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Recently, machine learning techniques have been widely applied in discriminative
studies of schizophrenia (SZ) patients with multimodal magnetic resonance imaging
(MRI); however, the effects of brain atlases and machine learning methods remain
largely unknown. In this study, we collected MRI data for 61 first-episode SZ patients
(FESZ), 79 chronic SZ patients (CSZ) and 205 normal controls (NC) and calculated 4
MRI measurements, including regional gray matter volume (GMV), regional homogeneity
(ReHo), amplitude of low-frequency fluctuation and degree centrality. We systematically
analyzed the performance of two classifications (SZ vs NC; FESZ vs CSZ) based on
the combinations of three brain atlases, five classifiers, two cross validation methods
and 3 dimensionality reduction algorithms. Our results showed that the groupwise
whole-brain atlas with 268 ROIs outperformed the other two brain atlases. In addition,
the leave-one-out cross validation was the best cross validation method to select the
best hyperparameter set, but the classification performances by different classifiers and
dimensionality reduction algorithms were quite similar. Importantly, the contributions of
input features to both classifications were higher with the GMV and ReHo features of
brain regions in the prefrontal and temporal gyri. Furthermore, an ensemble learning
method was performed to establish an integrated model, in which classification
performance was improved. Taken together, these findings indicated the effects of these
factors in constructing effective classifiers for psychiatric diseases and showed that
the integrated model has the potential to improve the clinical diagnosis and treatment
evaluation of SZ.
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INTRODUCTION

Schizophrenia (SZ) is a chronic psychiatric disorder,
characterized by disabling mental symptoms such as auditory
delusions, hallucinations and disrupted higher-order cognitive
functions (Austin, 2005; Leucht et al., 2007). With the
development of machine learning methods, both structural
and functional magnetic resonance imaging (MRI) data have
been applied into the discriminative analyses of SZ patients
(Kasparek et al., 2011; Deanna et al., 2012; Ota et al., 2012; Liu
Y. et al., 2017; Chen et al., 2020). For example, support vector
machine (SVM) is the most widely used method to distinguish
SZ patients from normal controls (NCs) (Liu Y. et al., 2017; Chen
et al., 2020) or to differentiate illness stages of SZ, such as first-
episode schizophrenia (FESZ) and chronic schizophrenia (CSZ)
(Lu et al., 2018; Wu et al., 2018). Similarly, other classifiers such
as random forest (Deanna et al., 2012) and linear discriminant
analysis (LDA) (Kasparek et al., 2011; Ota et al., 2012) have also
been utilized in discriminative analyses of SZ patients.

Recently, a number of discriminative studies of SZ patients
have adopted the strategy of multiple classifiers, including LDA
(Junhua et al., 2018), SVM (Watanabe et al., 2014; Raymond
et al., 2017) and extreme learning machine (Iqbal et al., 2017), and
multiple dimensionality reduction algorithms, such as principle
component analysis (PCA) (Raymond et al., 2017) and t-test
(Junhua et al., 2018). Importantly, different classifiers have been
selected as the best classifier in previous studies, which shows
diversity among the machine learning methods. Thus, to achieve
an optimal performance of a discriminative analysis, a systematic
evaluation with multiple machine learning methods is essential
and of great importance.

Moreover, previous discriminative analyses using different
brain atlases have shown that the choice of brain atlases
seems rather arbitrary and could lead to different results
(Kalmady et al., 2019). A number of researchers have performed
discriminative analyses of SZ patients based on the automated
anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)
with accuracies from 76.3% to 85% (Longfei et al., 2013;
Kim et al., 2015; Junhua et al., 2018; Matsubara et al., 2019).
A brain atlas with 95 regions of interest (ROIs) has also been
utilized in the discriminative analysis of SZ patients to achieve
89.3% sensitivity and 93.6% specificity (Karageorgiou et al.,
2011). Additionally, another study used the Desikan atlas for
discriminative analysis and obtained an accuracy of 85.0% (Xiao
et al., 2017). However, few studies have evaluated the effects of
brain atlases on discriminative analyses of SZ patients.

In this study, we collected structural MRI (sMRI) and resting-
state functional MRI (rs-fMRI) data from 345 subjects and used
three brain atlases to calculate 4 MRI measurements, including
regional gray matter volume (GMV), regional homogeneity
(ReHo), amplitude of low-frequency fluctuation (ALFF) and
degree centrality (DC). We then performed a systematic
evaluation of the classification performances in two classifications
(NC vs SZ, FESZ vs CSZ) using five classifiers, two cross
validation methods, and 3 dimensionality reduction algorithms.
Moreover, an ensemble learning method was performed to
establish an integrated model to improve the clinical diagnosis.

MATERIALS AND METHODS

Subjects
A total of 61 FESZ patients, 79 CSZ patients and 205 NCs
were included (Table 1). The inclusion and exclusion criteria
of subjects were the same as those in our previous studies (Lu
et al., 2016; Wu et al., 2018). All subjects, aged 18 to 45 and
of Han nationality, underwent a clinical assessment with the
Positive and Negative Syndrome Scale (PANSS) which contains
three subscales (general psychopathology, positive symptoms and
negative symptoms) and indicates the severity of the symptoms
(Kay et al., 1987; Van Tol et al., 2014). Only the subjects with
PANSS scores over 60 and with a period of education of more
than 6 years were chosen for the project. Meanwhile, they also
had to be diagnosed by experienced clinical psychiatrists to be
SZ in accordance with the Diagnostic and Statistical Manual of
Mental Disorders-IV-Text Revision (DSM-IV-TR) criteria (First
et al., 1997). Among these subjects, first-episode patients with
a course of disease under 2 years were categorized as FESZ
if they had not taken any antipsychotic drugs. Meanwhile, the
patients who had suffered recurrent symptoms and had already
undergone drug therapy with a course of disease over 2 years were
categorized as CSZ.

If one of the following criteria were met, the SZ patient was
excluded: (1) alcohol dependence or other mental disorders,
such as depressive disorder, dementia or ental retardation,
based on DSM-IV-TR criteria; (2) severe physical disorders
potentially derived from substance dependence including definite
diabetes, hypertension, heart disease, thyroid diseases or narrow-
angle glaucoma; (3) history of epilepsy or febrile convulsions;
(4) electroconvulsive therapy within the past six months; (5)
serious tardive dyskinesia or drug-induced neuroleptic malignant
syndrome; (6) contraindication for MRI; (7) lack of legal
guardians or noncompliant with drug administration; (8) an
irritative state or a serious suicide attempt; and (9) lactation,
pregnancy or anticipated pregnancy. Meanwhile, NCs with
pregnancy, contraindications for MRI or relatives diagnosed with
psychiatric Axis I disorders based on the DSM-IV-ST criteria
were also excluded. All the subjects’ data were collected from
the Affiliated Brain Hospital of Guangzhou Medical University,
and all subjects were informed about the experimental details
and signed informed consent before clinical tests. The research
was strictly subject to the Declaration of Helsinki and was under
approval of the ethics committees of the Affiliated Brain Hospital
of Guangzhou Medical University.

MRI Data Acquisition
Magnetic resonance imaging data of all subjects were collected by
a Philips 3T MR device system in the Affiliated Brain Hospital
of Guangzhou Medical University. The echo-planar imaging
(EPI) sequence (repetition time = 2,000 ms, echo time = 30 ms,
acquisition time = 2,000 ms, field of view = 210 mm × 210 mm,
flip angle = 90◦, spatial resolution = 3.4 mm × 3.4 mm × 4 mm,
64 × 64 × 33 matrix) was used to generate the functional
MRI data. The gradient-echo T1-weighted sequence (repetition
time = 8.2 ms, echo time = 3.7 ms, flip angle = 7◦, spatial
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TABLE 1 | Demographic and clinical characteristics.

FESZ patients CSZ patients NC Statistic value P-value

Gender (M/F) 41/20 54/25 110/95 χ2
= 3.53 0.03

Age (years) 32.08 ± 7.42 33.21 ± 8.37 32.52 ± 8.40 F = 5.39 <0.05a,b

Education (years) 10.39 ± 3.25 11.97 ± 3.22 12.84 ± 2.83 F = 21.33 <0.05a,b

PANSS-PScore 24.02 ± 4.50 22.47 ± 5.70 – T = 1.74 0.083

PANSS-NScore 21.64 ± 7.70 23.22 ± 7.29 – T = −1.24 0.218

PANSS-GScore 40.31 ± 8.85 39.54 ± 10.18 – T = 0.47 0.641

PANSS-TScore 85.97 ± 17.49 85.23 ± 19.44 – T = 0.23 0.816

All data presented above were in format: average ± standard deviation. The factor age (years) and education (years) were analyzed by separate one-way ANOVA and
the gender was analyzed by χ2 test. Post hoc pairwise comparison was utilized to analyze distinguished discrimination with two-sample t-test. P-value < 0.05 was
considered significant. aPost hoc pairwise comparison showed the significant discrepancy between FESZ and NC. bPost hoc pairwise comparison showed the significant
discrepancy between CSZ and NC.
CSZ, chronic schizophrenia; F, female; FESZ, first-episode schizophrenia; GScore, general score; M, male; NCs, normal controls; NScore, negative syndrome score;
PScore, positive syndrome score; TScore, total syndrome score.

resolution = 1 mm × 1 mm × 1 mm, 256 × 256 × 188 matrix)
was used to generate the structural MRI data. All participants
were instructed to minimize head movement with the eyes closed
in a sober state.

Preprocessing
The sMRI data were preprocessed by the SPM12 software
package1 to calculate GMV. The raw images were first
standardized with a customized template provided by the
DARTEL template creation tool to eliminate the deviation caused
by individual discrepancies. Then they were separated into gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
by the VBM toolkit embedded in the SPM12 software package.
The images were also smoothed by an 8 mm full width at
half maximum (FWHM) Gaussian kernel. Finally, the structural
brain data from GM images were calculated in each region
of three brain atlases, including the AAL atlas with 90 brain
regions (Tzourio-Mazoyer et al., 2002), the human brainnetome
(HBN) atlas with 246 brain regions (Fan et al., 2016), and
the groupwise whole-brain (GWB) atlas with 268 brain regions
(Shen et al., 2013; Finn et al., 2015).

The rs-fMRI data were also preprocessed by SPM12 and
DPARSF V4.4 software2. The image data from the first 10 time
series were excluded owing to the instability of the device and
fluctuations in the subjects’ mental state at the beginning. The
noise from the variance in signal acquisition times and from
head motion was eliminated to amplify the valid image signal.
The images were then normalized by the standard EPI template.
Finally, the bandpass filter (0.01–0.08 Hz) was utilized to reduce
the high-frequency physiological noise and the low-frequency
drift. Three rs-fMRI measurements including ReHo, ALFF and
DC were calculated in each region of the three brain atlases.

ReHo is Kendall’s coefficient of concordance on the time series
of a certain voxel with respect to its 26 adjacent neighbors,
suggesting functional synchronization within the voxel and
its neighbors (Govindarajulu, 1992). The ReHo values were
normalized to lessen the deviation resulting from individual

1http://www.fil.ion.ucl.au.uk/spm/
2http://rfmri.org/DPARSF

variance and were averaged in each region of the different brain
atlases. ALFF is measured as the averaged square root within
the bandpass (0.01–0.08 Hz) after fast Fourier transform (FFT)
for each voxel and represents the level of regional spontaneous
neuronal activity (Yu-Feng et al., 2007). Similarly, the ALFF
values of each voxel were divided by the global average ALFF
value for normalization and averaged in each region of the
different brain atlases. The DC is described as the average of
the Pearson correlation coefficients between the time series of a
certain ROI and those of other ROIs, evaluating the connection
degree of a certain ROI to other ROIs (Zang et al., 2004). The time
series of a certain ROI was calculated as the averaged time series
of all voxels in that region.

Classification Analysis
After the preprocessing, the multimodal features were combined
to form the concatenated feature vector. The concatenated
feature vector was composed of 360 measurements (90
GMV measurements+90 ReHo measurements+90 ALFF
measurements+90 DC measurements) if AAL atlas was
used, of 986 measurements (246 GMV measurements+246
ReHo measurements+246 ALFF measurements+246
DC measurements) if HBN atlas was used, and of
1,072 measurements (268 GMV measurements+268
ReHo measurements+268 ALFF measurements+268 DC
measurements) if GWB atlas was used.

With the concatenated feature vector available, the whole
pipeline architecture of classification is shown in Figure 1 In
both classifications, five classifiers were utilized, including SVM,
logistic regression (LR), LDA, random forest (RF) and K nearest
neighbor (KNN). First developed by Vapnick in 1995, SVM
aims to find the optimal hyperplane separating the dataset with
different labels into multiple hyperspaces (Sain, 1997). Similar to
SVM, LR also generates a hyperplane by a linear transformation
function and sigmoid activation function to separate the data
and to further provide the probability of unseen data being
classified into a certain group (Peng and Ingersoll, 2002). LDA
was first suggested by Fisher in 1936 (Fisher, 1936). Its principle
is to project the dataset to the 1D dimension where the points
representing data within the same group tend to get close
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FIGURE 1 | The pipeline architecture of the data preprocessing and discriminative analysis. AAL atlas, automated anatomical labeling atlas; ALFF, amplitude of low
frequency fluctuation; ANOVA, analysis of variance; DC, degree centrality; GMV, regional gray matter volume; GWB atlas, groupwise whole-brain atlas; HBN atlas
human brainnetome atlas; KNN, K nearest neighbor; LDA, linear discriminant analysis; LR, logistic regression; PCA, principle component analysis; ReHo, regional
homogeneity; RF, random forest; RFE, recursive feature elimination; rs-fMRI, resting-state functional magnetic resonance imaging; sMRI, structural magnetic
resonance imaging; SVM, support vector machine.

and points representing data in different groups separate from
each other (Fisher, 1936). RF is a bagging algorithm, and it
predicts unseen data labels based on votes from all decision
trees embedded in RF (Breiman, 1996). KNN simply counts
the labels of a datum’s K nearest neighbors and predicts this
datum’s label as the one with the highest frequency (Zhang, 2016).
The list of hyperparameters available for all classifiers is shown
in Supplementary Table 1. The best hyperparameter set was
selected by cross validation as mentioned later.

Considering the redundancy or irrelevance of the features
which may lead to overfitting when training, dimensionality
reduction was performed before classification process. The
dimensionality reduction algorithms applied in this study
included PCA, analysis of variance (ANOVA) and recursive
feature elimination (RFE). PCA has been widely used as a feature
selection method in machine learning classification (Cao et al.,
2003; Kriti Virmani et al., 2016). It basically projects the data to
lower dimensions with the largest variance by a linear function
(Jolliffe, 2005). it calculates the eigenvalues and eigenvectors
of the covariance matrix in original feature space, and then
selects n% percent of eigenvalues to represent the discriminative
energy of data on different level. The corresponding n% percent

of eigenvectors would then form the transformation matrix.
ANOVA is also a common method for feature selection (Sheikhan
et al., 2013; Bejani and Gharavian, 2014; Li et al., 2018;
Abdulsalam et al., 2020). It first performs the F test on each
separate feature together with data labels. Then it selects features
according to the percentile of the highest F scores (Neter
et al., 1996). Similarly, RFE also excludes the features with low
relevance to label prediction, but the criteria refer to the weights
derived from a certain classifier such as SVM (Guyon et al.,
2002). Basically, it prunes the least important features iteratively
according to the weights derived from the classifier until the
desired number of features to select is reached. It has also
been widely used in feature selection and achieved good results
(Fernandez-Lozano et al., 2014; Xue et al., 2018; Albashish et al.,
2021). The list of hyperparameters available for all dimensionality
reduction methods is shown in Supplementary Table 2. The
best hyperparameter set was selected by cross validation as
mentioned below.

Twenty percent of the whole dataset was randomly separated
to establish a separate test set for classification evaluation
after training, and the rest of the dataset was subjected to
cross validation to construct the predictive model with the
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best hyperparameter set. The application of a separate test set
guaranteed the generalization of the classification model. In
this study, there were two types of cross validation methods
available, namely, 10-fold cross validation (10FCV) and leave-
one-out cross validation (LOOCV). The cross validation in the
study is mainly used for hyperparameter selection, which is also
known as grid search cross validation (Sarah and Media, 2017).
In 10FCV, the dataset was split into 10 portions of equal size,
where 1 portion was used for validation and the remaining nine
portions were used for training, and this occurred in an iterative
manner. During the cross validation, the data were standardized
by removing the mean and scaling to unit variance before the
dimensionality reduction and classification. The normalization,
dimensionality reduction and classification constituted the model
as a whole. All possible combinations of hyperparameters for the
model, as shown in Supplementary Tables 1, 2, were validated by
the 10 validation sets in the 10FCV. The optimal hyperparameter
set for the model was selected based on the average accuracy
generated from the 10 iterations and was applied to construct the
predictive model trained by 10 portions of data taken together.
The performance of the model was assessed using the separate
test set. Similar to 10FCV, LOOCV simply selects one portion of
the data for validation and all others for training.

The classification performances were systematically analyzed
in both classifications for different combinations of brain
atlases, classifiers, cross validation methods, and dimensionality
reduction algorithms. The receiver operating characteristic
(ROC) curve was also plotted to calculate the area under the
ROC curve (AUC), which was between 0 and 1. It is believed
that the closer the AUC is to 1, the better the classification is. In
parallel, the sensitivity and specificity were measured for a further
assessment of the performance, and these definitions are shown
below.

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Accuracy =
TP + TN

TN + FN + TN + TP
(3)

True positive (TP): the number of positive samples predicted
as positive; true negative (TN): the number of negative samples
predicted as negative; false positive (FP): the number of negative
samples predicted as positive; and false negative (FN): the
number of positive samples predicted as negative.

Furthermore, the permutation test, a widely used
nonparametric test examining a null hypothesis (Golland
and Fischl, 2003; Liu et al., 2015), was performed to analyze
the significance of the classification results. In this study, the
permutation test was carried out by randomly permutating the
labels of all datasets and evaluating the classification performance
with these permutated data 1,000 times. If the P-value was small
enough (P < 0.05 was used in this study), the hypothesis that
the classifier had significantly discovered the difference between
the two groups with given set of imaging data could be safely

accepted. The P-value was calculated as the percentage of
classifications with better performance based on permutated data
over all 1,000 trials.

Subsequently, the parameters from the best model (i.e., the
combination of a certain dimensionality reduction algorithm
and classifier) were analyzed to discover the brain regions with
the greatest contribution in both classifications. In detail, the
weights extracted from a certain classifier were first transformed
to their absolute values. Then these absolute values were further
transformed to their original feature space according to the
dimensionality reduction algorithm and normalized as brain
region contributions for the ranking process. We selected the
top 5% features (this involved a different number of features for
the different atlases) with the greatest contribution and further
calculated the actual percentage of their contribution.

Finally, to improve the clinical diagnosis, we established
an integral model for each classification with the stacking
technique (Wolpert, 1992; Ting and Witten, 1999). All models
(the combinations of three brain atlases, five classifiers, two cross
validation methods, and 3 dimensionality reduction algorithms)
generated by the pipeline were selected as level-0 generalizers and
the gradient boosting algorithm (Friedman, 2001) was selected as
the level-1 generalizer. The best hyperparameter set selected by
the pipeline structure mentioned above is also applied for each
model in level-0 generalizer, and the hyperparameter set for the
level-1 generalizer is selected by a fivefold cross validation. Since
it is binary classification on both classifications (SZ or NC in SZ
vs NC classification; FESZ or CSZ in FESZ vs NC classification),
the input data for the level-1 generalizer is generated as the
probability to be classified as one class by all level-0 generalizers
in both classifications. Therefore, the dimension of the features
was identical to the number of the level-0 generalizers (90 for
each classification). The train set and separate test set for level-1
generalizer were generated by fivefold cross validation as detailed
described in references (Wolpert, 1992; Ting and Witten, 1999).
The performance of the final integral model was tested by the
separate test set to guarantee generalization. The hyperparameter
set available for the gradient boosting algorithm is shown in
Supplementary Table 2.

The whole classification process was realized by the sklearn
software package (https://scikit-learn.org/stable/) for machine
learning in python code and an in-house software “NEURO-
LEARN” (https://www.github.com/Raniac/NEURO-LEARN).

RESULTS

Overall Classifier Performance
The results of both classifications are shown in Figure 2 and
Supplementary Tables 3, 4, and the optimal hyperparameter sets
selected for all models are shown in Supplementary Table 5.
We selected the models with the highest accuracy and then
ranked them by AUC. In the classification between SZ and NC,
the best combination was PCA with LR using the GWB atlas
with LOOCV (accuracy: 0.83, P < 0.05; AUC: 0.89, P < 0.05;
sensitivity: 0.89; specificity: 0.78; Figure 2B, indicated by ∗∗).
Moreover, the second-best combination was ANOVA with SVM
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FIGURE 2 | Accuracies of SZ vs NC Classification (A,B) and FESZ vs CSZ Classification (C,D). Generally, the accuracies by different combinations of the classifiers
and dimensionality reduction algorithms were quite similar. The best combination and the second best combination best combination are highlighted with character *
and ** separately on both classifications. 10FCV, 10-fold cross validation; AAL atlas, automated anatomical labeling atlas; ANOVA, analysis of variance; CSZ, chronic
schizophrenia; FESZ, first-episode schizophrenia; GWB atlas, groupwise whole-brain atlas; HBN atlas human brainnetome atlas; KNN, K nearest neighbor; LDA,
linear discriminant analysis; LOOCV, leave-one-out cross validation; LR, logistic regression; NC, normal control; PCA, principle component analysis; RF, random
forest; RFE, recursive feature elimination; SVM, support vector machine; SZ, schizophrenia.

using the GWB atlas with LOOCV (accuracy: 0.83, P < 0.05;
AUC: 0.86, P < 0.05; sensitivity: 0.71; specificity: 0.90; Figure 2B,
indicated by ∗). Similarly, in the classification between FESZ and
CSZ, the best combination was RFE with LR using the GWB atlas
with LOOCV (accuracy: 0.75, P < 0.05; AUC: 0.77, P < 0.05;
sensitivity: 0.80; specificity: 0.69; Figure 2D, indicated by ∗∗) and
the second-best combination was RFE with LDA using the GWB
atlas with LOOCV (accuracy: 0.75, P < 0.05; AUC: 0.77, P < 0.05;
sensitivity: 0.80; specificity: 0.69; Figure 2D, indicated by ∗).

Together, it was discovered that: (1) the GWB atlas was the
optimal atlas for both classifications and the best results by the
HBN atlas (SZ vs NC: RFE-LDA-10FCV; FESZ vs CSZ: RFE-
LR-LOOCV) were also comparable; (2) LR and RFE showed a
slight advantage over the others, but generally the results with
the various combinations of the classifiers and dimensionality

reduction algorithms were quite similar; and (3) LOOCV was
the best method to identify the best hyperparameter set for both
classifications.

Feature Importance Analysis
The best combination for two classifications (the combination
of the GWB atlas, LR, LOOCV, and PCA for the SZ vs NC
classification; the combination of the GWB atlas, LR, LOOCV,
and RFE for the FESZ vs CSZ classification) were utilized to
generate weights for feature ranking. Based on the methods stated
above, the results are shown in Figure 3 and Supplementary
Tables 6, 7.

Generally, the GMV and ReHo features equally made the
greatest contributions in both classifications that were much
more than the contributions of ALFF and DC. In detail, ALFF
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FIGURE 3 | Top 5% ROIs of ALFF (A,E), DC (B,F) GMV (C,G) and ReHo (D,H) with contribution to both classifications. The percentage shown next to the color bar
was calculated as the weight of a certain ROI divided by the sum of weights for all 54 ROIs (top 5%) in each group. The color of region projected on the white brain
map model referred to the color bar, while the color of the 3D model projected on the transparent brain map model was only applied for ROI distinction, bearing no
relevance to the color bar. The figure was generated using BrainNet Viewer (Xia et al., 2013) (http://www.nitrc.org/projects/bnv/). ALFF, amplitude of low frequency
fluctuation; CSZ, chronic schizophrenia; DC, degree centrality; FESZ, first-episode schizophrenia; GMV, regional gray matter volume; NC, normal control; ReHo,
regional homogeneity; SZ, schizophrenia.

from the right limbic hippocampus possessed relatively higher
weights in the classification between SZ and NC (Figure 3A).
For the classification between FESZ vs CSZ, ALFF from the
right parietal primary sensory, left occipital primary sensory
and somatosensory association cortex made greater contributions
(Figure 3E). DC contributed slightly more to the classification
than ALFF. The DC with the highest weight came from the
right brainstem and right subcortical thalamus for the SZ vs
NC classification (Figure 3B), while the highest weights came
from the inferior temporal gyrus, middle temporal gyrus and
premotor cortex for the FESZ vs CSZ classification (Figure 3F).
Features from GMV and ReHo made up approximately 80% of
all 54 features selected. The GMV with the greatest contribution
was derived from the right premotor cortex, dorsal posterior
cingulate cortex, left temporal fusiform cortex, right prefrontal
pars opercularis and left orbitofrontal area in the classification
between SZ and NC (Figure 3C), while the highest weights
were derived from the left temporal pole, left prefrontal visual
field, left motor strip, right motor strip and inferior prefrontal
gyrus in the classification between FESZ and CSZ (Figure 3G).
Meanwhile, the ReHo features with the greatest contributions

stemmed from the left orbitofrontal area, left temporal pole,
right limbic parahippocampus and right middle temporal gyrus
in the classification between SZ and NC (Figure 3D) and the
highest weights stemmed from right the temporal fusiform
region, right orbitofrontal area, left insula, left cerebellum and
left orbitofrontal area in the classification between FESZ and
CSZ (Figure 3H).

Further measurements were also performed for the brain
region contribution in both classifications with all four features
(ReHo, ALFF, DC, and GMV) considered (Figure 4A for SZ vs
NC classification; Figure 4B for FESZ vs CSZ classification). The
contribution of a certain brain region was calculated as the sum of
contributions of all four features located in that brain region. It is
evident that the brain regions that contributed most to the SZ vs
NC classification were the left prefrontal cortex, right prefrontal
cortex, right limbic cortex, left temporal cortex and left motor
strip. Similarly, the brain regions that contributed most to the
FESZ vs CSZ classification were the left prefrontal cortex, right
temporal cortex and left temporal cortex.

Besides, the best models by the HBN atlas (the combination
of the LDA, 10FCV, and RFE for the SZ vs NC classification;
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FIGURE 4 | Brain regions with most contribution to SZ vs NC Classification (A) and FESZ vs CSZ Classification (B). The percentage shown as the y axis is
calculated as the weight of features from a certain brain region divided by the sum of weights of all top 5% features in each classification. The matching between the
ROI and the brain region refers to https://bioimagesuiteweb.github.io/webapp/connviewer.html. CSZ, chronic schizophrenia; FESZ, first-episode schizophrenia; L,
left; NC, normal control; R, right; SZ, schizophrenia.

the combination of LR, LOOCV, and RFE for the FESZ vs CSZ
classification) were also utilized to generate weights for feature
ranking. The result shows that GMV and ReHo features have
made more contribution than ALFF and DC features to both
classifications (in Supplementary Figure 3 and Supplementary
Tables 8, 9), which is consistent with the result by GWB atlas.
Moreover, the contributory features from HBN atlas were also
mainly from frontal cortex and temporal cortex as the same
of GWB atlas, indicating the commonality of two atlas on
extracting features on discriminative analysis for schizophrenia
(in Supplementary Figure 4 and Supplementary Tables 8,
9). On the other hand, the contributory ROIs from HBN
atlas were not exactly the same as those from GWB atlas
as shown in Supplementary Figure 3. This shows different
brain atlases, although with similar number of ROIs, might
still result in the different selection of features for the machine
learning models.

Predictive Model Performance
The improvements in the performance with the integral model
was evident as shown in Table 2. The accuracy and AUC were
significantly increased by the stacking algorithm on the separate
test set in both classifications (SZ vs NC: accuracy = 0.88,
AUC = 0.92; FESZ vs CSZ: accuracy = 0.86, AUC = 0.80).

DISCUSSION

In this study, we systematically analyzed classification
performances by using multiple brain atlases and multiple
machine learning methods with multimodal MRI data. The
main findings are as follows: 1) the GWB parcellation with
268 ROIs outperformed the other two brain atlases; (2) the
LOOCV was the best method of cross validation to select the
best hyperparameter set, but the results with different classifiers
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TABLE 2 | Classification performance improvement for integral model.

Classification group SZ vs NC FESZ vs CSZ

Before/After stacking Before stacking After stacking Before stacking After stacking

Accuracy 0.83 0.88 0.75 0.86

AUC 0.89 0.92 0.77 0.80

The accuracy and AUC before stacking were selected from the optimal model for both classifications, respectively. It is clear from the results that the accuracy and AUC
were significantly improved by stacking technique to establish the integral model.
AUC, the area under receiver operating characteristic curve; CSZ, chronic schizophrenia; FESZ, first episode schizophrenia; NC, normal control.

and dimensionality reduction algorithms were quite similar; (3)
the GMV and ReHo features in the prefrontal and temporal
gyri made the greatest contributions in both classifications;
and (4) the ensemble learning method substantially improved
classification performance.

Generally, the selection of the brain atlas may result in striking
differences in performance of the classification of psychiatric
diseases (Koikkalainen et al., 2011; Min et al., 2014; Liu J.
et al., 2017; Asim et al., 2018; Kalmady et al., 2019). Kalmady
et al. (2019) used 14 brain atlases for discriminative analyses of
SZ patients and found that the accuracies of the classifications
varied significantly across different brain atlases. Similarly, a
number of discriminative analyses have also been performed with
patients with Alzheimer’s disease (AD) based on multiple brain
atlases (Koikkalainen et al., 2011; Min et al., 2014; Asim et al.,
2018), in which the features based on all atlases were used to
establish the integral model and achieved the best classification
performance (Koikkalainen et al., 2011; Min et al., 2014; Asim
et al., 2018). Consistent with previous studies, our results also
showed discrepancies in the classification performance with
different brain atlases. Moreover, our results also suggested the
apparent superiority of the GWB atlas, compared with the AAL
atlas and the HBN atlas. Previous studies have indicated that
the utilization of the GWB atlas has also resulted in satisfactory
performances on other discriminative studies, which is consistent
with our findings (Valizadeh et al., 2018; de Souza Rodrigues et al.,
2019). We speculated that this superiority may derive from the
node number and the construction method of the GWB atlas.
First, the number of nodes in the GWB atlas is consistent with the
range proposed by other studies (Craddock et al., 2012; Van Essen
et al., 2012), which enables the brain atlas to provide a more fine-
grained scheme than other brain atlases such as the AAL atlas
(Finn et al., 2015). Second, the construction of the GWB atlas is
based on a groupwise parcellation method, which guaranteed that
each node contains voxels with similar resting-state timecourses
(Bianciardi et al., 2009; Finn et al., 2015). This could ensure
homogeneity within each node and thus better discriminability
of the features from the MRI data (Shen et al., 2013). Therefore,
these two traits may serve as important criteria for the selection
of brain atlases in discriminative analysis of SZ patients.

The selection of machine learning methods has been
consequential with regard to the classification process in recent
studies (Watanabe et al., 2014; Iqbal et al., 2017; Raymond
et al., 2017; Junhua et al., 2018). In this study, we found
that the results with different combinations of classifiers and
dimensionality reduction algorithms were quite similar, which

is consistent with previous studies (Khondoker et al., 2013;
Raymond et al., 2017). In detail, although the LR and RFE
exhibited a slight advantage over the others, PCA, ANOVA,
SVM, and LDA could also be acceptable choices for the
classification. Importantly, our results were surprising because
most of the classifiers and dimensionality reduction algorithms
were mathematically distinct. One of the plausible explanations is
the inherent similarities within different classifiers (Hastie et al.,
2008). Almost all classifiers are able to generate a hyperplane,
which is the best geometrical feature to classify the distributions
of the data in multidimensional feature space with unstructured
noise (Raymond et al., 2017). Thus, if the multimodal MRI
data confirmed to a specific distribution, similar performances
would be achieved by different classifiers and dimensionality
reduction algorithms. Furthermore, compared with 10-fold cross
validation, LOOCV was discovered to be the optimal method for
the selection of hyperparameter sets. Taking into consideration
that more training data could be applied to classifiers for
discriminative analyses with the LOOCV method (Efron, 1983),
the advantage of LOOCV can be easily comprehended.

We also found that the GMV and ReHo features better
represented the major discrepancies in both classifications than
the ALFF and DC features. These results suggested the necessity
of using both structural and functional MRI data for the
discriminative analysis of SZ patients, which is consistent with
previous studies (Dyrba et al., 2015; Zhuang et al., 2019). The
abnormalities in brain regions between SZ patients and NCs were
primarily in the bilateral prefrontal cortex, right limbic system,
left temporal cortex and left motor strip. While the findings on
the prefrontal cortex (Janousova et al., 2015; Ou et al., 2015;
Zhuang et al., 2019; Webler et al., 2020), limbic system (Shon
et al., 2018; Abdolalizadeh et al., 2020; Falakshahi et al., 2020),
and temporal cortex (Shu et al., 2012; Ehrlich et al., 2014; Schnack
et al., 2014; Koch et al., 2018; Chatterjee et al., 2020) are aligned
with previous studies, the discovery of differences in the motor
strip has rarely been reported. The motor strip is imperative as the
neural hub that participates in perception, action and anticipation
in relation to the environment (Schroeder et al., 1994). Thus,
abnormalities in the motor strip might elucidate the abnormal
conduct behaviors of SZ patients. Moreover, abnormalities were
also found in the left prefrontal cortex, right temporal cortex
and left temporal cortex between FESZ and CSZ patients,
which is consistent with previous findings of the influence of
antipsychotic therapies on brain structure and function (Chua
et al., 2009; Goghari et al., 2013; Ren et al., 2013; Lesh et al.,
2015). Therefore, we hypothesized that the abnormalities in these
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brain regions might be derived from the side effects of long term
antipsychotic drug intake.

In this study, we also established an integrated model
with the stacking technique, which remarkably improved the
performance of the integral model. Kalmady et al. (2019) applied
stacking technique in discriminative analyses of SZ patients
and found that the classification performance (accuracy of
87%) outperformed earlier machine learning models. Similarly,
Irandoost et al. also found that the stacking technique for
classification of individuals with AD and cognitively normal
individuals was better than using one classifier and comparable
to the state-of-the-art methods (Irandoost and Asadi, 2019).
Consistent with previous studies, our results showed apparent
improvements in classification performance after the stacking
technique was applied (SZ vs NC: accuracy = 0.88, AUC = 0.92;
FESZ vs CSZ: accuracy = 0.86, AUC = 0.80). The advantage of
the stacking technique may derive from both the diversity of the
level-0 generalizers and the diversity of the atlases, which offer the
integral model with more information to learn that reduced the
variance (Wolpert, 1992; Ting and Witten, 1999).

LIMITATIONS

There were several limitations in this study. First, the cross
validation and the separate test set prevented overfitting and
guaranteed model performance for generalization to unseen
data, but as a consequence, the accuracies in the FESZ vs CSZ
classification (86%) and in the SZ vs NC classification (88%) were
still not as satisfactory as in other studies (Iqbal et al., 2017; Liu J.
et al., 2017). Similarly, the performance of the model was checked
with a limited dataset, because only a modicum of examples
had been provided for the model to discover the significant
discrepancies between the two groups, especially for the FESZ vs
CSZ classification with fewer data. Second, all classifiers applied
in this study were traditional classifiers. Recent studies have
shown satisfactory classification performance by deep learning
methods for psychiatric diseases (Zeng et al., 2018; Matsubara
et al., 2019). In future studies, we plan to perform systematic
estimations using deep learning methods. Third, more brain
atlases of different sizes can be included in the studies (Kalmady
et al., 2019). Wu et al. (2018) have used a brain atlas with 1,024
ROIs in the discriminative analysis of SZ patients and achieved
high classification performance. Thus, we plan to estimate
classification performances based on brain atlases with relatively
larger sizes in the future. Moreover, numerous researches using
other biological data have also found significant discrepancies
between schizophrenia patients and normal controls, including
gut microbiota data (Li et al., 2020), blood data (Chan et al.,
2014), and electroencephalogram data (Alfimova and Uvarova,
2008). Therefore, we also plan to use multi-biological data on the
discriminative analysis for further improvement.

CONCLUSION

In this study, a systematic analysis of classifications with
different combinations of brain atlases, classifiers, cross

validation methods and dimensionality reduction algorithms
was performed in two classifications (NC vs SZ, FESZ vs CSZ).
The performances of the models were analyzed and the weights
from the best combination model were used for feature ranking.
Further estimation was also performed to provide information
indicating the most significant abnormalities in different brain
regions. Moreover, an integral model with higher accuracy and
AUC was generated with an ensemble learning method. Our
findings indicated effects of these factors in constructing effective
classifiers for psychiatric diseases and showed that the integrated
model has the potential to improve the clinical diagnosis and
treatment evaluation of SZ.
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