-registered pre-
and post-operative MRI to localize electrodes; they accounted
for brain shift by back-projecting the electrodes onto the pre-
operative cortical surface (Yang et al., 2012). The predicted
electric fields correlated well to the cortically measured values
with a correlation coefficient of r = 0.86 (Huang et al., 2017).

Our validation builds on the previous work by incorporating
in vivo data from six patients, quantifying the effects of electrode
projection to account for brain shift, and investigating the
influence of CSF depth on predicted voltages. We were able to
accurately predict DECS voltages across six patients with variable
amounts of brain shift (slope of 1.21 and correlation coefficient
r = 0.92). Interestingly, the models with a CSF depth of 0 mm
best predicted the recorded voltages. As CSF depth increased, the
slope of the linear regressions also increased. This dependence

suggests that the amount of CSF between the electrode and
cortical surface is closer to 0 than 1 mm even after several days of
implantation and brain shift. The observed sensitivity to CSF is
consistent with previous work demonstrating how the CSF depth
or segmentation has a large effect on the current distribution
in the brain. Shunting effects likely underlie this sensitivity,
which highlights the importance of accurate CSF depths in future
models of DECS (Manola et al., 2005; Wongsarnpigoon and Grill,
2008; Puonti et al., 2020). Enforcing a uniform CSF depth over the
closed gray matter surface limits the accuracy of this approach,
because that depth may vary spatially and with head position
(Rice et al., 2013). However, without novel imaging revealing how
CSF depth varies with location, implementing a uniform CSF
depth minimizes the free parameters in the model, and a depth
of 0 mm yields the most accurate results.

Model Limitations
Although our predictions strongly correlated with the recorded
voltages, suggesting accurate voltage distributions, addressing
other modeling parameters may improve results. For example,
the Hermes model accurately predicted the recorded voltages for
5/6 patients. However, the linear regression slope for patient 2
was far from unity, greatly underestimating the recorded voltages
(slope = 2.91; Figure 7A). We observed that the stimulation
electrodes for this patient were localized over a sulcus after
the projection. As an ad hoc analysis, we created an additional
Hermes model with a closed gray matter surface; removing
the sulci from the model ensured that the electrodes were
localized over brain tissue. This ad hoc model decreased the
slope for all patients. The decrease in slope greatly improved
the fit for patient 2 (slope = 1.28) while worsening the slopes
for patients previously close to unity. We hypothesize that
recordings from contacts near a sulcus are more sensitive to
geometric errors, including incorrect projection locations and
inaccurate representations of the sulcal widths. It is worth
noting that the gray matter surfaces in our standard models
overestimate the sulcal width. The larger sulci enable cortical
surface models with no overlapping edges: a necessary constraint
to create the volumetric finite element meshes. Based on extruded
slab models of epidural cortical stimulation, we know that the
neurons activated within a gyrus depend on the gyrus width
(Wongsarnpigoon and Grill, 2008). Future work could explore
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the influence of electrode localization errors and inaccurate
sulcal widths by systematically ranging gyri inflation or stepping
each electrode through space and orientation. We recommend
additional studies to better understand the influence of gyrus
thickness and incorrect electrode localization on predicted
voltages in the brain.

Another parameter that may improve the accuracy of patient-
specific DECS models is the choice of tissue conductivities. In
the aforementioned transcranial stimulation validation study,
Huang et al. (2017) optimized the patient-specific isotropic
conductivities to minimize the error of the electric field.
The optimized conductivities produced significantly better
correlations of the predicted and recorded electric field than
literature conductivities, albeit without significantly different
slopes. They further incorporated anisotropic conductivities from
diffusion-weighted imaging, but the inclusion of anisotropy
did not improve the accuracy of the distribution of electric
fields in the brain (Huang et al., 2017). The effect of
anisotropic conductivities may play a larger role when modeling
neuronal effects. Deep brain stimulation simulations have shown
that anisotropic conductivities result in asymmetric voltage
spread, thus altering the distribution of axonal activation
(Butson et al., 2007; Chaturvedi et al., 2010). Furthermore,
a subdural cortical stimulation study of pyramidal neurons
showed that anisotropy altered the spatial extent of excitation
thresholds (Seo et al., 2015). Finally, the electrode-tissue
interface impedance is a critical parameter for modeling
electrophysiological responses to deep brain stimulation (Butson
et al., 2006) and chronic subdural DECS to treat epilepsy (Sillay
et al., 2013). Further investigation of the effects of higher-order
conductivity parameters will better inform their relevance in
models of therapeutic applications of DECS.

We observed greater errors in our predicted voltages near the
stimulating electrodes where the voltages were higher. We expect
the error to drop off with distance from the stimulus. However,
for therapeutic applications, we are most interested in regions
nearest the stimulating electrodes where neuromodulation is
likely to occur. Although we sampled voltages near and distant
to the stimulating electrodes, electrodes that recorded greater
voltages drove the correlation values shown in Figure 7A,
most notable for patients 2, 5, and 6 whose correlation
values were lower. These electrodes also influenced the slopes
of our predictive models. Validation of electric field models
with intracranial recordings is currently the gold standard;
nonetheless, noise in the recording values has been shown to
effect slope estimates and may have introduced uncertainty in our
predictive models (Puonti et al., 2020). Noisy recording values are
more likely for electrodes recording lesser voltages, approaching
zero, where the signal-to-noise ratio is less. Slope estimates may
be improved by systematically identifying a specific distance or
voltage threshold at which data points should be excluded. We
chose to objectively sample all data and investigate the effects
of all possible contacts. Although the present study incorporated
both grid and strip electrodes experimentally and in the models,
we recorded only from the grid electrodes; unanswered questions
remain regarding the effects of brain shift and CSF depth on
strip electrodes. Alternative explanations of the greater errors

near the stimulating electrodes may be due to a combination
of the modeling limitations mentioned above, such as poor
characterization of the electrode-tissue interface, conductivity,
or electrode localization. Additional parameters to consider
may be mesh resolution near the electrodes or finite element
interpolation errors (Howell et al., 2014). For some future
DECS model applications (e.g., estimating neural activation),
altered or even adaptive mesh resolutions near the stimulating
electrodes are warranted.

Finally, FEM models of DECS could be improved by
alternative methods to minimize the electrode localization
uncertainty after post-implantation brain shift. One such
method could model cortical anatomy from postoperative
imaging instead of co-registering electrode locations to the pre-
operative anatomy. This approach would place the electrodes
and brain anatomy in a single neuroanatomical space and
eliminate the need for electrode projection. Intra-operative
photos may also decrease the uncertainty of electrode localization
but require a more time-consuming process to identify all
electrode locations and may not be available at all clinical sites
investigating DECS (Pieters et al., 2013). However, for both
postoperative and intraoperative imaging, the effect of cortical
anatomy shift throughout the duration of implantation remains
unknown, and the relevance of this shift to ECoG interpretation
(LaViolette et al., 2011).

Clinical Impact
The DECS models used in this study assessed the accuracy
of the predicted voltages recorded at the surface of the brain.
Although the therapeutic mechanisms of DECS remain unclear,
the voltages predicted with these models could be coupled with
models that predict the patient-specific neuronal response to
stimulation, such as volume of tissue activated models and fiber
activation models (Butson et al., 2007; Gunalan et al., 2017).
These models have been used to advance the field of deep brain
stimulation for numerous disorders by identifying predictors
of therapeutic response based on the local target stimulated
(Butson et al., 2011; Dembek et al., 2019; Elias et al., 2020), the
specific fiber pathways stimulated (Howell et al., 2019), and the
connectivity of local stimulated regions to distant targets (Horn
et al., 2017; Johnson et al., 2020). Combining these methods with
our proposed model may provide insights into the therapeutic
mechanisms of cortical responsive neurostimulation for
epilepsy. Furthermore, these models may serve as a foundation
to explore closed-loop stimulation for other disorders, like
Parkinson’s disease, that require cortical electrodes for sensing
and/or stimulation.

CONCLUSION

As the clinical use of DECS continues to grow for applications in
epilepsy, stroke, and other neurological disorders, computational
models may provide critical insights into the electrophysiological
and clinical response. However, there has been limited validation
of these models addressing key concerns related to cortical
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electrode localization. We report a validation study of patient-
specific FEM models of subdural DECS in humans that compared
the effects of three projection methods and CSF depths on
predicted electrode voltages. Of the three electrode projection
methods we analyzed, we recommend localizing electrodes using
the Hermes projection method to account for brain shift. We
additionally suggest modeling a depth of 0 mm of CSF below the
electrode. Future models should follow these recommendations
to minimize the error of predicted voltages in the brain. Moving
forward, these models could be used to investigate the patient-
specific neural response to DECS and guide therapy for epilepsy,
stroke rehabilitation, and future applications of closed-loop
stimulation for many neurological disorders.
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