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Introduction: Cognitive Load Theory (CLT) relates to the efficiency with which
individuals manipulate the limited capacity of working memory load. Repeated training
generally results in individual performance increase and cognitive load decrease, as
measured by both behavioral and neuroimaging methods. One of the known biomarkers
for cognitive load is frontal theta band, measured by an EEG. Simulation-based training
is an effective tool for acquiring practical skills, specifically to train new surgeons
in a controlled and hazard-free environment. Measuring the cognitive load of young
surgeons undergoing such training can help to determine whether they are ready to
take part in a real surgery. In this study, we measured the performance of medical
students and interns in a surgery simulator, while their brain activity was monitored by a
single-channel EEG.

Methods: A total of 38 medical students and interns were divided into three groups and
underwent three experiments examining their behavioral performances. The participants
were performing a task while being monitored by the Simbionix LAP MENTORTM. Their
brain activity was simultaneously measured using a single-channel EEG with novel
signal processing (Aurora by Neurosteer R©). Each experiment included three trials of
a simulator task performed with laparoscopic hands. The time retention between the
tasks was different in each experiment, in order to examine changes in performance
and cognitive load biomarkers that occurred during the task or as a result of nighttime
sleep consolidation.

Results: The participants’ behavioral performance improved with trial repetition in all
three experiments. In Experiments 1 and 2, delta band and the novel VC9 biomarker
(previously shown to correlate with cognitive load) exhibited a significant decrease in
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activity with trial repetition. Additionally, delta, VC9, and, to some extent, theta activity
decreased with better individual performance.

Discussion: In correspondence with previous research, EEG markers delta, VC9, and
theta (partially) decreased with lower cognitive load and higher performance; the novel
biomarker, VC9, showed higher sensitivity to lower cognitive load levels. Together, these
measurements may be used for the neuroimaging assessment of cognitive load while
performing simulator laparoscopic tasks. This can potentially be expanded to evaluate
the efficacy of different medical simulations to provide more efficient training to medical
staff and measure cognitive and mental loads in real laparoscopic surgeries.

Keywords: cognitive load, surgical simulator training, EEG biomarker, laparoscopic operations, brain
assessment, mental load assessment, machine learning

INTRODUCTION

Medical training of surgical interns in recent years utilizes digital
simulators as an effective tool for acquiring practical skills in a
controlled and hazard-free environment. These simulators help
train interns and provide their performance outputs for each
task, thus supporting the learning process. The surgery simulators
offer practice of various tasks and present an evaluation of
the performance via behavioral measurements (i.e., performance
accuracy and performance length, etc.). Nevertheless, the
simulator output measurements have two main drawbacks.
First, althoughthe behavioral performance serves as a good
indication of laparoscopic dexterity, it does not give an indication
regarding the student’s cognitive state and, specifically, his or
her cognitive load level during the task performance. Assessing
cognitive load and stress levels directly during the surgery
simulation is essential to evaluate the intern’s ability to engage
in real-life operations. Second, the behavioral performance is
measured while completing a task under the surgery simulator.
Therefore, it does not allow extraction of similar measurements
during laparoscopic procedures inside the operating room. To
address these points, we designed three experiments in which
medical students and interns perform laparoscopic tasks under
a surgery simulator, while recording their brain activity with a
wearable single-channel EEG headset. The experiments measured
behavioral performance, EEG bands that are known to correlate
to cognitive load, and a novel machine-learning-based cognitive
load biomarker. In the following paragraphs, we will review
the literature regarding cognitive load, EEG biomarkers of
cognitive load, medical simulators, and previous measurements
of cognitive load during simulator tasks.

Cognitive Load
Any acquirement of a new skill or knowledge must be passed
through working memory (WM) before being transferred into
long-term memory (LTM). According to Cognitive Load Theory
(CLT, Miller, 1956), WM resources, unlike LTM resources,
are limited in their capacity for processing or holding new
information. However, when performing a complex task, the
new information elements are being processed simultaneously
and not iterated, so their interactions cause a much higher
WM load. According to CLT, optimizing learning processes
may be achieved by constructing automated schemas in which

the WM load is reduced (Jolles et al., 2013). The amount of
cognitive load used is a good predictor of the learning process
during a task performance, and continuous measurement is
of particular importance (Van Merriënboer and Sweller, 2005;
Constantinidis and Klingberg, 2016). For instance, practicing
the same task repeatedly will cause some of the interacting
information elements to be stored together in a schematic form
in LTM, so that they can be extracted and manipulated in WM as
single-information elements (Schneider and Shiffrin, 1977).

Cognitive Load Biomarkers
Several methods were previously described and validated as
measures of WM and cognitive load. Traditionally, subjective
self-rating scales were proven as reliable assessment tools across
several studies (Paas et al., 2003). However, as this tool can only
be recorded crudely and retrospectively, objective assessment
methods with a real-time indication of WM are in demand.
By using such an approach, the activity can be broken down
into different components that reflect different stages of complex
simulations and be used to evaluate the efficacy of each
training element. Several biological methods have been reported
to successfully assess WM, such as pupil size (Van Gerven
et al., 2004), tracked eye movement (Van Gog and Scheiter,
2010), salivary cortisol levels (Bong et al., 2010), and functional
magnetic resonance imaging (fMRI) (Van Dillen et al., 2009).

Using electroencephalography (EEG), studies repeatedly
show that the theta band (4–7 Hz) measured by frontal
electrodes increases with higher cognitive load and task difficulty
(Scheeringa et al., 2009; Antonenko et al., 2010). Multiple studies
confirmed this correspondence using a variety of cognitive
tasks, including the n-back (Gevins et al., 1997), operation
span task (Scharinger et al., 2017), visuospatial WM tasks
(Bastiaansen et al., 2002), and simulated real-life experiences
such as in driving (Di Flumeri et al., 2018) or flight simulators
(Dussault et al., 2005).

In addition to theta, delta oscillation (0.5–4 Hz) was also found
to increase with higher cognitive load and/or task difficulty such
as during reading tasks (Zarjam et al., 2011) and multiple-choice
reaction tasks (Schapkin et al., 2020), and to increase with higher
vigilance during low-cognitive-load attention tasks (Kim et al.,
2017). It has been suggested that delta activity is an indicator
of internal attention, and therefore increases while undergoing
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mental tasks (Harmony et al., 1996). Delta activity was also
associated with interference inhibition processes, which occur
in order to modulate sensory afferences, which in turn increase
internal concentration (Harmony, 2013).

Medical Simulations
Medical simulations are a common and widespread tool for
medical education (Gurusamy et al., 2009). Medical simulations
can emulate common scenarios in clinical practice, and
through interactive interplay and hands-on teaching, they
can improve the effectiveness and quality of teaching of
healthcare professionals (Kunkler, 2006). These simulations
can be particularly beneficial for surgical staff, as they allow
residents to practice and perfect complex procedures, ensuring
they have enough experience and practice before real patient
contact (Thompson et al., 2014). As laparoscopic surgeries
demand unique eye–hand coordination and are performed
while the surgeon indirectly observes the intra-abdominal
contents without tactile sensation but through a camera view,
these surgeons are ideal candidates for virtual reality (VR)
simulators. Indeed, these simulators have been shown to greatly
improve surgical operating skills and reduce operating time
(Gallagher et al., 2005; Larsen et al., 2009; Gauger et al., 2010;
Yiannakopoulou et al., 2015; Tucker et al., 2017).

Recently, a few studies made the connection between CLT
and medical training using surgery simulators (Andersen et al.,
2016, 2018; Frederiksen et al., 2020). In these studies, participants
completed laparoscopic tasks via VR simulators, while their
WM loads were estimated using a secondary behavioral task
(e.g., reaction times in response to auditory stimuli). They
found that different interventions with medical VR training
may modulate WM load. For example, Frederiksen et al. (2020)
showed that immersive VR results show higher cognitive load
than the conventional VR training, and Andersen et al. (2018)
demonstrated that additional VR training sessions may reduce
cognitive load and increase the performance of dissection
training. However, these studies evaluated cognitive load to
assess the effect of an external manipulation, rather than to
understand the neurophysiological mechanism underlying the
simulation process itself. None of the studies recorded an
objective physiological WM load biomarker such as pre-frontal
cortex activity or frontal theta oscillation during the training
itself. Such measurements would not only exhibit a continuous
level of cognitive load, but, if found reliable, could later be
measured in real scenarios. Lower levels of WM load, along
with efficient performance, may indicate the readiness levels of
surgeons. Additionally, a wearable, portable device may enable
real-time monitoring of WM load levels inside the operating
room, reflecting a surgeon’s abilities and laparoscopic dexterity.

The Present Study
The aim of this study was to explore the neural mechanism that
underlies surgery simulation training. Specifically, our aim was
to test the relationship between cognitive load, skill acquisition,
and the activity levels of different brain oscillations. We aimed to
track cognitive load neuro-markers using an EEG device that will
enable hand mobility while performing surgical simulator tasks.
Importantly, we wanted to test medical students and interns who,

on the one hand, have great motivation and motor/cognitive
abilities to perform such laparoscopic tasks and, on the other,
have no previous hands-on experience, neither in surgery
simulators nor with real-life patients. Finally, we intended
to compare “online gains”—improvements in performance
that occur while undergoing the task—to “offline gains,” the
improvements in skill acquisition preceding a consolidation
during nighttime sleep between task trainings, without further
practice (Issenberg et al., 2011; Fraser et al., 2015; Lugassy et al.,
2018). Notwithstanding, frontal theta and other known cognitive
load biomarkers were mostly used to measure WM load during
task completion itself and not to evaluate the load differences
between tasks’ sessions.

To meet these goals, we divided 38 medical students and
interns into three experiments. Each experiment included three
trials of the same short laparoscopic task administered by
a surgical simulator (Simbionix LAP MENTORTM). While
performing the tasks, participants’ brain activity was recorded
using a wearable single-channel EEG device (Aurora by
Neurosteer R© Inc), from which we continuously measured frontal
brain oscillations (i.e., the theta and delta bands) throughout the
simulation task. In each experiment, the participants repeated the
same task three times, thus allowing them to obtain the new skill
and decrease their cognitive load levels.

In addition to known brain oscillations, Neurosteer R© also
provided us with a machine-learning-based cognitive load
biomarker (i.e., VC9). VC9 activity was previously shown
to increase with cognitive load in the standard and most
common WM tasks (i.e., the n-back task, Maimon et al., 2020),
auditory recognition and classification tasks (Molcho et al., 2021),
and interruptions paradigm (Bolton et al., 2021). Specifically,
Maimon et al. (2021) showed that the VC9 biomarker is
more sensitive to the finer differences between cognitive loads.
During the n-back task, while both VC9 activity and theta
and delta oscillations increased with higher cognitive loads, the
VC9 biomarker exhibited higher sensitivity than the theta and
delta oscillations to the lower levels of cognitive load. These
subtler differences are particularly crucial for the present study’s
purposes and experimental design. With each task repetition,
participants’ cognitive load levels descended, eventually reaching
relatively low levels of cognitive load. Therefore, the ability to
detect finer differences between the low cognitive loads is the
most critical for estimating participants’ readiness to go into
the operating room.

Thus, our hypotheses were as follows: (1) Behavioral
performance will improve with repetition of the surgery
simulator task. (2) This improvement of behavioral performance
with task repetition will result in the decrease of cognitive
load that will modulate the EEG features (i.e., theta, delta, and
VC9 will decrease with task repetition). (3) EEG features will
correlate to some extent with higher individual performance (i.e.,
decrease with better individual performance), reflecting
the reduced need for cognitive resources together with
improving laparoscopic dexterity. (4) “Offline gains” will be
present following procedural memory consolidation during
nighttime sleep. Probing these hypotheses will help reveal
new and objective information regarding the efficacy of
simulation-based training. For a graphical representation
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FIGURE 1 | A graphical representation of the study. (A) EEG data are recorded via a single channel using a three-electrode forehead patch by an Aurora EEG system
while participants perform the simulator task. Data are pre-processed by a predefined set of wavelet packet atoms to produce 121 Brain Activity Features (BAFs).
The BAFs are passed through linear models, which were pretrained on external data, to form a higher-level biomarker, VC9. Then, VC9 activity is averaged per trial
and participant to find differences between simulator trials. (B) From the raw EEG data, power spectral density analysis is applied to find energy representation (in
dB) produced for 1–50 Hz. The power density per Hz is averaged over frequency bands. Theta and delta activity are averaged per trial and participant to find
differences between simulator trials. (C) Behavioral data are obtained from the Simbionix LAP MENTORTM (i.e., time, accuracy, and economy of movement). These
are averaged per trial and participant to find differences between simulator trials. Finally, correlations are calculated between EEG features (i.e., VC9, theta, and delta
bands) and behavioral performance (time, accuracy, and economy of movement).

of the data analysis applied in the present study, see
Figure 1.

EXPERIMENT 1

Materials and Methods
Sample Size Selection
To estimate the sample size required to observe a significant effect
of simulator trial repetition in the present study, we conducted an
a priori sample size analysis with G∗Power software (Erdfelder
et al., 1996). We based this analysis on the study by Andersen
et al. (2016). Their study examined 18 novice medical students
who underwent VR simulation training while their WM loads
were examined using a secondary response time (RT) task. The
experimental design included two groups: a control group (n = 9),
which received standard instructions, and an intervention group

(n = 9), which received CLT-based instructions. Similar to our
present study, both groups in the Andersen et al. (2016) study
underwent two post-training virtual procedures. Therefore, we
based our power analysis on the within-group comparison of
RTs between the first and second simulator trials of the control
group. Moreover, Andersen et al. (2016) inserted these multiple
within-participants fix effects into mixed linear models design,
which was applied in the current study, as well; they are therefore
most suitable for comparison. We conducted this analysis with a
desired alpha of 0.05, and a power of 0.80, and calculated effect
size from the control group’s average RTs and standard deviation
(SD) difference between the two simulator trials. The output of
the analysis software was that the minimum required sample size
was nine participants.

Participants
Nineteen participants (68% females, mean age 28, age range
25–36) were enrolled in the first experiment. All participants

Frontiers in Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 694010

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-694010 January 17, 2022 Time: 17:17 # 5

Maimon et al. Cognitive Load Biomarker Surgical Simulator

were healthy medical interns who had completed 6 years of
medical studies, never participated in laparoscopic surgery, and
had no prior experience using a surgical simulator. Ethical
approval for this study was granted by the Galilee Medical Center
Institutional Review Board.

Electroencephalography Device
The EEG signal acquisition system included a three-electrode
patch attached to the subject’s forehead (Aurora by Neurosteer R©.,
Herzliya, Israel). The medical-grade electrode patch included
dry gel for optimal signal transduction. The electrodes were
located at Fp1 and Fp2, with a reference electrode at Fpz.
The EEG signal was amplified by a factor of 100 and sampled
at 500 Hz. Signal processing was performed automatically by
Neurosteer R© in their cloud (see section “Signal Processing”
below and Supplementary Appendix A). We were therefore
provided with a sample per second of activity of the brain
oscillations (i.e., delta, theta, alpha, beta, and gamma) and the
VC9 biomarker.

Signal Processing
Full technical specifications regarding the signal analysis
are provided in Supplementary Appendix A. In brief, the
signal-processing algorithm interprets the EEG data using a
time/frequency wavelet-packet analysis, instead of the commonly
used spectral analysis. The Neurosteer R© signal-processing
algorithm interprets the EEG data using a time/frequency
wavelet-packet analysis, creating a presentation of 121
brain activity features (BAFs) composed of the fundamental
frequencies and their high harmonics.

To demonstrate this process, let g and h be a set of
biorthogonal quadrature filters created from the filters G and H,
respectively. These are convolution-decimation operators, where,
in a simple Haar wavelet, g is a set of averages and h is a
set of differences.

Let ψ1 be the mother wavelet associated with the filters s ∈ H,
and d ∈ G. Then, the collection of wavelet packetsψn, is given by:

ψ2n = Hψn; ψ2n (t) =
√

2
∑
j∈Z

s
(
j
)
ψn
(
2t − j

)
, (1)

ψ2n+1 = Gψn; ψ2n+1 (t) =
√

2
∑
j∈Z

d
(
j
)
ψn
(
2t − j

)
. (2)

The recursive form provides a natural arrangement in the
form of a binary tree. The functions ψn have a fixed scale.
A library of wavelet packets of any scale s, frequency f, and
position p is given by:

ψsfp (t) = 2−s/2ψf
(
2−st − p

)
. (3)

The wavelet packets {ψ sfp : p ∈ Z} include a large collection
of potential orthonormal bases. An optimal basis can be chosen
by the best-basis algorithm (Coifman and Wickerhauser, 1992).
Furthermore, an optimal mother wavelet can be chosen by
Neretti and Intrator (2002). Following robust statistics methods
to prune some of the basis functions, one gets 121 basis functions,
which we term brain activity features (BAFs). Based on a given

labeled-BAFs dataset, various models can be created for different
discriminations of these labels. In the linear case, these models
are of the form:

Vk (w, x) = 9

(∑
i

wixi

)
, (4)

where, w is a vector of weights and 9 is a transfer function that
can either be linear, e.g., 9

(
y
)
= y, or sigmoidal for logistic

regression9
(
y
)
= 1/

(
1+ e−y

)
.

From these BAFs, several linear and non-linear combinations
were obtained using machine learning techniques on previously
collected, labeled datasets. These datasets included data about
participants undergoing different cognitive and emotional tasks.
Specifically, VC9 was found with linear discriminant analysis
technique (LDA, Ye and Li, 2005) on the 121 BAFs to be the best
separator between an auditory detection task (higher cognitive
load) and an auditory classification task (lower cognitive load,
Molcho et al., 2021). VC9 was also recently validated as
a cognitive load biomarker using the n-back task, auditory
detection task, and interruption task (Maimon et al., 2020;
Bolton et al., 2021; Molcho et al., 2021). It was shown that
VC9 activity increased with increasing levels of cognitive load
within cognitively healthy participants (Maimon et al., 2020;
Bolton et al., 2021), and showed higher sensitivity than the theta
band (Maimon et al., 2021). Neurosteer R© provided a sample
per second activity of EEG bands (i.e., delta, theta, alpha, beta,
and gamma) and VC9.

Procedure
The Aurora Electrode strip with three frontal electrodes was
attached to each subject’s forehead and connected to the device
for brain activity recording. The participants were then asked to
complete a standard beginner’s task under the surgical simulator
Simbionix LAP MENTORTM (Simbionix, Airport City, Israel),
which involved grasping and clamping blood vessels using two
different laparoscopic arms. The same task was performed by all
subjects. At the end of the task, the participants were rated by
the surgical simulator based on three main parameters: accuracy
in the execution of the required task, economy of movement
(to use as few movements as necessary to produce the technical
goal), and time required to accomplish the task. All the behavioral
parameters were processed by the virtual simulator Simbionix
and were presented in graphs and values at the end of the
technical goal. All participants were monitored by the EEG
device and were given three attempts to perform the same
task. Participants performed three consecutive trials in the same
session, with a 5-min break between the trials. The performance
of each participant was scored by the surgical simulator’s
algorithm based on accuracy, economy of movement, and time
to complete the task. The concurrent activity of the theta, delta,
and VC9 biomarker was extracted by the Aurora system.

Statistical Analysis
Behavioral performance was extracted from the surgical
simulator after each trial of each participant, including accuracy
(in percentages), economy of movement (in percentages),
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TABLE 1 | Coefficients, standard errors, Z-scores, p-values, and confidence intervals for all effects depicted in the three LMM analyses applied in the three experiments
of the present study.

Experiment Feature Effect Coef. Std. Err. z p > | z| 0.025 0.975

Experiment 1 Economy Intercept 25.18 1.931 13.039 <0.001 21.395 28.965

1st trial vs. 2nd trial 6.82 1.892 3.605 <0.001 3.112 10.528

1st trial vs. 3rd trial 7.968 1.894 4.206 <0.001 4.255 11.681

Time Intercept 185.841 5.33 34.867 <0.001 175.395 196.288

1st trial vs. 2nd trial −26.789 9.513 −2.816 0.005 −45.434 −8.144

1st trial vs. 3rd trial −40.998 8.638 −4.746 <0.001 −57.929 −24.068

VC9 Intercept 49.531 1.006 49.215 <0.001 47.558 51.503

1st trial vs. 2nd trial −1.506 0.594 −2.537 0.011 −2.67 −0.343

1st trial vs. 3rd trial −1.75 0.757 −2.313 0.021 −3.233 −0.267

Theta Intercept −13.324 0.625 −21.314 <0.001 −14.549 −12.099

1st trial vs. 2nd trial −0.556 0.407 −1.367 0.172 −1.354 0.241

1st trial vs. 3rd trial −0.397 0.589 −0.675 0.5 −1.551 0.756

Delta Intercept −2.907 0.742 −3.919 0.000 −4.360 −1.453

1st trial vs. 2nd trial −1.493 0.500 −2.989 0.003 −2.472 −0.514

1st trial vs. 3rd trial −1.100 0.608 −1.809 0.070 −2.292 0.092

Experiment 2 Economy Intercept 39.225 2.637 14.873 <0.001 34.056 44.394

1st trial vs. 2nd trial −0.525 3.49 −0.15 0.88 −7.365 6.316

1st trial vs. 3rd trial 4.375 3.412 1.282 0.2 −2.312 11.062

Time Intercept 119.596 11.414 10.478 <0.001 97.224 141.968

1st trial vs. 2nd trial −8.396 12.449 −0.674 0.5 −32.796 16.004

1st trial vs. 3rd trial −22.883 12.971 −1.764 0.078 −48.306 2.54

VC9 Intercept 49.451 1.341 36.874 <0.001 46.823 52.079

1st trial vs. 2nd trial −0.466 0.726 −0.642 0.521 −1.889 0.957

1st trial vs. 3rd trial −0.758 0.966 −0.784 0.433 −2.652 1.136

Theta Intercept −13.218 0.824 −16.043 <0.001 −14.833 −11.603

1st trial vs. 2nd trial −0.433 0.611 −0.709 0.478 −1.63 0.764

1st trial vs. 3rd trial −0.357 0.638 −0.56 0.576 −1.608 0.894

Delta Intercept −2.117 0.953 −2.221 0.026 −3.986 −0.249

1st trial vs. 2nd trial −0.123 0.901 −0.137 0.891 −1.888 1.642

1st trial vs. 3rd trial −0.862 0.968 −0.891 0.373 −2.759 1.035

Experiment 3 Accuracy Intercept 59.067 4.008 14.738 <0.001 51.211 66.922

1st trial vs. 2nd trial 13.023 3.715 3.505 <0.001 5.741 20.305

1st trial vs. 3rd trial 21.607 3.887 5.559 <0.001 13.99 29.225

Economy Intercept 22.003 1.845 11.923 <0.001 18.386 25.62

1st trial vs. 2nd trial 14.209 1.677 8.47 <0.001 10.921 17.497

1st trial vs. 3rd trial 17.665 2.305 7.664 <0.001 13.147 22.183

Time Intercept 182.022 4.539 40.103 <0.001 173.127 190.918

1st trial vs. 2nd trial −31.743 7.613 −4.17 <0.001 −46.664 −16.822

1st trial vs. 3rd trial −58.707 5.368 −10.936 <0.001 −69.228 −48.185

VC9 Intercept 54.489 1.633 33.375 <0.001 51.289 57.689

1st trial vs. 2nd trial 1.915 1.002 1.911 0.056 −0.049 3.88

1st trial vs. 3rd trial 2.493 1.967 1.267 0.205 −1.362 6.348

Theta Intercept −6.473 0.899 −7.197 <0.001 −8.235 −4.71

1st trial vs. 2nd trial 1.285 0.548 2.346 0.019 0.211 2.358

1st trial vs. 3rd trial 1.432 1.034 1.385 0.166 −0.594 3.459

Delta Intercept 5.950 1.438 4.138 0.000 3.132 8.768

1st trial vs. 2nd trial 2.174 1.157 1.879 0.060 −0.094 4.441

1st trial vs. 3rd trial 3.609 1.878 1.922 0.055 −0.072 7.289

All LMMs included trial (1/2/3) as a within-participants variable, with encoded effects of Trial 1 vs. Trial 2 and Trial 1 vs. Trial 3.

and time to exceed the trial (in seconds). An initial analysis
of all bands revealed that the theta band (averaged dBm at
4–7 Hz), the delta band (averaged dBm at 0.5–4 Hz), and VC9
biomarker (normalized between 1 and 100) were the only three
EEG features that were both significant in at least one effect
of the LMM analysis and one correlation with the repeated

correlation analysis, and therefore were included in the analysis
(see Supplementary Appendix B for the results of the other
oscillations). All features were averaged throughout the task
completion. Activity of all the dependent variables was averaged
per trial per participant and reported as a mean with a SD.
Two main analyses were performed on the behavioral and
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EEG data: On each experiment, seven mixed linear models
(LMM) (Boisgontier and Cheval, 2016) were designed (one for
each dependent variable) to measure the differences between
the three simulator trials for each dependent variable. The
model used trial numbers (1, 2, or 3) as a within-participants
variable, and participants were inserted into the random
slope. Since each trial number variable included three levels,
indicator variables (aka dummy variables) were computed,
with Trial 1 as the reference group. Accordingly, two effects
resulted from the model: one from the second trial, which
represents the significance of difference between the first and
second trials, and one from the third trial, which represents
the significance of difference between the first and third
trials. These effects were extracted straight from the LMM
models, with no need for multiple comparisons corrections.
For significant fixed effects, we calculated effect sizes according
to Westfall et al. (2014) using an analog of Cohen’s d (i.e., the
expected mean difference divided by the expected variation
of an individual observation). Prior to analyses, each dataset
for comparison was revised with Shapiro’s test of normal
distribution and Levene’s test of equal variance (for all test
results, see Supplementary Appendix B). If any were significant,
a Wilcoxon nonparametric test was applied instead of LMM.
Two-tailed p < 0.05 was considered statistically significant.
These analyses were performed using Python Statsmodels
(Seabold and Perktold, 2010).

The second analysis was designed to evaluate the correlation
between individual performance and the EEG feature. We
took into this analysis each of the EEG features’ activity and
behavioral performance per each participant’s trial. Since during
each experiment, each participant underwent three task trials,
the data points are not independent. To consider both results
from repeated participants’ trials and between participants, we
used the repeated measures correlation (rmcorr, Bakdash and
Marusich, 2017). Rmcorr estimates the common regression
slope, the association shared among individuals. This analysis
was underscored by the rmcorr R package (Bakdash and
Marusich, 2017), using 1.4.1717 R studio (RStudio Team, 2021).
An initial analysis of all bands revealed that the theta band
(averaged dBm at 4–7 Hz), the delta band (averaged dBm
at 0.5–4 Hz), and VC9 biomarker (normalized between 1
and 100), were the only three EEG features that were both
significant in at least one effect of the LMM analysis and
one correlation with the repeated correlation analysis (see
Supplementary Appendix B). The statistical analyses took into
consideration the averaged VC9, delta, and theta activity during
each task repetition (an overall average across experiments and
trials of 144.17 s).

Results
Behavioral Measurements
A full description of the mixed linear models’ (LMM) parameters
(coefficients, standard errors, Z-scores, p-values, and confidence
intervals) for all models used in this study are presented in
Table 1. Averages and standard errors of behavioral data in
Experiment 1 are presented in Figure 2.

A significant increase of the participants’ accuracy was
observed between the first and second trials and between the first
and third trials (W = 16, p = 0.004; and W = 10, p = 0.004,
respectively), as well as a significant increase in the economy
of movement (p < 0.001, d = −0.799; p < 0.001, d = −1.054,
respectively). The average time required for the completion of the
task was also significantly reduced between the first and second
trials, and first and third trials (p = 0.005, d = 0.854; p < 0.001,
d = 1.562, respectively).

Electroencephalography Features
Distributions of VC9, theta, and delta data in Experiment 1 are
presented in Figure 3. VC9 activity was significantly reduced
between the first and second attempts and between the first
and third attempts (p = 0.011, d = 0.474; p = 0.021, d = 0.503,
respectively). Delta activity significantly decreased between the
first and second attempts (p = 0.003, d = 0.625). Theta did
not exhibit any significant differences between the trials (all
p’s> 0.05).

Correlations Between Electroencephalography
Features Activity and Behavioral Performance
VC9 activity significantly correlated with all three behavioral
measurements and was found to decrease with better
performance (i.e., negatively correlated with accuracy and
economy of movement and positively correlated with time):
rrm = −0.46, p = 0.003; rrm = −0.51, p = 0.001; and rrm = 0.43,
p = 0.006 for accuracy, economy of movement, and time,
respectively; see Figure 4. Delta also significantly correlated with
all three measurements: rrm = −0.57, p < 0.001; rrm = −0.6,
p < 0.001; and rrm = 0.5, p = 0.001 for accuracy, economy
of movement, and time, respectively. Theta decreased with
higher accuracy and economy of movement and increased
with time: rrm = −0.41, p = 0.01; rrm = −0.4, p = 0.012; and
rrm = 0.35, p = 0.029 for accuracy, economy of movement, and
time, respectively.

Discussion
Experiment 1 results exhibited a significant improvement in all
behavioral measurements of performance, as well as a significant
decrease in VC9 and delta activity (but not theta) between
the three trials. In addition, VC9 and delta activity decreased
with better individual performance, which was expressed by the
significant correlations between all three behavioral measures and
VC9 and delta activity. Theta also exhibited individual differences
and decreased with higher accuracy and economy of movement,
and marginally increased with longer time to complete the task.
These results suggest that changes in cognitive load correspond to
performance in a surgery simulator as shown by VC9, delta, and,
to some extent, frontal theta.

Next, we aimed to explore the effect of nighttime sleep
memory consolidation on task performance in the simulator
and participants’ brain activity. Hence, we conducted a
second experiment that included 10 participants who had also
participated in Experiment 1. They performed an additional
three-trial session on the consecutive day.
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FIGURE 2 | The means of accuracy (in percentage), economy of movement (in percentage), and time to exceed the task (in seconds) obtained in the three trials of
Experiment 1, as a function of task repetitions: first trial (blue), second trial (red), and third trial (green), for all participants (n = 19). Error bars represent standard
errors. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

FIGURE 3 | (A) The distribution of participant VC9 activity (normalized between 1 and 100); (B) the distribution of theta (averaged power of 4–7 Hz in dBm); and (C)
the distribution of delta (averaged power of 0.5–4 Hz in dBm), obtained in the three trials of Experiment 1, as a function of task repetitions: first trial (blue), second
trial (red), and third trial (green), for all participants (n = 19). Dashed lines represent means and SDs. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

EXPERIMENT 2

Materials and Methods
Participants and Procedure
On the day following Experiment 1, 10 randomly chosen
participants performed an additional three trials of
the same procedure.

Results
Behavioral Measurements
Behavioral performance did not differ between the three trials
of this session in any of the measurements (all p’s > 0.05; see
Figure 5).

Electroencephalography Features
Activity levels of all EEG features (VC9, theta, and delta) did not
differ between the trials of the session (p> 0.05; see Figure 6).

Correlations Between Electroencephalography
Features Activity and Behavioral Performance
VC9 activity significantly correlated with all three behavioral
measurements and was found to decrease with better participant
performance (i.e., negatively correlated with accuracy and
economy of movement and positively correlated with time):
rrm = −0.47, p = 0.033; rrm = −0.67, p = 0.001; and rrm = 0.64,
p = 0.002 for accuracy, economy of movement, and time,
respectively. Delta also significantly correlated with all three
measurements: rrm = −0.69, p = 0.001; rrm = −0.65, p = 0.001;
and rrm = 0.63, p = 0.002 for accuracy, economy of movement,
and time, respectively. Theta did not correlate significantly with
any of the behavioral measurements (all p’s> 0.05; see Figure 7).

Comparison Between Experiment 1 and Experiment 2
To explore the “offline gains” between Experiment 1 and
Experiment 2, behavioral performance and brain activity of
the 10 participants who participated in both experiments were
studied. Paired t-tests on the activity of the 10 participants
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FIGURE 4 | Mean activity of VC9 as a function of accuracy (A), economy (B), and time (C); theta as a function of accuracy (D), economy (E), and time (F); and delta
as a function of accuracy (G), economy (H), and time (I) per trial and participant obtained in Experiment 1 (n = 19). Rrm and p-values presented.

who underwent both experiments were calculated. The t-tests
compared accuracy, economy of movement, time, VC9, theta,
and delta activity for the last trial of Experiment 1 and the first
trial of Experiment 2. Both behavioral performance and brain
activity were the same in the first trial of Experiment 2 relative
to the last trial of Experiment 1: all p’s > 0.05; see Figure 8 and
Table 2.

Discussion
The results of Experiment 2 exhibited a clear correspondence
between behavioral performance and EEG features. First, both
behavioral performance and all EEG features’ activity did not
exhibit significant differences between the three trials, meaning

that participants’ performance did not improve, and theta, delta,
and VC9 activity did not decrease between the three trials.
Second, VC9 and delta activity decreased with better behavioral
performance, as depicted by a significant correlation with all three
behavioral measurements. Theta correlated with accuracy but not
with economy of movement and time.

The comparison between the last trial of Experiment 1 and
the first trial of Experiment 2 showed no difference between the
two in any of the behavioral or neurophysiological measures.
However, taken together with the null improvement during
these three sessions, this lack of difference may be explained by
participants having reached their asymptotic level (ceiling effect):
that participants reached their maximum ability on the third trial
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FIGURE 5 | The means of accuracy (in percentage), economy of movement (in percentage), and time to exceed the task (in seconds) obtained in the three trials of
Experiment 2, as a function of task repetitions: first trial (blue), second trial (red), and third trial (green), for participants who underwent Experiment 2 (n = 10). Error
bars represent standard errors. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

FIGURE 6 | (A) The distribution of user VC9 activity (normalized between 1 and 100); (B) the distribution of theta (averaged power of 4–7 Hz in dBm); and (C) the
distribution of delta (averaged power of 0.5–4 Hz in dBm), obtained in the three trials of Experiment 2, as a function of task repetitions: first trial (blue), second trial
(red), and third trial (green), for all participants (n = 10). Dashed lines represent means and SDs. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

of the first day, and maintained it through the first trials of the
second day. To further reveal “offline gains” from nighttime sleep
consolidation, we conducted a third experiment on an additional
19 medical students who had not participated in Experiments 1
and 2. Participants performed a single-task trial per day for three
consecutive days. This was done to make sure participants did not
reach asymptotic performance levels before the nighttime sleep
consolidation, since they would only complete a single trial before
nighttime sleep.

EXPERIMENT 3

Materials and Methods
Participants and Procedure
Nineteen (63% females) healthy medical students from their
first to sixth years of studying (mean = 4), who did not
participate in former Experiments 1 and 2, with mean
age of 25.631 (SD = 2.532), participated in Experiment
3. All students had no prior experience using a surgical
simulator. Participants underwent the same task as in

Experiments 1 and 2, with one trial per day over three
consecutive days.

Results
Behavioral Measurements
Averages and standard errors of the behavioral data in
Experiment 3 are presented in Figure 9. A significant increase
of the participants’ accuracy was observed between the first
and second trials and between the first and third trials
(W = 11, p = 0.002; W = 2, p < 0.001, respectively), as
well as a significant increase in the economy of movement
(p < 0.001, d = −1.762; p < 0.001, d = −1.83, respectively). The
average time required for the completion of the task was also
significantly reduced between the trials (p < 0.001, d = 1.014;
p < 0.001, d = 3.171 for first vs. second trials and first vs. third
trials, respectively).

Electroencephalography Features
Distributions of VC9, theta, and delta data in Experiment 3 are
presented in Figure 10. There were no significant differences in
VC9 and delta activity between the trials on consecutive days (all
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FIGURE 7 | Mean activity of VC9 as function of accuracy (A), economy (B), and time (C); theta as function of accuracy (D), economy (E), and time (F); and delta as
function of accuracy (G), economy (H), and time (I) per trial and participant obtained in Experiment 2 (n = 10). Rrm and p-values presented.

p’s > 0.05). Theta exhibited a significant difference between the
first and second trials (p = 0.019, d = −0.354), but the difference
between the first and third trials did not reach significance level
(p> 0.05).

Correlations Between Electroencephalography
Features Activity and Behavioral Performance
No significant correlations were found between any of the
EEG features and behavioral measurement (all p’s > 0.05; see
Figure 11).

Discussion
Experiment 3 results reflect “offline gains”: participants’
performances under the simulator improved with the trials’
repetition, although each occurred on the consecutive day.
However, VC9, delta, and theta did not show significant
differences between the trials, nor did they exhibit significant
correlations with any of the behavioral measurements. This
discrepancy might be explained by the different brain networks
that take part in “online” versus “offline” learning; see general
discussion below.
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FIGURE 8 | (A) The distribution of VC9 (normalized between 1 and 100), theta (averaged power of 4–7 Hz in dBm), and delta (averaged power of 0.5–4 Hz in dBm),
obtained in the last trial repetition of Experiment 1 (blue), and the first task repetition of Experiment 2 (red), for participants who participated in both Experiment 1 and
Experiment 2 (n = 10). Dashed lines represent means and SDs. (B) The means of accuracy (in percentage), economy of movement (in percentage), and time to
exceed the task (in seconds), obtained in the last trial repetition of Experiment 1 (blue), and the first task repetition of Experiment 2 (red), for participants who
participated in both Experiment 1 and Experiment 2 (n = 10). Error bars represent standard errors.

GENERAL DISCUSSION

In this study, we continuously measured cognitive load levels
using theta and band power and VC9 biomarker activity during
task performance on a surgical simulator. A single-channel EEG
device utilizing decomposition of the EEG signal via harmonic
analysis was used to obtain the novel VC9 biomarker as well as
the frequently used theta and delta bands. All EEG features (i.e.,
theta, delta, and VC9) were previously shown to correlate with
cognitive load levels (Antonenko et al., 2010; Maimon et al., 2020;
Bolton et al., 2021; Molcho et al., 2021). Experiment 1 consisted
of three repeating trials on the surgery simulator, and its results
showed that participants’ performances improved while VC9 and
delta activity decreased. Additionally, VC9, delta, and, to some
extent, theta band decreased with higher individual performance.
Overall, these results support previous findings that as the
participant becomes more proficient in performing a task, as
depicted by the behavioral performance, the pre-frontal activity
associated with cognitive load is reduced (Takeuchi et al., 2013).

To examine the effect of nighttime sleep memory
consolidation, we conducted Experiment 2, which included
three simulator trials on the consecutive day. Testing the “offline
gains” refers to the improvements in skill acquisition preceding
a consolidation during nighttime sleep between tasks trainings
and without further practice (Walker et al., 2002). Results
revealed no significant differences in performance or EEG

TABLE 2 | t/W statistics and p-values for t-tests/Wilcoxon tests comparing
Experiment 1 last trial and Experiment 2 first trial, for participants who participated
in both Experiment 1 and Experiment 2 (n = 10).

Feature Statistic p-value

Accuracy t = −0.476 0.645

Economy t = −0.831 0.428

Time t = 0.524 0.613

VC9 W = 21 0.557

Theta W = 26 0.922

Delta t = 1.103 0.298

features between the three trials. Although they did not exhibit
significant decreases between the trials, the VC9, delta, and, to
some extent, theta still exhibited significant correlations with
individual performances. Further analysis revealed that both
behavioral and EEG features results maintained the same levels
between the last trial of the first day and the first trial on the
second day. Taken together, these findings potentially indicate
that “offline gains” were not detected, since participants reached
their maximum performance levels on the last trial of the first day
and maintained them throughout the trials on the following day.

Consequently, we conducted an additional experiment in
which 19 medical students performed a single simulator trial on
three consecutive days. This was done to prevent participants
from reaching their maximum performance levels on the first

Frontiers in Neuroscience | www.frontiersin.org 12 January 2022 | Volume 15 | Article 694010

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-694010 January 17, 2022 Time: 17:17 # 13

Maimon et al. Cognitive Load Biomarker Surgical Simulator

FIGURE 9 | The means of accuracy (in percentage), economy of movement (in percentage), and time to exceed the task (in seconds) obtained in the three trials of
Experiment 3, as a function of task repetitions: first trial (blue), second trial (red), and third trial (green), for participants who underwent Experiment 3 (n = 19). Error
bars represent standard errors. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

FIGURE 10 | (A) The distribution of user VC9 activity (normalized between 1 and 100); (B) the distribution of theta (averaged power of 4–7 Hz in dBm); and (C) the
distribution of delta (averaged power of 0.5–4 Hz in dBm), obtained in the three trials of Experiment 3, as a function of task repetitions: first trial (blue), second trial
(red), and third trial (green), for all participants (n = 19). Dashed lines represent means and SDs. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

day, and to reveal the nighttime sleep memory consolidation
related to “offline gains.” Indeed, participants’ performances in
all behavioral measurements improved significantly between the
testing days. Interestingly, VC9 and delta showed no difference
between the trials, and the theta band even showed a mild
increase in activity between the trials. This lack of increase in
activity can be explained by the difference in brain networks
that are involved in fast vs. slow stages of motor skill learning
(Dayan and Cohen, 2011). Similar to online learning, fast
motor skill acquisition occurs during task training and could
last minutes (Karni et al., 1995). In the slow stage, further
gains are achieved across multiple sessions of training, mostly
divided by nighttime sleep consolidation. The neural substrates
during the fast stage show complex brain activation patterns.
First, they include increasing activity in the Supplementary
Motor Area (SMA), dorsomedial striatum (DMS), premotor
cortex (PM), posterior parietal cortex (PPC), and posterior
cerebellum (Honda et al., 1998; Grafton et al., 2002; Floyer-
Lea and Matthews, 2005). This reflects the requirement of

additional cortical brain activity during practice. At the same
time, the fast stage also causes decreased activity of the
dorsolateral prefrontal cortex (DLPFC), primary motor cortex
(M1), and pre Supplementary Motor Area (preSMA, Poldrack,
2000). These decreases may suggest that with online practice,
one uses fewer neuronal resources (Hikosaka et al., 2002).
Conversely, the slow motor skill stage is characterized by
increased activity in M1, S1, SMA, and DLS (Floyer-Lea and
Matthews, 2005), and decreased activity in the lateral cerebellum
(Lehéricy et al., 2005). Notably, the decrease in the frontal area
(DLPFC), which commonly correlates with WM load (Manoach
et al., 1997), is not visible during this slow learning stage.
Thus, progress from fast to slow stages can be generalized
to the shift from anterior to more posterior brain regions
(Floyer-Lea and Matthews, 2005).

The current WM biomarkers that were used in the present
research were extracted via frontal single-EEG channel, and
although this electrode can extract additional brain activity
beyond the frontal lobe, we aimed to focus on biomarkers
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FIGURE 11 | Mean activity of VC9 as a function of accuracy (A), economy (B), and time (C); theta as a function of accuracy (D), economy (E), and time (F); and
delta as a function of accuracy (G), economy (H), and time (I) per trial and participant obtained in Experiment 3 (n = 19). Rrm and p-values presented.

that reflect frontal activity associated with WM load. Taken
together, this may explain the results obtained in Experiment
3 of the present study, which revealed prominent “offline
gains” within the behavioral performance of the task, but
no decrease within the current EEG WM load biomarkers.
Further research, however, should look for novel biomarkers
that will be able to correlate with such posterior/limbic activity.
Finally, this discrepancy may further support frontal theta,
delta, and VC9 as continuous measurements of cognitive

load, to monitor WM load during task completion and
not as evaluators of cognitive load between tasks’ sessions.
Therefore, these biomarkers may be adequate for assessing
laparoscopic dexterity of non-experts during their first real-
life surgeries. However, for the assessment of surgeons’
improvement in between laparoscopic practices, other
biomarkers should be considered.

The activation patterns obtained in Experiments 1 and
2 are compatible with WM load, as previously described
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(Zarjam et al., 2011; Wang et al., 2016). Delta and VC9 activity
decreased with the lower cognitive load that resulted from
simulator trial repetition, but the theta band activity did not
decrease. As shown in previous studies (Maimon et al., 2020;
Molcho et al., 2021), VC9 was found to be more sensitive to
lower loads than theta and delta, as its activity also showed a
significant decrease between the first and third task trials. This
further validates VC9 as an effective biological measurement for
the assessment of cognitive load while performing laparoscopic
tasks using the surgical simulator specifically and suggests that
it may provide a measure of cognitive functioning during
surgery. Due to the unobtrusive nature of mobile EEG devices,
such devices can be used by surgeons during live operations.
Intraoperative evaluation can provide an objective metric to
assess surgeons’ performance in real-life scenarios and measure
additional unobservable behaviors, such as mental readiness
(Cha and Yu, 2021).

Since simulation-based training is an effective tool for
acquiring practical skills, the question remains as to which
methods should be utilized to optimize this process and achieve
better assessment of improved manual dexterity. Specifically, it is
not fully understood which brain processes during simulation-
based training translate to better skill acquisition through
practice. Here, we show that VC9 and delta, collected via
single-channel EEG set, can be reliably used to monitor
and assess participants’ WM levels during manual practice.
Furthermore, the correlations between VC9, delta, and improved
simulator scores can be translated to other areas and used
in other procedures that require manual training. Importantly,
as this device is portable and can be easily worn inside
the operating room, it could potentially be used to predict
participants’ WM loads and indirect performance during real-life
operating procedures.

This study has several limitations. The analyses were
performed on young medical internists, which may not accurately
reflect the overall medical population. Additionally, evaluating
finer differences between the experiments requires a larger cohort
of participants. Future studies on a larger and more diverse
population should further validate the findings presented in
this work, as well as study the effect of prolonged breaks
on the activity of these biomarkers. Moreover, a 24-h break
period between the sessions may not be sufficient to study the
effects of long-term memory on the prefrontal brain activity
during the simulation. Future studies should evaluate longer
time windows to assess the temporal changes in the activity
of the working-memory-associated biomarkers and search for
additional biomarkers to represent other cerebral regions beyond
the frontal regions (like the limbic or motor systems).

To conclude, in this study, we extracted the previously
validated cognitive load biomarkers—theta, delta, and VC9—
from a novel single-channel EEG using advanced signal analysis.
Results showed high correlations between the EEG features and
participants’ individual performances using a surgical simulator.
As surgical simulations allow doctors to gain important skills and
experience needed to perform procedures without any patient
risk, evaluation and optimization of these effects on medical staff
are crucial. This could potentially be expanded to evaluate the
efficacy of different medical simulations to provide more efficient
training to medical staff and to measure cognitive and mental
loads in real laparoscopic surgeries.
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