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Arterial baroreflex assessment using vasoactive substances enables investigators to
collect data pairs over a wide range of blood pressures and reflex reactions. These data
pairs relate intervals between heartbeats or sympathetic neural activity to blood pressure
values. In an X-Y plot the data points scatter around a sigmoidal curve. After fitting the
parameters of a sigmoidal function to the data, the graph’s characteristics represent
a rather comprehensive quantitative reflex description. Variants of the 4-parameter
Boltzmann sigmoidal equation are widely used for curve fitting. Unfortunately, their
‘slope parameters’ do not correspond to the graph’s actual slope which complicates the
analysis and bears the risk of misreporting. We propose a modified Boltzmann sigmoidal
function with preserved goodness of fit whose parameters are one-to-one equivalent to
the sigmoidal curve’s characteristics.

Keywords: baroreflex curve, baroreflex gain, baroreflex sensitivity, RR interval, muscle sympathetic nerve activity,
sigmoidal curve fitting, Boltzmann sigmoidal equation

INTRODUCTION

Baroreflexes play an important role in the regulation of the circulatory system. As negative
feedback systems they stabilize arterial pressure around the so-called operating pressure. This
feature is also known as blood pressure buffering to prevent large deviations from its setpoint.
Often cardiovascular diseases are associated with impaired baroreflexes. Therefore, baroreflex
quantification may be useful to assess the current state, progression, and therapeutic improvements
of cardiovascular diseases. Moreover, precise baroreflex measurements can help unravel complex
physiologic or pharmacologic mechanisms (Heusser et al., 2016).

Although there are numerous methods to evaluate baroreflex function they all share the same
basic principle of relating the reflex response (output) to the stimulus intensity (input). Typically,
systolic arterial pressure is taken as input and heartbeat interval (RR interval, RRI) as output. The
quantitative relationship between these parameters is used to characterize the so-called cardiac or
vagal or cardiovagal baroreflex. Baroreflex gain or sensitivity is the most reported index. Values
range from virtually zero in patients with complete baroreflex failure (Heusser et al., 2005) up to
40 ms/mmHg in trained athletes (Baumert et al., 2006). In cardiovascular laboratories, investigators
may be interested in baroreflex mechanisms over a wide range of blood pressures that does not
only include the linear part of the stimulus–response relationship but also saturation and threshold
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portions (Parati et al., 2000). Such data can be obtained
by injection or infusion of the vasoactive substances sodium
nitroprusside (vasodilator) and phenylephrine (vasoconstrictor).
In an X-Y plot, data pairs relating RRI or sympathetic
neural activity to blood pressure readings scatter around
sigmoidal curves.

Logistic functions (Verhulst, 1838) are widely used for
sigmoidal curve fitting, whose prototype was invented to describe
population growth with saturation (Figure 1). This function has
four characteristic values: Bottom = 0.0, Top = 1.0, and maximum
Slope = 0.25 at Midrange = 0.0.

Most real data that follow a sigmoidal X-Y relationship
have other characteristics than the prototypic logistic function.
For example, as can be seen from the curve in Figure 2, RR
intervals show asymptotic behavior against a lower and upper
limit (Bottom and Top) of the baroreflex response which are
different from 0.0 and 1.0 of Verhulst’s logistic function. Likewise,
the abscissa value of the central inflection point (Midrange)
and the slope of the graph at that point (Slope) vary from
Verhulst’s values, 0.0 and 0.25, respectively. In 1972, Kent
et al. proposed a generalized 4-parameter logistic function, often
referred to as Boltzmann sigmoidal equation, to model the
baroreflex relationship between systemic arterial and carotid
sinus pressure (see Equation 1 in Table 1). Kent et al. used
A1..A4 as parameter names. In the following, we will use
the more informative terms [B]ottom, [T]op, [R]ange (= T–
B), [S]lope, and [M]idrange (or V50). Numerous investigators
have applied the equation in its original form or variants
thereof for sigmoidal curve fitting to their two-dimensional data
(Table 2). The usefulness of the method has been confirmed for
decades. It should be particularly emphasized that all 4-parameter
equation variants yield absolutely identical output after ideal
fitting of the 4 parameters. In other words, after successful
fitting of the equations’ parameters to the same data their graphs
would perfectly overlap. This statement applies to the traditional

FIGURE 1 | Logistic function. The logistic function (without any parameters)
represents the prototype of widely used functions for sigmoidal curve fitting to
appropriate classes of two-dimensional experimental data. The graph has four
characteristic values: Bottom = 0.0, Top = 1.0, maximum Slope = 0.25 at
Midrange = 0.0, which is the abscissa of the curve’s central inflection point.

equations as well as our modified Equation 8 which will be
presented in the Methods section.

Ishikawa et al. introduced a fifth parameter (Equation 6) to
account for data asymmetry (Ishikawa et al., 1984). According to
Ricketts and Head (Ricketts and Head, 1999) Sigmaplot (formerly
SPSS now Systat Software Inc.) offers a very similar asymmetric
sigmoidal curve fitting equation (Equation 7). The latter authors
propose their own asymmetric function (not shown).

The upper part of Figure 2 shows the nomenclature related
to functions by taking the example of the Boltzmann sigmoidal
function which has 4 parameters (2nd column). The lower part
of the figure shows example parameter values that have been
obtained by parameter optimization (nonlinear curve fitting) to
fit the example data as given in Results section “Curve fitting
by means of the modified Boltzmann sigmoidal equation to
experimental data.” What all these 5 traditional equations have
in common is that their Slope parameters (2nd column) do not
represent the slopes of the resultant graphs at their steepest
portion at Midrange (see superposed curves in the 3rd column)
as naïve users might expect.

The misnomer has several drawbacks. First, there is the risk
of using the fitting result ‘as is’ by users who are not aware
of the mismatch. Second, users who know about the problem
that the parameter represents a surrogate only, called, e.g.,
“gain coefficient” (do Carmo et al., 2007), “coefficient for the
determination of gain” (Scrogin et al., 1994), “slope factor”
(Shade et al., 1990), “slope coefficient” (Leitch et al., 1997; Kanbar
et al., 2007), “slope parameter” (Devanne et al., 1997), “curvature
parameter” (Schenberg et al., 1995), “curvature coefficient”
(Cardoso et al., 2005), or “coefficient of curvature” (Leitch et al.,
1997), have to determine the true value by further calculation.
Third, curve fitting algorithms may need decent starting values
or intervals for parameter optimization to successfully converge.
Suitable presets for Bottom, Top or Range, and Midrange can be
visually derived by the user from X-Y plots of the experimental
data. Yet, the Slope parameter as visually estimated from the plots
deviates from a useful preset. The latter needs further calculation
which complicates the preparation step for curve fitting. Forth,
scientific novices cannot readily understand why, after successful
curve fitting, three of the four parameter values are equivalent to
the graph’s characteristics but Slope (baroreflex gain) is not.

Here we propose a modified Boltzmann sigmoidal equation
that ensures one-to-one correspondence between the parameter
names and the mathematical characteristics of the resultant
graphs. The proposal will simplify sigmoidal curve fitting
and, in particular, avoid misinterpretation and misreporting of
baroreflex sensitivity.

METHODS

Equation 8 is our proposal for a modified Boltzmann sigmoidal
equation:

Modified Boltzmann sigmoidal function

y = f (x) B +
T − B

1 + e
4S(M−x)

T−B
(8)
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FIGURE 2 | Discrepancy between the equations’ Slope parameters and their graphs’ slopes. The five function boxes in the middle column of the figure implement
the versions of the 4-parameter logistic equations in Table 1. The parameters [B]ottom, [T]op, and [M]idrange are identically set for all functions while [S]lope settings
differ. However, the functions’ graphs are identical. In other words, the curves representing them are exactly superposed (bottom right). Their identical Slopes at the
inflection point at Midrange are 16.12. Hence, there is a discrepancy between [S]lope parameter settings in the functions (middle column) and the functions’ graphs
(on the right).

Linear form of the equation for usage in fitting tools

Y = B+ (T − B)/{1+ exp[4∗S∗(M − X)/(T − B)]}

The range T–B can be replaced by R. Then, the four parameters
would be B, R, M, and S. The formula is not meant to better
fit the data; the goodness of fit is exactly the same as for the
other 4-parameter variants of the formula (see superposed curves
in Figure 2 and report screenshots in Figure 3). Rather, our
intention is to reconcile parameter naming and meaning. In the

following, we are going to mathematically prove that the four
parameters of the modified equation, namely [B]ottom, [T]op,
[M]idrange, and [S]lope, exactly reflect the graph’s characteristics.
We will do so point by point with the implicit understanding that
[S]lope 6= 0 and [R]ange = [T]op–[B]ottom > 0.0. Normally,
the relationship between RR interval and blood pressure has
a positive slope. In contrast, the relationships between heart
rate or sympathetic nerve activity and blood pressure feature
negative slopes.
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TABLE 1 | Versions of 4- and 5-parameter Boltzmann sigmoidal equations.

Specifics No explicit range parameter Explicit range parameter

Equation 1: Exponent S(x–M) y = f (x) = B+
T − B

1 + eS(x−M)
y = f (x) = B+ R

1 + eS(x−M)

Equation 2: Exponent (x–M)/S y = f (x) = B+
T − B

1 + e
(x−M)

S

y = f (x) = B+
R

1 + e
(x−M)

S

Equation 3: Exponent S(M–x) = –S (x–M) y = f (x) = B+
T − B

1 + eS(M−x)
y = f (x) = B+

R
1 + eS(M−x)

Equation 4: Exponent (M–x)/S y = f (x) = B+
T − B

1 + e
(M−x)

S

y = f (x) = B+
R

1 + e
(M−x)

S

Equation 5: Absolute term T instead of B y = f (x) = T +
B− T

1 + e
(M−x)

S

y = f (x) = T +
−R

1 + e
(M−x)

S

Equation 6: [A]symmetry parameter added y = f (x) = B+
R(

1 + eS(x−M)
)A

Equation 7: Sigmaplot’s asymmetric function y = f (x) = B+
R(

1 + eS(M−x)
)A

TABLE 2 | Selected references referring to variants of the 4-parameter Boltzmann sigmoidal equation.

Equation 1 Kent et al., 1972; Dorward et al., 1985; Verberne et al., 1987; Rocchiccioli et al., 1989; Saad et al., 1989; Shade et al., 1990; Itoh and van
den Buuse, 1991; Kawada et al., 1992; Martel et al., 1994; Veelken et al., 1994; Bartholomeusz and Widdop, 1995; Schenberg et al., 1995;
Sagawa et al., 1997; He et al., 1999; Sampaio et al., 1999; Ma et al., 2002; Bealer, 2003; Miki et al., 2003; Cheng et al., 2004; Nagura
et al., 2004; Sabharwal et al., 2004; McDowall and Dampney, 2006; do Carmo et al., 2007; Kanbar et al., 2007; Kawada et al., 2019

Equation 2 Mthombeni et al., 2012

Equation 3 Mthombeni et al., 2012

Equation 4 Leitch et al., 1997; B = 0: Devanne et al., 1997; Stewart et al., 2021

Equation 5 Cardoso et al., 2005

RESULTS

Sections “[B]ottom is the lower limit of the function” through
“The [S]lope parameter’s value really represents the slope of
the modified Boltzmann sigmoidal curve at the inflection
point” prove the correspondence between parameter naming
and functional meaning. Captions comment the stepwise
proof construction. Section “Threshold and saturation” derives
calculation of threshold and saturation pressure. Section “Curve
fitting by means of the modified Boltzmann sigmoidal equation
to experimental data” exemplifies the usefulness of our proposed
equation using real baroreflex data from healthy and diseased
subjects, and in section “Practicing curve fitting by means of the
modified Boltzmann sigmoidal curve” we invite the readers to test
the method on simulated data.

[B]ottom Is the Lower Limit of the
Function
With positive slopes the graphs asymptote to [B]ottom toward the
left:

(1) S > 0, T–B > 0

a. z =
4S(M − x)

T − B
, x→−∞ H⇒ z→+∞

b. lim
z→+∞

B+
T − B
1+ ez = B+ 0 = B

c. lim
x→−∞

B+
T − B

1+ e
4S(M−x)

T−B
= B

d. lim
x→−∞

f (x) = B

With negative slopes the graphs asymptote to [B]ottom toward
the right:

(2) S < 0, T–B > 0

a. z =
4S(M − x)

T − B
, x→+∞ H⇒ z→+∞

b. lim
z→+∞

B+
T − B
1+ ez = B+ 0 = B

c. lim
x→+∞

B+
T − B

1+ e
4S(M−x)

T−B
= B

d. lim
x→+∞

f (x) = B

[T]op Is the Upper Limit of the Function
With positive slopes the graphs asymptote to [T]op toward the
right:

(3) S > 0, T–B > 0

a. z =
4S(M − x)

T − B
, x→+∞ H⇒ z→−∞

b. lim
z→−∞

B+
T − B
1+ ez = B+

T − B
1+ 0

= B+ T − B = T

c. lim
x→+∞

B+
T − B

1+ e
4S(M−x)

T−B
= T

d. lim
x→+∞

f (x) = T
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FIGURE 3 | Screenshots of GraphPad R© Prism report tables after fitting different Boltzmann sigmoidal functions to real cardiac baroreflex data. We used the
nonlinear curve fitting tool of GraphPad Prism (GraphPad, RRID:SCR_002798) to fit the four parameters of the Boltzmann sigmoidal functions related to Equation 1,
Equation 4, and Equation 8 to experimentally obtained cardiac baroreflex data from a previous study (Heusser et al., 2016). The result tables report identical values
for the optimized parameters Bottom, Top, and Midrange (V50). However, Slopes in line #6 are different. The only Slope that corresponds to the actual slope of the
curve (see slope triangle in Figure 4: 16.12 ms/mmHg) is reported by our proposed WYSIWYG Equation 8 as can be expected according to Results section “The
[S]lope parameter’s value really represents the slope of the modified Boltzmann sigmoidal curve at the inflection point.” Furthermore, the screenshots exemplify that,
after parameter fitting, the resulting graphs are absolutely identical since the Goodness of Fit quantifiers are identical (lines #19–21) which is in agreement with the
exactly overlapping curves in Figure 4. Sy.x is a variant of the standard deviation of the residuals that takes the degrees of freedom into account: Sy.x = sqrt [(sum
of squared residuals) / (n – degrees of freedom)].

With negative slopes the graphs asymptote to [T]op toward
the left:

(4) S < 0, T–B > 0

a. z =
4S(M − x)

T − B
, x→−∞ H⇒ z→−∞

b. lim
z→−∞

B+
T − B
1+ ez = B+

T − B
1+ 0

= B+ T − B = T

c. lim
x→−∞

B+
T − B

1+ e
4S(M−x)

T−B
= T

d. lim
x→−∞

f (x) = T

[M]idrange (V50) Is the Abscissa of an
Inflection Point
Using the abbreviations

[R] ange = [T] op− [B] ottom and

[G] radient = 4∗ [S] lope→ [S] lope =
G
4

our proposed equation can be written as

f (x) = B+
R

1+ e
G(M−x)

R
(9)

To prove the assertion we need the first, second, and third
derivatives. They are:

f ′ (x) =
R (−1)

(
−

G
R
)

e
G(M−x)

R(
1+ e

G(M−x)
R

)2 =
G ∗ e

G(M−x)
R(

1+ e
G(M−x)

R

)2 (10)

f ′′ (x) =

(
G2

R

) e
G(M−x)

R

[
−1+ e

G(M−x)
R

]
[

1+ e
G(M−x)

R

]3

 (11)

f ′′′ (x) =

(
−2G3

R2

)
e

G(M−x)
R

[
1− e

G(M−x)
R + e

(
G(M−x)

R

)2
]

[
1+ e

G(M−x)
R

]4


(12)

Below we outline that the necessary but not sufficient condition
for [M]idrange to be the abscissa of an inflection point of the
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modified Boltzmann sigmoidal equation, namely f
′′

(M) = 0,
is fulfilled. Note that [M]idrange is passed as x argument to
Equation 11:

f ′′ (M) =

(
G2

R

) e
G(M−M)

R

[
−1+ e

G(M−M)
R

]
[

1+ e
G(M−M)

R

]3



f ′′ (M) =

(
G2

R

)(
e0 [
−1+ e0][

1+ e0
]3

)
=

(
G2

R

)(
1 [−1+ 1 ]

[1+ 1 ]3

)

=

(
G2

R

)(
0
8

)
= 0

Given that we disallow [G]radient, which is 4∗[S]lope, to be
zero, the sufficient condition for [M]idrange to be the abscissa
of an inflection point, namely f ′′′(M) 6= 0, is fulfilled, too,
as demonstrated below. Note that [M]idrange is passed as x
argument to Equation 12:

f ′′′ (M) =

(
−2G3

R2

)
e

G(M−M)
R

[
1− e

G(M−M)
R + e

(
G(M−M)

R

)2
]

[
1+ e

G(M−M)
R

]4



f ′′′ (M) =

(
−2G3

R2

) e0
[

1− e0
+ e02

]
[
1+ e0

]4


=

(
−2G3

R2

)(
1 [1− 1+ 1]

[1+ 1]4

)
=

(
−2G3

R2

)(
−

1
16

)

f ′′′ (M) 6= 0

The Point at x = [M]idrange (V50) Is the
Only Inflection Point of the Function
In order for our proposed function to have only one inflection
point, f ′′ (x) = 0 must be true for only one x value. To show
that this is the case, we reuse Equation 11 while highlighting two
crucial terms by enclosing them in curly brackets:

f ′′ (x) =

(
G2

R

)
{

e
G(M−x)

R

} {
−1+ e

G(M−x)
R

}
[

1+ e
G(M−x)

R

]3


f ′′ (x) may become zero if at least one of the factors shown in curly
brackets above becomes zero.

As ez for all z ∈ R cannot be zero, we have to figure out how
to zero the factor on the right:

−1+ e
G(M−x)

R = 0⇔ e
G(M−x)

R = 1⇒
G (M − x)

R
= 0

⇒ M–x = 0

x = M

Calculating the function’s value for x = [M]idrange using
Equation 8

y = f (M) = B+
T − B

1+ e
4S(M−M)

T−B
= B+

T − B
1+ e0

= B+
T − B

2
=

B+ T
2

shows that it is halfway between the limits [B]ottom and [T]op
in analogy to the logistic function prototype whose value is 0.5 at
its inflection point (Figure 1).

The [S]lope Parameter’s Value Really
Represents the Slope of the Modified
Boltzmann Sigmoidal Curve at the
Inflection Point
Here we reuse the abbreviations and first derivative as outlined
for Equation 9 in section “[M]idrange (V50) is the abscissa of an
inflection point”:

[R] ange = [T] op− [B] ottom and

[G] radient = 4 ∗ [S] lope→ [S] lope =
G
4

f ′ (x) =
G ∗ e

G(M−x)
R(

1+ e
G(M−x)

R

)2

and we pass [M]idrange as x argument to the first derivative:

f ′ (M) =
G ∗ e

G(M−M)
R(

1+ e
G(M−M)

R

)2 =
G ∗ e0(
1+ e0

)2 =
G

(1+ 1)2 =
G
4

f ′(M) = S

Threshold and Saturation
Midrange is an abscissa-related curve characteristic. In our
examples (Figures 2, 4), it is the arterial pressure around
which pressure disturbances are effectively buffered by the reflex
response. Bottom and Top are distinct ordinate values that
represent the upper and lower limits of the reflex response.
Abscissa values corresponding to Bottom and Top could indicate
the pressure range in which the reflex can operate. Unfortunately,
such values do not exist for mathematical reasons, since
sigmoidal functions show asymptotic behavior against Bottom
and Top. The practical solution was to define Threshold and
Saturation as the abscissas, where the sigmoidal curve crosses
the 5 and 95% margins of the function’s range (Range = Top –
Bottom) (Sabharwal et al., 2004; McDowall and Dampney, 2006).
Consequently, the ordinate interval related to Threshold and
Saturation covers 90% of the reflex response range (Figure 4).
The following derivation is guided by a corrective proposal
(McDowall and Dampney, 2006).
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FIGURE 4 | Fitting different Boltzmann sigmoidal functions to real cardiac
baroreflex data. Sigmoidal curve fitting to real data from a previous study
(Heusser et al., 2016) and illustration of related terminology. After fitting the
four parameters of three different equations to these data the resultant
function curves overlap exactly. The slope triangle denotes the maximum
slopes of the three sigmoidal curves at their inflection point. See Results
“Curve fitting by means of the modified Boltzmann sigmoidal equation to
experimental data” for more information.

To calculate Threshold and Saturation the first step is to
rearrange our proposed Equation 8 to solve for x:

y = f (x) = B+
T − B

1+ e
4S(M−x)

T−B
H⇒ y− B =

T − B

1+ e
4S(M−x)

T−B
H⇒

T − B
y− B

= 1+ e
4S(M−x)

T−B H⇒
T − B
y− B

− 1 = e
4S(M−x)

T−B H⇒

ln
(

T − B
y− B

− 1
)
=

4S (M − x)

T − B
H⇒

ln
(

T−B
y−B − 1

)
∗ (T − B)

4S

= M − x H⇒

x = M −
ln
(

T−B
y−B − 1

)
∗ (T − B)

4S

In the second step, we have to pass Bottom + 5% of Range as y
argument:

x = M −
ln
(

T−B
B + 0.05(T−B)−B − 1

)
∗ (T − B)

4S

x = M −
ln
(

T−B
0.05(T−B) − 1

)
∗ (T − B)

4S

x = M −
ln
( 1

0.05 − 1
)
∗ (T − B)

4S

x = M −
ln(19) ∗ (T − B)

4S

x = M −
2.944 ∗ (T − B)

4S

x = M − 0.7361 ∗
T − B

S

In the third step, we have to pass Bottom+ 95% of Range as y
argument:

x = M −
ln
(

T−B
B + 0.95(T−B)−B − 1

)
∗ (T − B)

4S

Intermediate steps as above.

x = M + 0.7361 ∗
T − B

S

Result summary: Threshold and Saturation can be calculated
using the formula

x = Midrange± 0.7361 ∗ Range/Slope

Passing the data obtained by curve fitting (Figure 4)

x = 124.4 mmHg ± 0.7361 ∗ 593.6 ms/16.12 ms/mmHg

x = 124.4 mmHg ± 0.7361 ∗ 36.8 mmHg

x = 124.4 mmHg ± 27.1 mmHg

results in Threshold pressure = 97.3 mmHg and Saturation
pressure = 151.5 mmHg.

Curve Fitting by Means of the Modified
Boltzmann Sigmoidal Equation to
Experimental Data
Cardiac baroreflex data have been experimentally obtained
earlier in a double-blind, randomized, cross-over study in
healthy subjects (Heusser et al., 2016). Stepwise infusions of
the vasodilator sodium nitroprusside and the vasoconstrictor
phenylephrine elicited blood pressures changes over a large range
which is needed for baroreflex curve construction. Comparison
of these curves after intake of placebo (see Figure 4) and
ivabradine (not shown) challenged the so-called use-dependence
of ivabradine and might explain its potential for untoward effects.
Such an insight would not have been possible with spontaneous
methods for baroreflex quantification.

The data points in Figure 4 relate RR intervals and systolic
pressures. They have been binned in 5-mmHg intervals. Bin
means are represented as open circles and standard deviations
as error bars. Circles related to bins with only one data
point lack error bars. Curve fitting procedures were weighted
according to the number of data points in each bin. As
examples, three variants of the Boltzmann sigmoidal equation,
namely Equations 1, 4 and 8 – the latter being our proposal –
have been fitted to the data. All three resulting baroreflex
curves exactly overlap. Consequently, the goodness of fit (see
lines #19–21 in the screenshots in Figure 3) is identical for
the three equations. The inserted slope triangle in Figure 4
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FIGURE 5 | Cardiac baroreflex curve in dysautonomia with marked reductions
in response range and baroreflex sensitivity. Sigmoidal curve fitting using
Equation 8 has been applied to real data from a patient with dysautonomia.
The lower representation of the same data and fitting curve (gray) allows for
visual comparison between healthy and diseased subjects because the
resolution of the related ordinate on the right (gray) is similar to that in Figure
4. Note the marked reduction in response range (<100 ms) and baroreflex
gain (2.41 ms/mmHg).

pertains to the maximum slope of the curves at their central
inflection points. The lengths of the triangle’s sides have
been chosen for purely graphical reasons. Their ratio of
322.4 ms/20 mmHg = 16.12 ms/mmHg denotes the cardiovagal
baroreflex sensitivity (baroreflex gain). In contrast, the Slope
parameters reported after curve fitting using traditional versions
of the Boltzmann equation (Equation 1: +0.1086 and Equation
4: +9.211) do not correspond to the curve’s actual slope of
+16.12 ms/mmHg (line #6 in the screenshots in Figure 3).
In contrast, if the modified Boltzmann equation is used all
4 parameter values reflect the graph’s characteristics properly.
Hence, only the modified equation features ‘what you see is what
you get’ (WYSIWYG).

The modified equation can also be used in patients with
disorders of autonomic cardiovascular regulation. The data in
Figure 5 represent responses to low-dose injections of sodium
nitroprusside (0.25 µg/kg) and phenylephrine (6.25 µg/74 kg) in
such a patient. In healthy subjects, these test interventions would
hardly change arterial pressure because of the buffering capacity
of intact baroreflexes. Yet, in the patient, who also suffers from
sympathetic vasoconstrictor incompetence (data not shown), the
RR-interval response range is less than 100 ms despite a provoked
change in systolic pressure of more than 100 mmHg. Moreover,
the baroreflex gain (2.41 ms/mmHg) is much smaller than in
healthy subjects. The gray data in Figure 5 are scaled as in
Figure 4 for easy visual comparison.

Practicing Curve Fitting by Means of the
Modified Boltzmann Sigmoidal Curve
Interested readers are referred to the Microsoft Excel spreadsheet
in the Supplementary Material. The spreadsheet generates two-
dimensional data (blood pressure+ RR intervals) with adjustable
noise. Equation 4 and Equation 8 have been chosen for sigmoidal

curve fitting by means of the Excel Solver Add-in. We also suggest
to imitate the solver’s attempts to find a good fit by manual
adjustments of the equation parameters. By doing so, the reader
will realize that adjustments are more direct and easier to achieve
when the modified Boltzmann equation is used.

DISCUSSION

Boltzmann sigmoidal equations are frequently used for nonlinear
curve fitting to two-dimensional data. Their usefulness has
been confirmed for decades. Commonly used forms of the
equation have 4 parameters that represent the lower and upper
limit or range of the data, the abscissa of the inflection
point, and the slope at the latter. They are variants of
the formula proposed by Kent et al. (Kent et al., 1972) to
provide “a generalized mathematical model of the carotid sinus
reflex which contains parameters with meaningful physiological
interpretation.” However, while three of the four parameters
are directly related to the visible characteristics of the fitting
curve, the slope parameter is not. Instead, the actual slope
of the curve has to be determined separately. We proposed
a modification of the Boltzmann sigmoidal function without
this weakness to assist users expecting “what you see is what
you get” (WYSIWYG). We mathematically proved that the
function’s parameters are one-to-one equivalent to the resultant
curve’s characteristics and successfully applied the method to
real and artificial baroreflex data. The proposed equation looks
slightly more complicated than conventional variants, but it
offers some benefits. Once the user has entered the formula in
his/her favorite fitting tool, the extra work is loaded onto the
computer instead of the user. The traditional mismatch between
the slope parameter and the graph’s actual slope is resolved.
After the fitting procedure has reached an acceptable result,
the reported parameters can be taken as they are computed
without any additional postprocessing. The goodness of fit is
exactly the same as for the existing variants of the Boltzmann
sigmoidal function.

Parameter identifiers like A1..A4 (Kent et al., 1972; Miki et al.,
2003; McDowall and Dampney, 2006; do Carmo et al., 2007),
P1..P4 (Saad et al., 1989; Itoh and van den Buuse, 1991; Kawada
et al., 1992; Bartholomeusz and Widdop, 1995; Sampaio et al.,
1999), m1..m4 (Bealer, 2003), a..d (Veelken et al., 1994; He
et al., 1999), or a0..a3 (Stewart et al., 2021) are commonly used.
More informative names are also assigned to some parameters
(Verberne et al., 1987; Schenberg et al., 1995; Cardoso et al.,
2005), e.g., BP50, HRmin, and HRmax. The slope parameter,
however, continued to be a nomenclatural problem, e.g., “ß is
the parameter that governs the slope of the barocurve, i.e., the
gain of the baroreflex” (Schenberg et al., 1995) or “dx = a
curvature coefficient that is independent of range” (Lee et al.,
2002). We hope that our proposal will encourage researchers
to embrace meaningful parameter names for sigmoidal curve
fitting, including Slope without uncertainty. In our opinion, the
more direct identifiers [B]ottom and [T]op as used in Equation
8 should be preferred over [B] and [R]ange, even if we used
[R]ange in the Results Section for brevity. In so doing, parameter
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presetting during the curve fitting preparation step, as often
required by fitting tools, is simplified.

Our proposal has the same limitations as the conventional
equations. For instance, data asymmetry is not considered
(Ishikawa et al., 1984; Ricketts and Head, 1999), and the approach
is not able to cope with baroreflex hysteresis (Studinger et al.,
2007). The method can only be successfully applied if the blood
pressure excursions are large enough to cover the nonlinear parts
of the response. Moreover, there is an issue that may occur in
vasoactor infusion protocols, namely that the operating pressure
after stepwise increasing infusion of sodium nitroprusside may
be lower than before. Thus, subsequent infusion of phenylephrine
starts from lower pressures than with nitroprusside infusion.
This ‘fracture’ in the baroreflex data needs to be handled before
curve fitting to prevent slope overestimation. We used Microsoft
Excel and the Excel Solver Add-in to illustrate the ideas behind
this work using simulated data (see Supplementary Material)
because this spreadsheet software is widely known (Microsoft
Excel, RRID:SCR_016137). We do not claim particular suitability
or superiority over other tools and did not compare curve fitting
capabilities of different tools.

CONCLUSION

Using the proposed WYSIWYG variant of the 4-parameter
Boltzmann sigmoidal function for nonlinear curve fitting yields
exactly the same results as the traditional ones. In contrast,
after successful curve fitting, the resultant value for the Slope
parameter can be taken “as is” without any further calculation.
Thus, usage of the WYSIWYG equation instead of traditional
variants is less time-consuming, cumbersome, and error-prone.
The equation has a sound mathematical background which

promotes correct physiological interpretation of the results. We
encourage the reader to benefit from these advantages.
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