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Progress in computational neuroscience toward understanding brain function is

challenged both by the complexity of molecular-scale electrochemical interactions at the

level of individual neurons and synapses and the dimensionality of network dynamics

across the brain covering a vast range of spatial and temporal scales. Our work

abstracts an existing highly detailed, biophysically realistic 3D reaction-diffusion model

of a chemical synapse to a compact internal state space representation that maps onto

parallel neuromorphic hardware for efficient emulation at a very large scale and offers

near-equivalence in input-output dynamics while preserving biologically interpretable

tunable parameters.
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1. INTRODUCTION

It has been known since the pioneering of computer architecture by John von Neumann that
brains are far more effective and efficient in processing sensory information than digital computers,
owing to the massively parallel distributed organization of neural circuits in the brain that tightly
couple synaptic memory and computing at a fine grain scale (von Neumann, 1958). Modern
day computers still follow the “von Neumann” architecture where computing and memory
are kept separate, incurring severe penalties in computing bandwidth due to the bottleneck in
data flow between centralized processing and vast memory. Moore’s law’s relentless scaling of
semiconductor technology, with a doubling of integration density every 2 years, has allowed
the von Neumann architecture to remain fundamentally unchanged since its advent. As the
shrinking dimensions of transistors supporting the progression of Moore’s law are approaching
fundamental limits, it has become essential to consider alternative novel computing architectures
to meet increasing computational needs in this age of the deep learning revolution, which itself
is driven by advances rooted in a deeper understanding of brain function (Sejnowski, 2020).
At the forefront of this movement are neuromorphic systems, introduced by Mead (1990) as a
solution to these limitations. Neuromorphic engineering looks toward human brains as inspiration
for hardware systems due to their highly efficient computational nature. The human brain is
regarded as the pinnacle of efficient computing, operating at an estimated rate of 1016 complex
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operations per second while consuming less than 20 W
of power (Churchland and Sejnowski, 1992; Cauwenberghs,
2013). Therefore, neuromorphic engineering looks to mimic
the function and organization of neural structures using hybrid
analog and digital systems. This is possible because there
is significant overlap in the physics of computation between
the brain and neuromorphic engineering (Figure 1). In both
systems, information is carried in the form of charge, and, in
hardware, neuronal membrane dynamics are represented using
metal-oxide-semiconductor field-effect transistors (MOSFETs)
(Mead, 1989). In theMOSFET sub-threshold region of operation,
electrons and holes are the carriers of current between n-
or p-type channels and behave akin to ions flowing through
ion channels that mediate current across the neuronal cell
membrane. Fundamentally, these hardware systems share
analogous properties to their biological counterparts, including
charge stochasticity, diffusion as the primary mechanism of
carrier transport, and energy barriers modulated by gating
voltage. Paired with Boltzmann distributions of charge, these
systems are able to emulate current as an exponential function
of the applied voltage, capturing the same biophysics underlying
the neuronal dynamics (Mead, 1989; Broccard et al., 2017).

Since the introduction of neuromorphic engineering,
computational models of different complexity have been
introduced to describe neuronal dynamics, typically ranging
from more detailed and realistic conductance-based Hodgkin-
Huxley models to simpler integrate-and-fire models allowing
for better scalability. Synaptic connectivity between neurons
is of primary concern in the field currently because synaptic
strength and plasticity are fundamental to learning and
memory in both biological and artificial representations of
neural networks (Indiveri et al., 2011; Broccard et al., 2017).
In neuromorphic architectures, synapses instantiate both
computation and memory, and a new focus on compact
electronic implementations of this computational memory has
been emerging recently including the use of memristors (Boybat
et al., 2018). Efficient representation of synapses is a crucial topic
of concern as there are roughly 104 synapses for each neuron,
totalling approximately 1016 in the human brain. They are
diverse in nature and have highly complex temporal and spatial
dynamics, which further complicates their representations
(Broccard et al., 2017). Currently, there is a push for efficient
synaptic models while maintaining the intricate dynamical
behavior exhibited biophysiologically. Current models include
time-multiplexing synapses, analog bistable synapses, and binary
synapses to name a few, but the need for scalable and dynamically
complex models of synaptic function and transmission is still
existent and critical (Bartolozzi and Indiveri, 2007; Broccard
et al., 2017).

Modeling synapses is a challenging task due to their intricacy
and sheer quantity. As noted above, there are an estimated
1016 synapses in the human brain. They vary in function and
type, including both chemical and electrical synapses and exhibit
behavior spanning multiple different temporal and spatial scales,
as well as being highly stochastic in nature (van Rossum et al.,
2003; Wang et al., 2020). Additionally, synaptic plasticity causes
changes in synaptic strength over time associated with learning

and memory. Synaptic transmission involves a multitude of
mechanisms and molecular components, making simulations
including all components not readily scalable. In order to capture
the sophisticated dynamics of synapses in a scalable manner,
abstractions have to be made according to the research problem
in question. The stochastic nature of synapses also makes
large scale simulations more complicated as modeling stochastic
processes is typically more computationally demanding. It has
been shown in multiple instances that the noise present due
to the stochastic variability in synapses is highly integral to
synaptic transmission, so this becomes an important feature to
maintain (Malagon et al., 2016). For example, Moezzi et al.
(2014) proved that models including ion channel noise in
calcium channels paired with the existence of a presynaptic
mechanism causing random delays in synaptic vesicle availability
best capture the interspike interval behavior of auditory nerve
fiber models. Additionally, multiple experimental works have
found the existence of presynaptic vesicles that are released into
the synaptic cleft with some probability (Castillo and Katz, 1954;
Korn and Faber, 1991). There are multiple similar conclusions
found in modeling and experimental results as recently discussed
by McDonnell et al. (2016).

Synapses form the connections between neurons and the
strength of these connections changes over time, forming the
basis of learning and memory in both biological and artificial
neural networks. The computations involved in accurately
modeling the biophysics of synapses are complex due to the
highly nonlinear nature of their dynamics, yet most of the neural
networkmodels in use today abstract synaptic strength to a single
or small number of scalar values, tuned to a specific task. The
learning rule for updating synaptic strength is then typically
applied using abstractions of synaptic plasticity such as spike-
time dependent plasticity and its causal extensions for scalable
real-time hardware implementation (Pedroni et al., 2019).
Physical constraints and limitations in VLSI implementations
restrict the functional form of synaptic representation. In turn,
these abstractions restrict the potential computing power of
neuromorphic systems and restrain achievable benchmarks in
approaching the functional flexibility, resilience, and efficiency
of neural computation in the biological brain. Our work
addresses the need for a more biophysically realistic model of
the synapse with biologically tunable parameters to represent
synaptic dynamics while offering a path toward efficient real-time
implementation in neuromorphic hardware.

Synaptic transmission is dictated by a series of events initiated
by presynaptic stimulation in the form of action potentials.
An action potential causes membrane depolarization which
leads to stochastic opening and closing of voltage-dependent
calcium channels (VDCCs) lying on the presynaptic membrane
and a resulting influx of calcium to the presynaptic terminal.
Neurotransmitter release is modulated by calcium binding to
calcium sensors near the neurotransmitter filled vesicles at the
active zone, but calcium has other fates as it diffuses from
the VDCCs. In addition to binding to the calcium sensors,
it can bind to calbindin, which acts as a buffer, or it can be
removed by plasma membrane calcium ATPase (PMCA) pumps.
If enough calcium is able to bind to the calcium sensors, though,
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FIGURE 1 | (A) Multiscale correspondence between the fields of computational neuroscience and neuromorphic engineering. Reproduced with permission from

Churchland and Sejnowski (1992) and Cauwenberghs (2013) and (B) equivalence in Boltzmann thermodynamics between metal-oxide-semiconductor field-effect

transistors (MOSFETs) and ion channels resulting in current as an exponential function of applied voltage in both systems for sodium (bottom left) and potassium

(bottom right) (Hodgkin and Huxley, 1952; Mead, 1989).

then neurotransmitters are released across the synaptic cleft and
initiate downstream effects at the postsynaptic membrane (Bartol
et al., 2015). This process of synaptic transmission is the basis of
communication in the brain.

Abstracting this for computational efficiency, we created a
series of Markov state transitions to realize the system with
multiple internal states allowing for a biophysically tunable
model of synaptic connectivity implementable in neuromorphic
architectures. Markov models have a history of use as a stochastic
discrete state alternative to Hodgkin-Huxley type formulations
since their introduction (Hodgkin and Huxley, 1952; Armstrong,
1971; Colquhoun, 1973). Additional stochastic models have
been introduced, including the Gillespie method (1977), which
has been used to model neural channel noise (Gillespie, 1977;
Skaugen and Walloe, 1979; Chow and White, 1996). Markov
models have also found use in whole-cell models (Winslow
et al., 1999). Further extensions utilize a particle model (Koch,
1999). The importance of the inclusion of stochasticity in ion
channel behavior and synaptic transmission generally cannot be
understated. Its inclusion has been demonstrated time and time
again in experimental work and is thought to be integral in the
form and function of synaptic transmission (McDonnell et al.,
2016). This provides an additional complication in modeling
synapses and has been handled at various different stages of
transmission, including the stochastic models of vesicle release
using probabilistically generated quantal components, stochastic
models of transmitter diffusion, and stochastic models of
receptors (Castillo and Katz, 1954; van Rossum et al., 2003; Bartol
et al., 2015). These simulations are computationally expensive

due to the high transition rates paired with the small number
of transitions necessitating a small timepoint. Specifically,
Markov models have shown to be an effective method of
modeling ion channels but require high computational cost to
effectively do so.

This paper looks to abstract the computationally complex
and nonlinear nature of synaptic transmission dynamics in a
manner that is efficient and readily scalable for implementation
in neuromorphic silicon very large-scale integrated (VLSI)
circuits. This is done by introducing an efficient stochastic
sampling scheme within a Markov chain representation of
the components integral to stochastic presynaptic quantal
transmission.

2. MATERIALS AND METHODS

2.1. Markov Chain Models
The cascade of events from the action potential stimulus
input to the presynaptic neurotransmitter release output can
be equivalently modeled as a Markov chain to realize the
system with multiple internal states instead of directly tracking
all molecules and their kinetics in a computationally complex
spatiotemporal 3D reaction-diffusion model. Each internal
Markov state is assumed to be dependent solely on the state
at the previous timepoint and is conditionally independent
of all previous timepoints, simplifying simulations. Therefore,
the fully biophysically complex system of synaptic transmission
can be abstracted and sampled to create a Markov Chain
Monte Carlo (MCMC) simulation which answers the same
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FIGURE 2 | State diagram for voltage-dependent calcium channels and

resulting calcium influx in the presynaptic membrane. Reproduced with

permission from Bartol et al. (2015).

FIGURE 3 | State diagram for calbindin binding where HaMb describes the ath

high-affinity binding state and the bth medium-affinity binding state.

Reproduced with permission from Bartol et al. (2015).

question of neurotransmitter release utilizing tunable biophysical
parameters while providing scalability for implementation in
neuromorphic architectures.

For any given stimulus input, the VDCCs are assigned
transition probabilities between states based on a five-state
kinetic model (Figure 2) found experimentally and validated
computationally with four closed states and a single open
state (Church and Stanley, 1996; Bischofberger et al., 2002;
Bartol et al., 2015). Prior to the stimulus, all VDCCs begin in
the initial closed state, C0, and the concentration of calcium
in the presynaptic terminal is at steady-state. The transition
probabilities are voltage dependent akin to a Hodgkin-Huxley

model where αi(V) = αio exp
(

Vm
Vi

)

and similarly βi(V) =

βio exp
(

Vm
Vi

)

with parameter values from Bischofberger et al.

(2002). The number of open VDCCs at any givenmoment is used
to determine the number of calcium entering the presynaptic
terminal based on experimental I-V curves and the resulting I-V
equation found in Bischofberger et al. (2002) and used in Bartol
et al. (2015), which gives the value for kCa. Calcium influx is
captured by including transitions from the final closed VDCC
state, C3, to the open VDCC state and an internal calcium
generation. Using this, influx of calcium is modeled over the
entire stimulus input due to the VDCCs opening.

Once calcium has entered the presynaptic terminal, much of it
binds to calbindin, which acts as a buffer and primarily modulates
the amount of calcium that is able to reach the calcium sensors
at the active zone. The state transitions are reversible first-order

reactions, thus transition probabilities are dependent on the free
calcium in the system and updated as that amount changes
over time. Calbindin has four binding sites, two of high affinity
and two of medium affinity, leading to a nine-state calcium
concentration-dependent kinetic model (Figure 3; Nagerl et al.,
2000). By modeling the binding and unbinding of calcium to
calbindin as a loss or gain of free calcium, respectively, calcium
transients can also be elucidated.

Our Markov chain is a discrete-state chain in discrete time.
Markov chains are modeled by a probability that the chain will
move to another state given its current state and is conditionally
independent of all previous timesteps. The probabilities are by
nature only dependent on the current state of the Markov chain.
The probability of the state of a molecule X can typically be
predicted for a certain timepoint t + 1t as some particular state
xj using the states at all previous timepoints from the start of the
simulation, t = 0, to the timepoint just before that in question, t.
For a Markov chain simulation solely dependent on the previous
timepoint, it is possible to predict the probability that a molecule
is in a given state, xj at the timepoint t+1t using solely the state
of the single timepoint just before, Xt , which is known to be a
particular state xi. Thus, the probability of the molecule being in
state xj given that at the previous timepoint it was in state xi is
given as Pij. Succinctly, this is written as

P(Xt+1t = xj|Xt = xi,Xt−1t , ...,X0) = P(Xt+1t = xj|Xt = xi)

= Pij (1)

For state transitions, the probability of transitioning to an
adjacent state is the transition rate inherent in the system (kij
for the transition from state i to state j, and kij is not necessarily
equal to kji) times the timepoint, 1t. In the case of calbindin
transitions, this is further multiplied by the amount of free
unbound calcium for forward reactions as it is a first-order
reaction. For the VDCCs, the transition rates are the α, β , and
kCa. The probability that a molecule stays in its current state is
the sum of the probabilities it transitions to an adjacent state
subtracted from unity. For a multi-state system, this gives a
transition probability matrix for the likelihood of transition from
a given state at the current timepoint to any other state at the
next timepoint. This matrix is sparse, with nonzero probabilities
only for adjacent states to which a transition is possible. In the
case of the five-state VDCC system, this gives the probability of a
transition from state i to state j as

Pij =











kij 1t j = i± 1

1−
∑Nadj

k=0
Pik j = i, k 6= i

0 otherwise.

(2)

where transitions to adjacent states are given by the transition
rate kij times the timepoint, 1t; the probability of staying in
the current state is the sum of probabilities of adjacent state
transitions subtracted from unity, where Nadj is the number of
possible adjacent states. The probability of transitioning to a
non-adjacent state is set to zero.

Typically Markov state transitions are modeled via a discrete
inverse transform method, where given a random variable X, the
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FIGURE 4 | Markov sampling scheme for state transitions using partitions

of unity.

transition probabilities Pij describe a partition of unity (Figure 4).
Therefore, we can generate a random number uniformly, R ∼

U(0, 1) and map it onto discrete values of X. For example, in a
two state system, Xj = 0 if R ≤ Pi0 or Xj = 1 if Pi0 < R ≤

Pi0 + Pi1 = 1. This involves searching the state space for the next
state given the current state for each molecule in the system at
each timepoint, which can be a slow process for systems with a
large number of states and molecules.

Here we have implemented a more efficient MCMC sampling
strategy involving sampling from a multinomial distribution.
Therefore, instead of sampling from a uniform distribution for
each of n molecules, we sample from a multinomial distribution
once for each state, using n molecules as the number of
experiments, where X ∼ Multi(n, p1, . . . pk). For simulations
where the number of possible states is less than the number of
molecules, this is a more efficient sampling strategy. Since we
are particularly interested in the number of molecules in each
state at each timepoint, this is an effective approach. Multinomial
sampling thus describes the distribution of the n experiments
across k possible outcomes each with a probability of pk, where
nk is the number of experiments falling into the kth outcome
following a probability mass function of

f (n1, . . . , nk; n, p1, . . . pk) =
n!

n1! . . . nk!
pn11 . . . p

nk
k

(3)

In our model, for each state i, we have an initial number of
molecules in that state at a given timepoint t, or ni,t . As previously
described, there exists a probability that the molecules will
transition to any state at the next timepoint, including staying in
the original state given by Pij. Thus, to determine the distribution
of molecules ni,t across all states at the next timepoint, we sample
from a multinomial distribution according to

Xi,t+1t ∼ Multi(ni,t , Pi1, . . . Pik) (4)

for k possible states. We do this sampling for each state at
each timepoint and sum accordingly. This expedites computation
by only requiring a single computation at each timepoint,
sampling the distribution of all nmolecules at once.Algorithm 1

highlights the pseudocode for this process.

Algorithm 1:Markov Multinomial Reaction Sampling.

Result: The number of molecules in each state at each
timepoint for a simulation.

initialize number of states;
initializematrix of number of molecules per state per
timepoint;
for each timepoint do

for each state do
calculate transition probability according to Equation
(1);
sample multinomial distribution with current
number of molecules in the state and transition
probability;

end

update number of molecules in each state using samples;

end

Markov simulations for the VDCCs were run for 65 VDCCs
all starting in the closed state, C0. Calbindin molecules were
initiated in the different binding states according to the steady-
state concentration of calcium and at a baseline concentration of
4.5 10−5 M. All simulations were run for 10 ms with a timestep
of 1 µs. The simulations were repeated 1,000 times to obtain
an average and standard deviation. Markov simulations were
implemented using Python.

2.2. MCell Models
MCell is a modeling software that uses spatially realistic
3D geometries and Monte Carlo reaction-diffusion modeling
algorithms, which allows for biophysically realistic simulations
of high complexity as it specifically tracks the state of every
molecules in space and time (Bartol et al., 2015). Due to the
accuracy and specificity, it provides a ground truth for biological
simulations but does so at the cost of computational complexity.

To validate and compare our Markov models of synaptic
transmission, we built a biophysically realistic stochastic 3D
reaction-diffusion system with all major components for
presynaptic vesicle release variability in response to a stimulus
input (Figure 5) based on the models of Nadkarni et al. (2010)
and Bartol et al. (2015). The model includes realistic geometry
for a CA3-CA1 en passant synapse focusing primarily on
the presynaptic Schaffer collateral axon of a CA3 pyramidal
cell found in the hippocampus with parameters set from
experimental data (Nadkarni et al., 2010; Bartol et al., 2015).
The CA3-CA1 synapse was chosen for the simulations as it is
highly studied experimentally and is important for learning and
memory. Furthermore, CA3-CA1 synapses are relatively small,
containing one to two neurotransmitter release zones. Release
from this region is also known to be highly stochastic in nature,
necessitating the inclusion of stochasticity in biologically realistic
models (Nadkarni et al., 2010). All kinetics and parameters match
those used for the equivalent Markov models.

TheMCell model includes the canonical presynaptic geometry
for an average CA3-CA1 synaptic terminal as a rectangular box
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FIGURE 5 | MCell model for synaptic transmission containing voltage-dependent calcium channels (red), calcium (blue), calcium sensors (green), and plasma

membrane calcium ATPase pumps (purple). Calbindin not pictured here due to their large number. (A) Entire 0.5 µm by 0.5 µm by 4 µm box representing one

vesicular release site in a Schaffer collateral axon in the CA3 region and (B) a close-up of the release site.

measuring 0.5µm by 0.5µm by 4µm. This box captures the
dynamics of a single synaptic active zone, referring to the region
on the presynaptic membrane specialized for neurotransmitter
release. Initially, the terminal contains the calbindin buffer,
steady-state calcium concentration, PMCA pumps, VDCCs and
calcium sensors modulating neurotransmitter release (Nadkarni
et al., 2010). The detailed diffusion dynamics and kinetics of
these systems are based on experimental data and have been
discussed in further detail in Bartol et al. (2015). The active zone
is based on that of an average presynaptic active zone containing
seven docked neurotransmitter vesicle release sites. The VDCCs,
of type P/Q, are stationed at a biophysically realistic distance
from the active zone. They transition states in response to the
membrane depolarization. The location, number, and calcium
conductance of the VDCCs is replicated from experimental data
(Nadkarni et al., 2010). PMCAs are homogenously placed across
the presynaptic membrane while calbindin molecules are in a
uniform concentration within the volume. This is a flexible
architecture that can respond to any stimulus input and allows
for monitoring of the states of each molecule in the system. The
MCell CA3-CA1 synaptic transmission models were originally
created and validated in Nadkarni et al. (2010) and Bartol et al.
(2015). To compare with the Markov models, we used the same
single action potential stimulus.

MCell models were also run 1,000 times for 10 ms with a
timestep of 1 µs.

3. RESULTS

3.1. Voltage-Dependent Calcium Channels
The efficientMarkov chain implementation has strong agreement
with the full MCell model in terms of the internal state transients
in response to an external stimulus. The number of closed
VDCCs (state C0) decreases over the duration of the stimulus
(Figure 6A). The internal states (C1-C3) subsequently increase

and decrease as the membrane voltage increases and the forward
rates for the VDCCs increase (Figures 6B–D), leading to an
exponential increase in the open VDCCs while the membrane
depolarizes. Figure 6E shows the fraction of open VDCCs over
time in response to the action potential, which controls the
amount of calcium influx to the system. At the maximum
membrane potential, almost all VDCCs are in the open state.
As the membrane repolarizes, the reverse reaction rate constants
increase, and the VDCCs close. This leads to another increase and
decrease in the internal VDCC states as the receptors go from
their open to resting closed state (C0).

In its open state, VDCCs allow for the probabilistic influx
of calcium through the channels into the presynaptic bouton.
This is exemplified in Figure 6F, where there is an increase in
the calcium influx through the open VDCCs over the course of
the stimulus. Again, there is strong agreement between the more
computationally complex MCell model and the computationally
efficient Markov equivalent model.

3.2. Calbindin Buffer
Simulations of homogeneous calcium and calbindin were run
using the MCell, Markov and deterministic simulation schemes.
In the presence of calcium, the forward binding reaction is
heavily favored, and this is highlighted in Figure 7A where free
calcium exponentially decreases. A similar transient is apparent
for the unbound state of calbindin, as it quickly transitions to
different stages of high and medium binding Figure 7B. Over
the course of the simulation, all the free calcium is removed
from the system, and calbindin states reach a new steady-state
where there is still unbound calbindin. Similarly, the fully bound
state, H2M2, rapidly increases and reaches a new steady state
that is still only 1% of all calbindin Figure 7C. This is due to
the high concentration of calbindin in the presynaptic bouton.
Even once all the calcium is in a bound state, there is still
plenty of unbound or partially bound calbindin remaining in the
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FIGURE 6 | Fraction of voltage-dependent calcium channels (VDCCs) in each state: (A–D) Internal closed channel states, C0-C3, and (E) The open channel state, O.

(F) Calcium influx through open VDCCs in response to action potential stimulus for stochastic MCell, Markov, and deterministic ODE forward Euler simulation.

system. Calbindin acts as a strong buffer allowing for calcium
storage and asynchronous neurotransmitter release, so this and
slow unbinding rates become an important feature of calbindin.
The rapid extent to which calcium binds to calbindin shows the
impact of buffering on calcium’s ability to diffuse and bind to
the calcium sensors in the active zone. The inclusion of calbindin
at such high concentrations becomes a key feature of maintaining
the relatively low release rates of neurotransmitters even in the
presence of a stimulus.

3.3. Complexity Analysis
MCell uses a scheduler which allows for only making changes
to the scheduled particles, though in the worst-case, this still
scales with the total number of particles in the simulation,

n, where nVDCC is 65 and ncalb is 2.7 × 104. It also scales
with the length of the simulation, t, described by the number
of time points for a discrete simulation. The simulations for
the VDCC and calbindin both use 10k timepoints. At each
timepoint, a particle can transition to any of its adjacent or
branched states, b, which is similarly described by a fan-out factor
in electronic implementation. From the VDCC kinetic model
described in Figure 2, bVDCC is 1–2 depending on the state while
the calbindin kinetic model in Figure 3 gives bcalb of 2-4. The
overall time complexity forMCell isO(bnt). The classicalMarkov
representation tracks every particle. It also searches through the
space of each adjacent state for potential state transitions at each
time point. Therefore, classical Markov implementation similarly
results in an O(bnt) time complexity, or O(nt log2 b) at best
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FIGURE 7 | (A) Transients for homogeneous calcium-calbindin buffer binding in the presynaptic bouton for free calcium; (B) the unbound calbindin state, H0M0; and

(C) the fully bound calbindin state, H2M2 in all simulation types.

for implementation with an efficient search algorithm. Both the
multinomial Markov model and the Euler ODE implementation
describe the system in terms of the number of molecules in each
state leading to a dependence on the total number of states, s ≥ b,
rather than the total number of particles. The total number of
states for VDCC is 5 (Figure 2) while the number of states for
calbindin is 9 (Figure 3). Due to efficient sampling methods, the
multinomial Markov method is independent of the number of
adjacent states, leading to a time complexity of O(bst) for both
the multinomial Markov and Euler ODE methods. Thus, our
stochastic multinomial Markov model is equally amenable to
large scale simulations as the deterministic ODE method that is
typically used in simulations involving more synapses.

The traditional Markov sampling model and the MCell
representation store the molecular states in bits for each particle
as well as the states adjacent to the current state, leading to a space
complexity ofO(bn log2 s) The efficient Markov model and ODE
solution both simply store the number of molecules represented
by bits in each state at each timepoint as well as the branched
states resulting in a space complexity ofO(bs log2 n). There exists
a trade off here between the number of particles in each state
compared to the number of states where one is stored directly and
one is stored as an index. Thus, for simulations where the number
of states is less than the number of particles, the multinomial
Markov model is an efficient representation of the system, which
is typically the case for biochemical simulation. MCell is more
efficient with large state-space systems, but the number of states
could be sparsified in a multinomial Markov representation by
implementing dynamic instantiation and annihilation of states.
Additionally, unseen or rarely seen states could be ignored
by truncating based on probability of a particle being in that
state. This would functionally decrease the number of states
in the system allowing for use of the multinomial Markov
simulation method.

3.4. Benchmarks
Runtime and total floating point operations were used as metrics
for comparison between the simulation methods (Table 1).
We also looked at the number of pseudorandom number
generator calls (nPRNG) between the simulations as this provides

a metric to elucidate the differences observed in execution
time between the simulations. Here we compare MCell, the
standard Markov model, and the multinomial Markov stochastic
models. The deterministic Euler solution is included as well
for a non-stochastic comparison. Again, it is valuable to note
the importance of stochasticity in these models. Significant
work has shown the necessity of stochasticity in models of
synaptic transmission in order to match experimental work.
It has been demonstrated that deterministic models at this
scale generally underestimate quantal release as concentration
fluctuations are not captured (van Rossum et al., 2003; Bartol
et al., 2015; McDonnell et al., 2016). Thus, while deterministic
ODE models provide efficient simulation techniques, they are
not able to capture the full complexity of the dynamics of
synaptic transmission, hence motivating the need for an efficient
stochastic model.

In the VDCC simulations, the multinomial sampling MCMC
model has a runtime on the order of the forward Euler
deterministic solution. The MCell and the standard Markov
stochastic models exemplify a runtime an order of magnitude
higher. The number of operations is also higher for the
MCell and the standard Markov models compared to the
multinomial Markovmodel. The standardMarkov case generates
a pseudorandom number for each molecule and each timestep,
so nPRNG is equivalent to the number of molecules multiplied by
the number of timesteps, nVDCCt. In the multinomial Markov
simulation, a pseudorandom number is generated for each
occupied state and possible branching points at each timepoint,
which gives (bs)VDCCt in the worst-case scenario. Therefore,
nPRNG is smaller for the multinomial case as long as (bs)VDCC <

nVDCC, which is always the case here.
For the calbindin model, the multinomial Markov method

is again an order of magnitude faster than the MCell model
although it is also an order of magnitude slower than the
deterministic model. The standard Markov model is an order of
magnitude slower than the multinomial model. The operations
are also fewer for the multinomial case than the standard
case. Again, the standard Markov case gives nPRNG equal to
ncalbt while the multinomial Markov simulation is (bs)calbt.
Again we see a smaller nPRNG in the mulinomial case because
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TABLE 1 | Benchmarks for different simulation types for both voltage-dependent calcium channel and calbindin binding simulations.

VDCC Runtime (sec) No. Pseudorandom number generator calls (nPRNG) Total floating-point operations (FLOPs)

MCell 139.20 1.5 x 109 1.7 x 1011

Standard markov 109.16 6.5x 105 7.0 x 107

Muttinomial markov 9.40 1.0 x 105 1.3x 107

ODE (Euler) 10.05 0 7.7 x 106

Calbindin Runtime No. Pseudorandom number generator calls (nPRNG) Total floating-point operations (FLOPs)

MCell 29.34 6.9 x 107 8.7 x 109

Standard Markov 76.78 2.7 x 108 1.4 x 1010

Muttinomial Markov 2.37 3.6 x 105 2.7 x 107

ODE (Euler) 0.72 0 1.6 x 106

(bs)calb < ncalb even in the worst-case scenario where b is at
its maximum value. Simulations are not currently optimized
on hardware suggesting opportunities for further decreases in
runtime. Overall, the multinomial Markov simulation provides
a computationally efficient alternative to stochastic MCell
simulations while maintaining the biological accuracy.

3.5. Neuromorphic Implementation
Thermodynamic foundations of neuromorphic engineering
suggest direct biophysical implementation of populations of ion
channels with individual stochastic opening and closing of gating
variables driven by thermal noise fluctuations (Mead, 1989). So it
seems only natural to consider implementations using stochastic
ODEs describing the rates of reaction kinetics under additive
white Gaussian noise (AWGN):

dXi,t

dt
=

∑

j

kij Xj,t + ξi,t (5)

where ξi,t is normally distributed with zero mean and variance
dependent on the magnitude of Xi,t . Fully parallel, continuous-
time analog implementation of reaction kinetic rate equations
of the type (Equation 5) have been demonstrated in micropower
integrated circuits, e.g.,cytomorphic chips in BiCMOS integrated
silicon technology (Woo et al., 2018). Abundant intrinsic noise
present in these micropower cytomorphic circuits can serve
as AWGN, although its magnitude is determined by thermal
processes that are hard to control and other non-white Gaussian
sources of intrinsic noise contribute strongly colored low-
frequency spectra. Thus, discrete-time implementation of the
ODEs (Equation 5) through Euler integration on a digital
computer offers greater control over the shape and amplitude of
the AWGNdistribution, limited by the quality of pseudo-random
number generation by deterministic algorithms.

Although purely digital algorithmic implementations go
against foundational principles of neuromorphic engineering
rooted in the physics of computation (Mead, 1989), the
convenience of their programmability and reproducibility have
made ODE-based digital emulation platforms such as Loihi a
popular choice among more software-focused neuromorphic
computer scientists (Davies et al., 2018). The computation
involved in such discrete-time ODEs (Equation 5) can be

performed at varying degrees of parallelism in custom or
reconfigurable digital hardware, with the variables Xi being
updated in sequence through time-multiplexing a single
processing core in one extreme case, or all Xi updated in parallel
with dedicated processing elements for each in the other extreme
case. Ultimately in practice, the energy efficiency is relatively
independent of the compute implementation, and depends more
critically on the availablememory bandwidth in accessing the rate
parameters defining network connectivity (Pedroni et al., 2020).
In essence, discrete-time Euler-integration ODE implementation
of Equation (5) amounts to sampling from a normal distribution

Xi,t+1t ∼ N (ni,t+1t , σi,t) (6)

with mean and standard deviation

ni,t+1t =
∑

j

Pij nj,t (7)

σi,t =
√

ni,t (n− ni,t) (8)

incurring computational complexityO(bst) (section 3.3).
More fundamentally, the main disadvantage of implementing

stochastic ODEs (Equation 5) or their discrete-time digital
versions (Equation 6) is that they are primarily based on the
Central Limit Theorem for very large number of variables,
n → ∞. As such, they have limited accuracy in approximating
the reaction kinetics in systems with smaller numbers of
molecular variables. While one may be tempted to assume
that molecules are always excessively abundant, this is not
typically the case since reactions are rate limited by the least
abundant of reagents. Low numbers in molecular dynamics
are prevalent in biologically relevant settings, giving rise to
significant amounts of biological noise that are critical in
neural dynamics, e.g., the highly stochastic quantal release of
neurotransmitter in synaptic transmission. Thus, there is need for
a mathematical description of stochastic synaptic transmission
dynamics able to capture the accuracy in simulations with
relatively small numbers of variables. Here we have shown that
our multinomial Markov alternative, which directly samples
the variables from the multinomial distribution (Equation 4)
rather than the limiting normal distribution (Equation 6),
produces accurate results for any value of n while offering
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TABLE 2 | Space and time complexity for the various simulation strategies.

Complexity Time complexity Space complexity

MCell O(b n t) O(b n log2s)

Standard markov O(b n t) O(b n log2s)

Multinomial markov O(b s t) O(b s log2n)

ODE (Euler) O(b s t) O(b s log2n)

n (total number of molecules), s (total number of states), b (number of branching states),

t (number of timepoints).

nearly identical implementation complexity O(bst) (section
3.3). Hence we see the Markov chain abstractions of reaction
kinetics not only as a means to approach biophysical realism
in modeling molecular cellular dynamics without molecular-
scale representation, but also as a means toward efficient
neuromorphic hardware without biophysical compromise. The
key point is that the computational complexity of implementing
our multinomial Markov model is essentially identical to that
of stochastic ODEs (see Table 2), whether in software executing
serially on a von Neumann programmable digital computer
or in massively parallel digital or analog hardware. Hence,
the neuromorphic circuit designer tasked to implement brain-
inspired models of information processing faces an easy choice:
more bio-realistic models that account for detailed stochasticity
in reaction kinetics incur the same resource utilization and
energy costs, and use similar design principles, as their stochastic
ODE approximations.

In addition to field-programmable gate array (FPGA)
reconfigurable (Pedroni et al., 2020) or custom-integrated
neuromorphic programmable (Davies et al., 2018) instantiations
in digital hardware, we envision physically neuromorphic
instantiations in micropower analog continuous-time compute-
in-memory hardware that obviate sampling from posterior
distributions and directly implement Markov state transitions
through parallel implementation of sum-product rules with
self-normalizing probabilities (Chakrabartty and Cauwenberghs,
2004, 2005), at throughput density and energy efficiency that
are orders of magnitude higher than today’s most advanced
general-programmable computational platforms.

4. DISCUSSION

The goal of this work was to create a more computationally
efficient model of biologically realistic synaptic transmission
for use in large-scale neuromorphic systems. We created a
multinomial MCMC sampling strategy for capturing the internal
states of vital molecules in the system in response to stimulus
where transition probabilities could be voltage- or concentration-
dependent, and the next timestep could be predicted solely
using the current timestep. This scheme was implemented to
capture the dynamics of the stochastic opening and closing of
VDCCs through multiple internal states as well as the resulting
calcium influx into the presynaptic bouton through the open
VDCCs. Once calcium has entered the presynaptic terminal, we
also simulated calcium binding to the calbindin buffer which

modulates calcium levels in the bouton, directly impacting the
amount of calcium that reaches the calcium sensors in the active
zone. This amount impacts the neurotransmitter release from the
presynaptic side and the resulting effects on the postsynaptic side.

All simulations were modeled using the multinomial Markov
sampling method as well as a typical Markov sampling method
and compared to highly detailed 3D geometric stochastic
reaction-diffusion simulations done using MCell. The Markov
simulations show agreement with the MCell simulations for the
system dynamics including the number of open VDCCs and
calcium influx in response to an action potential stimulus as well
as the binding of calcium to the calbindin buffer. Differences
are observed from the deterministic solution to the stochastic
simulations implying the importance of stochasticity in these
simulations to capture more biologically-realistic systems.

Exemplified by runtime and total number of operations, the
multinomial MCMC method of simulations was shown to be
more efficient than the standard Markov model while also being
faster than the MCell equivalents. This is hopeful for scaling
these biologically-realistic models to large-scale systems while
maintaining biological tunability.

Next steps involve modeling the remaining kinetics in a
similar fashion including the binding and removal of calcium by
the plasmamembrane calcium (PMCA) pumps as well as binding
to the calcium sensors. In addition, to capture the diffusion of
calcium through the presynaptic terminal but specifically to the
calcium sensors at the active zone, a diffusive kernel must be
included to the system. Upon inclusion of these elements, the
entire process from stimulus to neurotransmitter release can
be captured as a series of Markov chains leading to powerful
implications for synaptic transmission modeling. The whole
synapse can be included as well with the inclusion of a diffusive
kernel across the synaptic cleft as well as downstream effects on
the postsynaptic side, of which many mirror similar kinetics and
dynamics as the presynaptic side leading to a natural extension
of this modeling framework. The resulting system would be
a biologically tunable model of synaptic transmission for any
stimulus input in a highly efficient manner. This opens the door
for large-scale implementations of synaptic transmission and
learning readily implementable into neuromorphic architectures
with strong biological realism.

Through the utilization of Markov-based abstractions
applied to biophysically realistic 3D reaction-diffusion
models of a chemical synapse, we have created a compact
and efficient internal state space representation of synaptic
transmission. This is in response to the challenge presented
by the high dimensionality and complex nature of molecular-
scale interactions in synapses and across scales making
implementation in very large-scale systems previously
unattainable. The model is directly amenable to efficient
emulation in parallel neuromorphic hardware systems
while maintaining biophysically relevant and interpretable
parameters that are readily tunable. This opens the door
toward neuromorphic circuits and systems on very large
scale that strike a greater balance between integration density
and biophysical accuracy in modeling neural function at the
whole-brain level.
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