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Event-based cameras are bio-inspired novel sensors that asynchronously record

changes in illumination in the form of events. This principle results in significant

advantages over conventional cameras, such as low power utilization, high dynamic

range, and no motion blur. Moreover, by design, such cameras encode only the relative

motion between the scene and the sensor and not the static background to yield a

very sparse data structure. In this paper, we leverage these advantages of an event

camera toward a critical vision application—video anomaly detection. We propose an

anomaly detection solution in the event domain with a conditional Generative Adversarial

Network (cGAN) made up of sparse submanifold convolution layers. Video analytics

tasks such as anomaly detection depend on the motion history at each pixel. To enable

this, we also put forward a generic unsupervised deep learning solution to learn a novel

memory surface known as Deep Learning (DL) memory surface. DL memory surface

encodes the temporal information readily available from these sensors while retaining

the sparsity of event data. Since there is no existing dataset for anomaly detection in

the event domain, we also provide an anomaly detection event dataset with a set of

anomalies. We empirically validate our anomaly detection architecture, composed of

sparse convolutional layers, on this proposed and online dataset. Careful analysis of

the anomaly detection network reveals that the presented method results in a massive

reduction in computational complexity with good performance compared to previous

state-of-the-art conventional frame-based anomaly detection networks.

Keywords: neuromorphic camera, anomaly detection, event data, silicon retina, sparse

1. INTRODUCTION

This paper focuses on anomaly detection using bio-inspired event-based cameras that register
pixel-wise changes in brightness asynchronously in an efficient manner, which is radically different
from how a conventional camera works. This results in a stream of events ek, where ek =

{xk, yk, tk, pk}, xk and yk being the x and y coordinates of the pixel where an intensity change
of pre-defined threshold has occurred, and tk and pk are the time (accurate to microseconds)
and polarity ∈ {+1,−1} of the change, respectively. The asynchronous principle of operation
endows event cameras (Delbruck andMead, 1989; Posch et al., 2008; Delbruck and Barranco, 2010;
Serrano-Gotarredona and Linares-Barranco, 2013) to capture high-speed motions (with temporal
resolution in the order ofµs), high dynamic range (120−140db), and sparse data. These low latency
sensors have paved the way for developing agile robotic applications (Annamalai et al., 2019), which
was not feasible with conventional cameras. Only limited achievements have been accomplished in
designing robust and accurate visual analytics algorithms for the event data.
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Video anomaly detection (Joo and Chellappa, 2006; Miguel
and Martinez, 2008) is a pervasive application of computer
vision with its widespread applications as diverse as surveillance,
intrusion detection, etc. However, the definition of anomalous
activities is too generic and varies from scenario to scenario.
Generally, the activities that occur with low and high probability
are considered anomalous and normal activities, respectively.
However, the definition of normal and anomaly is highly
subjective, dependent on the task at hand. This paper introduces
the stationary background and pedestrian walking as normalcy
and activities such as running, bending, falling, fighting, and
vehicles on the road as anomalies.

Anomaly detection in vision context requires fast response,
which depends on the sensor’s sensing capability and the
computational complexity of vision algorithms. This paper
proposes an anomaly detection solution using the event camera
to address low latency in sensing modality. We start by putting
forth the advantage of event camera sensing modality in
anomaly detection application: (i) event camera comes with
the ability to encode motion information at the sensor level
and provides automatic background subtraction for stationary
camera surveillance and (ii) yet another promising feature of
event camera for anomaly detection is data sparsity, which
is more pronounced especially when the camera is stationary.
Given the sensing modality difference between event camera and
conventional camera, we propose a solution that takes advantage
of the data sparsity and the motion information encoded in the
data, making our approach appropriate to sensor choice, suitably
addressing the reduced computational complexity.

The rarity of anomalous activities makes it infeasible
to construct anomaly detection as a two-class classification
problem. Hence, our anomaly detection approach is posed as a
generative deep learning (DL) problem. We formulate the task at
hand as follows: (i) Given a set of normal activities, the network
learns to fit a density model to predict the future activity, and
(ii) when an anomaly occurs, the network will fail to predict
future, which could be taken as an indication of the anomaly.
One of the most exciting capabilities of the event camera is its
ability to produce sparse data. The main benefit of this is that
it allows us to build computationally less complex algorithms.
To address this, we propose a sparse convolutional cGAN. In
event domain, cGAN and GAN were proposed by Wang et al.
(2019) and Robey et al. (2021) for the conversion of events to
a high-quality image and to construct a neuromorphic version
of CIFAR-10, respectively. However, the potential of cGAN built
with sparse convolution layers has not been explored in this
domain. Sparse convolutional cGAN allows detecting anomalies
with much less computational complexity, which would not have
been feasible otherwise.

Video analytics tasks such as anomaly detection involve an
understanding of temporal information and spatial information
to predict future activities. The temporal feature learning is
usually guaranteed by adding an optical flow constraint or 3D
convolution networks or temporal modeling networks such as
long short term memory (LSTM). However, with the event
camera, each pixel’s motion history could be extracted into
Time Surfaces (TS) (Gallego et al., 2019) or Memory Surface

(MS) from the time information encoded for each event. TS
and MS will enable us to circumvent computationally complex
optical flow estimation or 3D convolution used in most state-
of-the-art frame-based anomaly detection networks to capture
motion features explicitly. State-of-the-art MS or TS, popularly
known as motion history images, belongs to feature engineering,
which mandates domain expertise and parameter tuning. This
paper introduces an unsupervised shallow encoder–decoder
architecture to learn a better sparse event MS. Proposed MS
referred to here as DL memory surface embeds the rich motion
history at each pixel individually. Although recently end-to-end
learning of creating grid event representation of event data
has been proposed in Gehrig et al. (2019) and Ciccone et al.
(2020), it is tied to the task loss at hand. However, in memory
surface generation, the advantages of unsupervised DL to learn
nested concepts from data have not been explored. Unsupervised
learning decouples the learning of memory surfaces and the
higher level vision task, which is essential in scenarios where
the labeled event data are scarce. This decoupling enables the
proposed sparse DL memory surface to be applied to any video
analytics task.

There has not been any attempt to create an event-based
anomaly detection dataset. To bridge this gap and validate our
algorithm’s efficacy, we introduce a novel anomaly detection
event dataset. The dataset was recorded from a type of
event camera known as Dynamic Active Pixel Vision Sensor
(DAVIS) (Lichtsteiner et al., 2008; Moeys et al., 2017) and
also assimilated from publicly available pedestrian detection and
action recognition event datasets. The dataset used for anomaly
detection is highly challenging as there is lot of overlap in the
statistics of our normal and anomalous activities. This overlap
has been substantiated with statistical analysis performed on the
dataset. We believe that the dataset and the proposed algorithm
will have a new future in the event domain.

Contributions: In the context of the previous discussion, our
contributions in this paper can be summarized as follows:

1. Memory surface generation: Generic DL-based data
dependant unsupervised sparse memory surface generation.

2. Anomaly detection network: cGAN built with sparse
submanifold convolution layers (low computational
complexity).

3. Anomaly detection dataset.

2. RELATED WORK

In this section, we review previous work in the areas of
event memory surface generation and conventional frame-based
anomaly detection.

2.1. Event Memory Surface Generation
Neuromorphic system processing should be essentially different
from the conventional processing systems (Thakur et al., 2018).
A popular methodology followed in literature is an adaptation
of event data to make them compatible with conventional
networks. A survey of event representations has been provided
in Gallego et al. (2019). Recently, Sironi et al. (2018) proposed
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an exciting approach to encode time information by introducing
a representation (highly resistant to noise) known as MS that
exponentially weighs the information carried by past events.
Following this, Zhu et al. (2019) has proposed an event
representation by discretizing the time domain. However, this
representation might result in higher computational costs when
applied to a deep network. Calabrese and Easthope (2019) have
generated frames by accumulating a constant number of events,
thus claiming to have an adaptive frame rate.

In Park and Cho (2016), time-stamp maps are created
using three distinctive techniques, pixel replication, temporal
interpolation, and spatiotemporal correlation. These time-stamp
maps are merged temporally for further processing, hence
tending to lose the event camera’s time information.

In Lagorce et al. (2017), the intensity image has been coded
with the time stamp of each pixel

(
x, y

)
of recent positive and

negative events in the given integration time T and around a
spatial location of R×R. This image was further used to construct
features recognized as time surfaces. Following this, Zhu et al.
(2018) encode the first two channels as the number of positive
and negative events that have occurred at each pixel and the last
two channels as the time stamp of the most recent positive and
negative events. This representation discards all the other time
information except that of the recent event. Moreover, this kind
of encoding is susceptible to noise.

Mitrokhin et al. (2019) and Alonso and Murillo (2019) have
attempted to improve the time channel information by expertly
combining the time information. In Mitrokhin et al. (2019),
third channel stores average of the time stamp of the events
that occurred at pixel

(
x, y

)
in a given temporal window of size

δt. Alonso and Murillo (2019) improved it by allocating four
channels that encode the standard deviation of the time stamp
of positive and negative events (separately) that happened at that
specific pixel in the given time interval δt in addition to their
average value.

Earlier works restrained themselves from encoding basic
information such as polarity. In Nguyen et al. (2017), a list of
events is converted into images by recording the occurrence
of the recent event in the given time. The drawback of this
representation is that it encodes the latest event information
solely at each pixel value. In Maqueda et al. (2018), a two-channel
event image is created with histogram h+ and h− of positive
and negative events, respectively. Storage of different polarity
events in different channels avoids the cancellation of events of
opposite polarity at a given location. This choice proves to be
better than that of Nguyen et al. (2017). The predominant setback
of the above basic strategies is that they discard the treasured time
information obtained from event cameras.

The alternative models that can cope with event data are
biologically inspired neural networks acknowledged as spiking
neural networks (SNN) (Russell et al., 2010). However, SNN
has not become increasingly popular due to the lack of scalable
training procedures. Although native training on an SNN is very
challenging to scale, the shadow training methods proposed by
Rueckauer et al. (2017) in the SNN toolbox have shown to scale
to quite deep networks. For example, a 19-layer autoencoder was
trained using the SNN toolbox in reducing latency in a converted

spiking video segmentation network presented in Chen et al.
(2021).

Memory surface representationsmentioned earlier commonly
use handcrafted kernels such as the alpha kernel or exponential
kernel. In Gehrig et al. (2019), authors have proposed Multi-
Layer Perceptron (MLP) with two hidden layers with 30 nodes
each to implement a trilinear filter that produces a voxel grid
of features. The events are considered as individual elements,
thus discarding the temporal conditional dependence of the event
sequence. In Ciccone et al. (2020), authors have proposed a
matrix of LSTM cells to learn the mapping from events to 2D grid
representation. However, the formulations in Gehrig et al. (2019)
and Ciccone et al. (2020) are supervised end-to-end learning,
which is task dependant and tuned to the particular task for
which it was trained.

This paper proposes an unsupervised domain motivated
memory surface learning that is data dependant but not task
dependant. Note that, unlike (Gehrig et al., 2019; Ciccone et al.,
2020), ours is entirely unsupervised and can be used as a general
memory surface generation network for any motion analytic
related vision task. Unlike (Gehrig et al., 2019; Ciccone et al.,
2020), our DL memory surface generation can be utilized in
scenarios where labeled data is critically low, which is not
uncommon in event domain.

2.2. Anomaly Detection on Conventional
Camera
As there is no prior work on event data anomaly detection,
we briefly describe the frame-based DL algorithms for anomaly
detection (Kiran et al., 2018). Researchers build a statistical
model (reconstruction modeling and predictive modeling) to
characterize the normal samples, and the actions that deviate
from the estimated model are identified as anomalies.

Reconstruction modeling (Ng, 2011; Hasan et al., 2016;
Sabokrou et al., 2016; Chalapathy et al., 2017; Chong and
Tay, 2017) usually trains a deep auto-encoder type neural
network to memorize the training videos so that they reconstruct
normal events with lesser reconstruction error. Deep network’s
learning capability and generalization are too high that they
do not conform to higher reconstruction error expectations
for abnormal events. This led to the new attractive phase of
predictive models, which is trained to predict the current frame
based on past event’s history. The frames which do not agree
with the prediction are declared as anomalies. Researchers have
contributed a lot toward predictive modeling with convolutional
LSTM (Medel, 2016; Medel and Savakis, 2016; Luo et al., 2017)
and generative architectures. Convolutional LSTM learns the
transformation required to predict the frames. Generativemodels
such as variational auto-encoder (VAE) (Diederik and Kingma,
2014) and generative adversarial network (GAN) (Goodfellow
and Pouget-Abadie, 2014) learn the probability distribution to
generate the future from the history, which makes them ideal
candidates for anomaly detection.

Schlegl et al. (2017) proposed AnoGAN toward anomaly
detection, which is trained with a weighted sum of residual loss
and discriminator loss. Residual loss, |x − G (z) |, is defined
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as dissimilarity between original image x and the image G (z)
generated from random noise z. Discriminator loss is the
dissimilarity between the intermediate features representation
of the original image and the reconstructed image. Hence,
the discriminator acts as a feature extractor, not a hard
classifier. However, temporal information has been discarded in
modeling anomalies.

Ravanbakhsh et al. (2017b) proposed an anomaly detection
framework that tries to model the anomalies based on motion
inconsistency as well. The framework consists of two cGAN
networks, trained on cross channel tasks of generating future
frame from the optical flow (Brox et al., 2004) and vice
versa, respectively. During test time, the two discriminators
identify abnormal areas that correspond to outliers based
on the distribution learned by the discriminators during the
training phase.

Similar architecture has been followed in Ravanbakhsh
et al. (2017a). However, the significant difference lies in the
methodology used to detect possible anomalies. This work
utilizes generators to reconstruct optical images and frames at
test time, which results in unstructured blobs for anomalous
events due to the network’s inability to reconstruct unseen
abnormal events.

Liu et al. (2018) proposed a GAN solution to capture
the appearance and motion-based anomalies by leveraging
reconstruction loss, gradient loss, and optical flow loss in
addition to the adversarial loss. Themotion constraint is modeled
as the difference between the optical flow of predicted frames
and the original frame. Recently, Yan et al. (2018) has proposed
a 3D convolutional GAN to capture temporal information
for anomaly detection. However, 3D convolution increases the
computational complexity of the network.

We argue that frame-based anomaly networks suffer from the
weakness of explicitly modeling normal activity with deep and
dense convolutional architectures. The use of dense architectures
renders their direct application on event data debatable, as the
latter exhibits high data sparsity. In this work, we have proposed
cGAN made up of sparse submanifold convolutional layers.
The proposed network can realize the accuracy of frame-based
DL networks while leveraging the event camera’s sparse data
structure, thus resulting in very low computational complexity.

3. PROPOSED ANOMALY DETECTION
METHOD

The pipeline of our event data prediction framework for anomaly
detect ion is shown in Figure 1. Our methodology presents
anomaly detection as a conditional generative problem that
predicts future activity conditioned on past activities. The
proposed cGAN network is constructed from sparse submanifold
convolution layers to leverage the sparse nature of event
data, thus reducing computation latency. We train a sparse
convolutional cGAN to predict future TS Zhu et al. (2019)
conditioned on the current DL memory surface. TS is formed by
accumulating time stamp of events for a duration of 50ms. As the
event camera data have noise effects, we have done preprocessing

to remove the same. No information was retained after noise
removal when 1T was small. Hence, we have chosen 1T =

50ms to have an optimum trade-off between temporal latency
and information content. DL memory surfaces are generated
by a DL memory surface generation network (details of which
are furnished in the forthcoming sections). DL memory surface
capture the time information encoded in the given set of
events {xi, yi, pi, ti}ti∈T into a single 2D structure known as DL
memory surface.

We have also provided a theoretical explanation of
the working of DL memory surface, cGAN, and the
difference between general and sparse convolution in the
Supplementary Material.

3.1. Architecture of Sparse Convolutional
cGAN Network
The framework adopted here is a sparse convolutional cGAN
architecture with a sparse convolutional generator, and
conditional discriminator made up of convolution-BatchNorm-
ReLU. The input and output differ in time instants, though
they belong to the same underlying structure. Generator and
discriminator architectures are designed around this. We start
this section with a brief review of cGAN architecture. cGAN is a
two-player game wherein a discriminator takes two points x and
y in data space and learns to emit high probability when x and y
are samples from the data distribution. While a generator learns
to map a noise vector z drawn from P (z) and input sample y
drawn from Pd

(
y
)
to a sample x̂ = G(z, y) that closely resembles

the data x. The learning happens by solving the following
minimax optimization:

min
G

max
D

Ey∼Pd(y)Ex∼Pd(x|y) log
[
D

(
x, y

)]
(1)

+Ey∼Pd(y)Ex̂∼Pg (x|y) log
(
1− D

(
x̂, y

)]

3.1.1. Submanifold Sparse Convolution Generator
The generator comprises a sparse convolutional encoder-decoder
architecture (middle row in Figure 1). The generator tries to
predict future TS conditioned on the DL memory surface. GAN
is generally a deep and computationally expensive architecture.
In order to speed up inference, pooling layers have been added
to CNN architectures with a decrease in spatial dimension
and an increase in the number of channels as we go deep
down the network. However, slow pooling is essential to retain
spatial structures, particularly in sparse data. In order to offset
this trade-off, the input data’s sparsity should be utilized to
reduce the computational complexity. Event cameras primarily
respond to edges, thus resulting in spatial sparsity. In this
paper, Submanifold Sparse Convolution (SSC) mentioned in
Graham and van der Maaten (2017) is tuned to utilize the spatial
sparsity encountered in the event data. Sparse layers result in
reduced computation complexity. SSC convolutions compute
convolution only on pixels termed as active sites. A pixel falls
under the active site if the corresponding central site in the
receptive kernel field is non-zero. On active sites, convolutions
are carried out as Sparse Convolution (SC) Graham (2014).

We have used SSC to build our generator, whose layers are
mainly responsible for the inference computation complexity.
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FIGURE 1 | The framework of the proposed deep learning (DL) memory surface network and sparse convolutional conditional Generative Adversarial Network

(cGAN), where C is the number of channels and k is the kernel. (A) DL memory surface network with event volumes as input and output. Trained as stand-alone

network in an unsupervised setting with activation regularization. Sparse DL memory surfaces are generated at the bottleneck layer. (B) The generator of cGAN is built

with Submanifold Sparse Convolution (SSC) layers, which predict future Time Surfaces (TS) conditioned on DL memory surface. Only generator is used during

inference. Hence building a generator with SSC layers aids in the reduction of computational complexity. (C) Discriminator of cGAN, which is exposed to real pair of

images (DL memory surface and original future TS) and fake pair of images (DL memory surface and predicted future TS). This contributes to the adversarial loss of

cGAN during the training stage.

SSC is optimized to process sparse event data that lives in high-
dimensional space. The blocks we have used in our encoder-
decoder architecture of the generator are Minkowski layers
(Choy et al., 2019) made up of Convolution/Deconvolution-
Pooling-Activation. Activation functions are defined only on
active sites. Deconvolution operations are defined as the inverse
of the submanifold sparse convolution operation. The set of
active sites is the same as that of the input to the corresponding
SSC convolution layer.

We have used 6 convolution layers and 5 pooling
layers in the encoder side with 6 deconvolution and 5
unpooling layers on the decoder side. The number of
channels of encoder are 16, 32, 64, 128, 256, 512. Hence, the
encoder produces 512 feature maps fed to the decoder to
reconstruct the input by deconvolving and unpooling in
reverse order of size and channels. A defining feature of the
proposed architecture is SSC in the generator. Exhaustive

implementation details of SSC can be found in Choy et al.
(2019).

3.1.2. Discriminator
Being motivated by the unique design of the discriminator
proposed in Isola et al. (2017), we have used the PatchGAN
classifier as a discriminator. Conventional discriminator classifies
the entire time surface as real or fake. However, patchGAN
discriminator is a convolutional network that can classify each
tile of predicted and original future time surfaces as real or fake,
respectively, conditioned on the DL memory surface. PatchGAN
generates aN×N output array whereN is the number of tiles into
which the time surface is divided along rows and columns. The
average of classification of tiles is considered to declare the entire
time surface as real or fake. Working on individual tiles rather
than on the entire time surface capture the details in sharp, high-
frequency edges. PatchGAN discriminator works on any image
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size with the assumption that pixels separated by patch radius
are independent.

3.2. DL Memory Surface Generation
Network
As it has been mentioned previously, we have proposed an
unsupervised learning based event data memory surface known
as DL memory surface. DL memory surface is generated by a
shallow, computationally inexpensive encoder-decoder network
architecture (top row in Figure 1) with a loss function that
includes a data term and a sparsity term. We start this section
with an introduction to the architecture of the encoder-decoder
network, followed by details on the loss function.

3.2.1. Network Architecture
We adapt fully convolutional encoder-decoder architecture
(Hinton and Salakhutdinov, 2006) that maps a discretized
volume of event data to a single image known as DL memory
surface Ms at the bottleneck layer. Discretized volume of event
data (Ev = [ev0, ev1 . . . evB]) is produced by stacking events into
TS (evi) (Zhu et al., 2019), given a time duration T and a set of B
discrete time bins [b0, b1 . . . bB] each with1T duration.

The input and output are renderings of the discretized
volume data Ev. Input event volume passes through the
encoder convolution layer with 64 channels and 1 × 1
convolution, followed by bottleneck convolution (DL memory
surface extraction layer) layer with a single channel. The non-
linearity injected between the layers is ReLU, with activation
regularization imposed on them. The convolution stride is 1 pixel
in the spatial dimension. Spatial padding is fixed to retain the
spatial dimension.

In order to model only the temporal history embedded in
the data without upsetting the spatial distribution, it is adequate
to restrict the convolution operation across the time dimension.
Hence, we have designed the network with 1D convolution layers
inspired by the paper of Lin et al. (2013), which was the first
to implement 1 × 1 convolution. As we needed the network
to learn temporal kernels that aids in accumulating event data
over time, the defined 1D convolution is over the temporal
dimension alone. As studies have shown, 1D CNN can learn
complex tasks (Szegedy et al., 2015; Iandola et al., 2016) with
shallow architecture, unlike its counterpart 2D CNN, thereby
resulting in a “small” network.

3.2.2. Loss Function for DL Memory Surface
The DL memory surface generation network attempts to learn
a function hθMS (Ev) in such a way that the target values
[êv0, êv1 . . . êvB] is similar to that of the input [ev0, ev1 . . . evB],
while the bottleneck layer models the temporal information
encoded by the event camera. The architecture consists of
two parts, encoder and decoder defined by the transformation
functions φθE :Ev → Ms and ψθD :Ms −→ Ev, respectively,
with θD and θE being the parameters of decoder and
encoder, respectively. DL network discovered an interesting
representation while preserving the input event data’s sparse
structure. The inclusion of 1D gives us the liberty to use shallow

networks but still forces the network to learn more appropriate
temporal information.

In order to maximize the usefulness of the latent variable
encoding, we use a data term that tries to model the probability
distribution {P (Ev | Ms∗)} of getting the event discretized
volume, Ev, given the ideal DL memory surface, Ms∗, by
maximizing the forward KL divergence between the ideal
distribution P (Ev | Ms∗) and our estimate P

(
Ev | M̂s

)
(Equation

2). Forward KL divergence will result in the best latent
variable that covers all the models of probability distribution of
normal videos.

KL = EEv∼P(Ev|Ms∗) log [P (Ev | Ms∗)] (2)

−EEv∼P(Ev|Ms∗) log
[
P

(
Ev | M̂s

)]

Since the first term does not depend on the estimated latent
variable, it could be ignored. Hence, the second term of Equation
(2) boils down to maximizing the log likelihood of P

(
Ev | M̂s

)

when the sample size tends to infinity. The output of the decoder
can be modeled as a function of latent variable M̂s and noise
η ∼ N (0, 1) as ψθD

(
M̂s

)
+ η. This makes P

(
Ev | M̂s

)
a Gaussian

distribution with mean ψθD
(
M̂s

)
. Thus, maximizing the log

likelihood turns out to minimizing−‖Ev− ψθD
(
M̂s

)
‖2.

To preserve the sparsity in the event data at the bottleneck
layer, we have introduced an activation regularization term in
the loss function in addition to the data term. To utilize the
advantages of L1 and L2 norms, the activation regularization term
includes a combination of L1 and L2 regularization of activations
in the bottleneck layer.

We have performed a thorough evaluation of our
proposed DL memory surface generation network as
a standalone architecture on event data and provided
the same in Supplementary Material. The experiments
include self-analysis and a thorough comparison with the
existing state-of-the-art methods. Self-analysis includes
the study on sparsity regularization parameters as well.
Comparison comprises performance and computational
complexity-related experiments.

4. EXPERIMENTAL VALIDATION

This section evaluates different components of the proposed
method on the dataset introduced in the forthcoming section.
We have provided a complete analysis of the anomaly detection
network made up of sparse sub-manifold convolutional layers.
To emphasize the task-independent utility of our DL memory
surface, we have also provided experiments to analyze the same
on a different vision application in the Supplementary Material.
We start this section with a description of the dataset.

4.1. Dataset
We validated our algorithm on the proposed dataset assimilated
from three different types of datasets, two datasets generated and
introduced in Shu et al. (2019) targeted for pedestrian detection,
and action recognition and a novel dataset recorded by DAVIS
tailored for anomaly detection. Few samples from the datasets
used are displayed in Figure 2. The complexity of the dataset
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FIGURE 2 | Display of few samples of event frames from the dataset. Event frames are formed with recent on and off events that occur in a specified time window. On

and Off events are pseudo-colored as red and green, respectively.

TABLE 1 | Statistics of AnoDataset, ActDataset (Shu et al., 2019), and

PedDataset (Shu et al., 2019) used for evaluating the proposed algorithm.

Actions AnoDataset ActDataset PedDataset Clips

Normal

Walking X X X 50

Anomaly

Running X 10

Fighting X 4

Bending X X 43

vehicle X 2

Falling down X 30

Sitting X X 30

Arm cross X 30

Get Up/Sit X 30

Picking up X 30

Throwing X 30

Jumping X 30

Kicking X 30

Turning X 30

Tying X 30

considered is analyzed in terms of the event rate of normal
vs. anomaly.

4.1.1. Dataset Available Online
Previously, event-based datasets were made available for other
vision-based tasks such as visual odometry (Mueggler et al., 2017)
and object recognition (Li et al., 2017). Pioneering work from
Shu et al. (2019) has introduced open-access datasets for motion-
related tasks such as pedestrian detection and action recognition
recorded with DAVIS sensor with a resolution of 346 × 260.
Only events, not APS data, were recorded in order to save the
storage space. As there is a significant change in viewpoint, it
is conceivable to include data from the pedestrian detection
dataset and the action recognition dataset. Furthermore, this will
yield an opportunity to test the proposed algorithm under two
different scenarios. Our formulation has carefully picked relevant
samples from the action recognition (ActDataset) dataset and
pedestrian detection dataset (PedDataset). The details of the
activities considered as normal and anomalous are provided in
Table 1.

FIGURE 3 | Display of histogram of event rate of normal vs. anomalous activity.

The event rates are estimated for a standard time interval of 10 ms. Huge

overlap in the histogram of event rate indicates that the anomalous activities

considered do not differ from normal activity in terms of rate of motion.

4.1.2. Dataset Recorded for Anomaly Detection
AnoDataset is our newly collected dataset as proposed in this
paper, which was recorded for anomaly detection. This new
anomaly dataset will benefit the neuromorphic community. We
present two variations of the event dataset from two distinctive
sets of environments, an indoor empty lab environment and
an outdoor corridor environment, to set a realistic baseline for
algorithm evaluation. This dataset consists of short event clips
of pedestrian movements parallel to the camera plane, captured
from a static DAVIS camera with a resolution of 346× 260. Each
recording lasts about 30 s on average. The normal and anomalous
scenes are staged with typical training videos consisting of people
walking. The testing videos consist of a variety of anomalous
activities summarized in Table 1.

4.1.3. Analysis of Dataset
To emphasize the complexity of the dataset considered, we
have estimated the event rates of various anomalous activities
vs. normal activity at various time instants for a uniform time
interval. Figure 3 shows the histogram of event rates (for 10 ms)
for normal and anomalous activity, and Figure 4 displays the
number of events (for 50 ms) vs. various time instants for normal
and anomalous activities. It could be seen that there is much
overlap between normal and anomalous activities in terms of
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FIGURE 4 | Display of event rate of normal vs. anomalous activity at different time instants for a standard time interval of 50 ms. Huge overlap in the event rate

indicates that the anomalous activities considered do not differ from normal activity in terms of rate of motion.

event rate, which indicates that the rate of motion of the normal
and anomalous activities resemble each other, which justifies the
use of a deep network to detect anomalies.

4.2. Implementation Details
The input discretized event volume, formed by accumulating
events, is passed through a 3D convolution layer, which has
a receptive field of 1 × 1 × C, where C is the number of
channels. DL memory surface network, initialized with random
weights sampled from a standard normal distribution, is trained
with these input event volumes to reconstruct its inputs. The

activation regularization of the DL memory surface network is
fixed for anomaly detection network experiments. We extract
the DL memory surface from the bottleneck layer of the DL
memory surface network. We used a 2e−4 learning rate and
0.5 momentum.

A sparse convolutional cGAN anomaly detection network is
trained with normal activities to predict future TS conditioned
on DL memory surface. The generator’s architecture is a sparse
convolutional encoder-decoder, and that of the discriminator
is a classifier architecture, the details of which are provided in
previous sections. DL memory surface is fed to the generator
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FIGURE 5 | Top: Walking (normal) activity, Middle: Kicking (anomalous) activity, Bottom: Picking (anomalous) activity. Visualization of original events (left and middle)

at times t− 1 and t and the difference between original (ent ) and predicted events (ênt ) overlaid as red over the original events if it exceeds a pre-defined threshold

(right) (|ent − (ênt )| ≥ Threshold → red). It could be seen that the difference between original and predicted events (red color) is prominent in the case of anomalies.

network as a sparse tensor whose value is defined only
at discrete locations specified by the indices matrix. Sparse
tensor representation is crucial to saving memory space and
maintaining sparsity in the generator network’s computation.
The optimization technique used is Stochastic Gradient Descent
(SGD) with a learning rate of 0.1 and momentum of 0.9.

4.3. Evaluation Metrics
The various criteria used to evaluate the proposed anomaly
detection network are recall, precision, F1 score, and accuracy as
given below,

Recall = TPR
TPR+FNR (3)

Precision = TPR
TPR+FPR

F1 =
2∗precision∗recall
precision+recall

Accuracy = TPR+TNR
TPR+TNR+FPR+FNR

All the measures used are based on True-Positive Rates (TPR),
False-Positive Rates (FPR), True-Negative Rates (TNR), and
False-Negative Rates (FNR), where positive and negative denote
the presence and absence of anomalous activities. The recall
is the classifier’s ability to recall positive classes. The ratio
between the true-positive rate and the total number of retrieved
images is referred to as precision. F1-measure indicates the
balance between precision and recall. The fraction of accurate

predictions of the model is termed accuracy. In addition to
this, the Equal Error Rate (EER) is also used to summarize the
anomaly detection network’s performance. EER is the ratio of
frames that are misclassified at FPR = 1− TPR.

4.4. Experiments and Results on
Self-Analysis
This section evaluates the underlying claim of the sparse
convolutional anomaly network proposed. The claim is that
given a sequence that contains normal and anomalous activities,
the network automatically makes the anomalous activities
stand out, distinguished from the normal scenarios. In order
to achieve this, the network must have learned to predict
normal activities but not anomalous activities. This section
provides experimental results to substantiate this capability of the
proposed anomaly network.

4.4.1. Prediction Capability of Anomaly Network
The proposed approach assumes that given that the network is
trained with normal activities, it should have learned to predict
the future TS in the case of normal activities and fail to do so
in the case of anomalous occurrences. To validate that the goal
mentioned above is achieved, we have subjected the network
trained on normal activities to predicting future TS. Figure 5
provides visualization of original TS (left and middle column)
at t − 1 and t, and color (red) coded thresholded difference
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FIGURE 6 | Visualization of mean square error (MSE) between original and predicted Time Surfaces (TS). White color corresponds to a time frame of normal activity,

and red corresponds to abnormal activity. Top left: Walking is a normal activity with kicking and fighting as anomalies. Top right: Walking is a normal activity, with

falling and picking as an anomaly. Bottom left: Walking as normal with bending and running as an anomaly. Bottom right: Stationary background as normal with

running as an anomaly. MSE is high during anomalous activities as the anomaly network cannot predict the future TS in those cases as it has not seen them

during training.

(right column) between the original (ent) and predicted (ênt) TS
embedded in the original TS (|ent − (ênt)| ≥ Threshold → red).
Top row in Figure 5 displays the experiment results of normal
activity, whereas middle and bottom rows in Figure 5 display the
results of anomalous activities. This emphasizes the fact that the
network has learned to predict future TS of normal activities. In
the case of anomalous activities, the experiments illustrate the
good anomaly localization capability of the network.

4.4.2. MSE Plots of Normal-Anomalous Sequences
To quantitatively evaluate the anomaly detection network
performance, testing cases with intermittent abnormal activities
from the datasets mentioned above were presented to the
network. In this experiment, the proposed algorithm detects
anomalous activities at the event TS level by estimating
prediction error. The prediction error is evaluated as normalized

mean square error (MSE) between the TS predicted by the
generator network of sparse Convolutional cGAN and the
ground truth TS. MSE is estimated as given in Equation (4),
where ênxy and enxy are predicted, and original normalized time
stamps (values between 0 and 1) at the location (x, y) in the TS
and Nx and Ny are the number of rows and cols, respectively. It
should be noted that the co-occurrence of the spatial location of
anomaly is not considered for evaluation. Figure 6 shows the plot
of the MSE vs. event frame number. It could be seen that event
data with normal sequences have lower reconstruction error than
that of events that belong to anomalous events as the network
does not have enough knowledge to predict anomalous events.

MSE =
1

NxNy

Nx∑

x=1

Ny∑

y=1

ênxy − enxy (4)
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4.4.3. Quantitative Evaluation of Anomaly Network
In this section, we quantitatively assess the performance of the
proposed sparse convolutional anomaly network. This section
brings out the analysis of the network’s capability to predict
abnormal activities. Abnormality detection is evaluated over a
range of thresholds. Table 2 displays the results of the FPR (False
Positive Ratio), TPR (True Positive Ratio), Precision, and Recall
averaged over anomalies.

4.4.4. Quantitative Evaluation on Anomalies Similar to

Normal Activity
We have also analyzed the sparse anomaly detection network
on individual anomalies whose event rate overlaps with normal
activities. Quantitative analysis in terms of AUC, EER, average
precision, and F1 score is furnished in Table 3. Table 4 displays
a detailed analysis of FPR and precision at different TPR on a
sub-set of proposed anomalies, which are relatively challenging
to detect. Anomaly detection was also evaluated over a range

TABLE 2 | Quantitative analysis of anomaly network in terms of False-Positive

Rates (FPR) vs. True-Positive Rates (TPR) (left) and Precision vs. Recall (right)

averaged over various anomalous activities.

FPR TPR Precision Recall

1.0 1.0 0.315 1.0

0.666 0.765 0.538 0.0765

0.633 0.765 0.545 0.0765

0.306 0.750 0.658 0.750

0.135 0.663 0.850 0.639

0.078 0.639 0.948 0.616

0.0 0.543 1.0 0.220

TABLE 3 | Quantitative analysis of proposed network in terms of Area Under

Curve (AUC), Equal Error Rate (EER), average precision, and F1 score.

Anomaly AUC (%) EER (%) Avg precision (%) F1 score (%)

Falling 96 14 94 83

GetUp 93 18 88 75

Jumping 99 1 99 80

Kicking 83 24 82 56

Picking 82 23 78 72

Sit 82 25 74 87

of thresholds to construct the ROC curve (FPR vs. TPR) and
Precision-Recall (PR) curve on different anomalies. Figure 7
displays the results of the receiver operating characteristics
(ROC) and PR (Precision-Recall) curve of the proposed method
on various anomalies. It could be visualized that the proposed
method performs well even for anomalies that do not differ from
normal activities in terms of rate of motion.

4.4.5. Computational Complexity
Table 5 shows the comparison of the computational complexity
of dense and sparse layers in terms of FLOPs (Floating Point
OPerations). FLOP is generally used as a metric to evaluate the
computational complexity as it does not depend on the hardware
and the implementation. Cin and Cout are the number of input
and output channels for a particular layer, (m, n) is the size
of the image, k is the size of the kernel, Na is the number
of active sites in the whole image, and N2

k
is the number of

non-zero pixels in the receptive field of the kernel. A particular
pixel is active if it falls in the center of the kernel’s receptive
field. The number of multiplications and additions required for
standard convolution for a particular pixel are Cout

(
k2Cin

)
and

Cout

(
k2Cin − 1

)
, respectively.

We have given plot of comparison of computational
complexity of dense and sparse layers at different levels at
N2
k

= 1, 2, 5 in Figure 8 (N2
k
is taken as constant across all

the layers. On an average, N2
k
was varying from 1 to 5). For

better visualization, FLOPs are converted into log domain and

estimated as percentage of dense layer FLOP
(
log Si
logD

∗ 100
)
, where

D and Si are dense and SSC layers. It could be noted that
SSC layers requires far lesser computation than dense layers,

especially when
(
Na
mn = 0.0625,N2

k
= 1

)
.

4.5. Experiments and Results on
Comparison With State of the Art
This section compares the proposed method with conventional
frame-based approaches in terms of accuracy and computational
complexity. As there is no existing anomaly detection network
for event cameras, we compare our method with state-of-the-art
frame-based anomaly detection approaches.

This section provides comparison of the proposed anomaly
detection method with conventional frame-based algorithms
(Hasan et al., 2016; Chong and Tay, 2017; Liu et al., 2018), Ftre
(Schlegl et al., 2017), Gen (Schlegl et al., 2017), and (William

TABLE 4 | Quantitative analysis of proposed network in terms of True-Positive Rates (TPR), False-Positive Rates (FPR), and Pr (Precision).

Falling GetUp Kicking Picking Sitting

TPR FPR Pr TPR FPR Pr TPR FPR Pr TPR FPR Pr TPR FPR Pr

1.0 1.0 0.33 1.0 1.0 0.28 1.0 1.0 0.29 1.0 1.0 0.47 1.0 1.0 0.46

0.92 0.29 0.60 0.95 0.4 0.48 0.8 0.56 0.37 0.98 0.79 0.52 0.98 0.9 0.49

0.89 0.18 0.70 0.77 0.10 0.73 0.76 0.16 0.65 0.93 0.31 0.72 0.8 0.4 0.68

0.86 0.07 0.84 0.72 0.05 0.84 0.64 0.02 0.94 0.28 0.05 0.8 0.50 0.26 0.73

0.78 0.02 0.93 0.68 0.0 1.0 0.48 0.0 1.0 0.2 0.0 1.0 0.14 0.02 0.85
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FIGURE 7 | Quantitative analysis of anomaly network in terms of recall, precision, and ROC averaged over various anomalous activities (Left: Falling, GetUp, and

Jumping anomalies; Right: Kicking, Picking, and Sitting anomalies). The difficult anomalies have been grouped together based on their level of overlap with normal

activity.

TABLE 5 | Comparison of the computational complexity of dense and sparse

layers in terms of Floating Point OPerations (FLOPs).

Layer Dense Sparse

Convolution mnCout

(
2k2Cin − 1

)
NaCout

(
2N2

kCin − 1
)

Max pooling mcCoutk
2 NaCoutNk

ReLU mnCin NaCin

et al., 2016). The details of the implementations used are
summarized below.

AnoDet B (Chong and Tay, 2017) is a spatiotemporal
auto-encoder architecture, which is made up of spatial
and temporal autoencoders to learn spatial features and
temporal patterns, respectively. The discretized volume of
events mentioned in the earlier section of the paper is fed

as input to the architecture. The event TS is classified as
normal and anomalous based on the reconstruction error.
We have adapted the code implementation provided at
https://github.com/harshtikuu/Abnormal_Event_Detection.

AnoDet C (Hasan et al., 2016) uses a fully convolutional
autoencoder in addition to conventional motion feature
descriptors to learn low- and high-level features. The input is
constructed as a discretized event volume of TS stacked together.
The parameters are fixed as the implementation provided
at https://github.com/NRauschmayr/Anomaly_Detection. The
reconstruction error is estimated as the sum of per pixel error
based on which an event TS is classified as normal or anomaly.

AnoDet F (William et al., 2016) is a deep recurrent
convolutional neural network for future frame prediction. The
implementation we have used is the architecture implemented as
a custom layer in Keras https://github.com/coxlab/prednet. To
predict future TS accurately, it needs a sequence of event TS
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FIGURE 8 | Comparison of the computational complexity of dense (D) and

SSC layers (y axis is in log scale), S1
(
Na
mn

= 0.25,N2
k = 1

)
, S2

(
Na
mn

= 0.0625,N2
k = 1

)
, S3

(
Na
mn

= 0.25,N2
k = 2

)
, S4

(
Na
mn

= 0.0625,N2
k = 2

)
, S5

(
Na
mn

= 0.25,N2
k = 5

)
at different levels in terms

of FLOPs. For better visualization, FLOPs are converted into log and estimated

as percentage of dense layer FLOP
(

logSi
logD ∗ 100

)
.

as input to learn the objects’ motion dynamics. An event TS is
classified as normal or anomaly based on the prediction error.

AnoDet E (Schlegl et al., 2017) and AnoDet A (Schlegl
et al., 2017) are the two versions of an anomaly detection
network, which utilizes predicted feature and image, respectively,
for anomaly detection. The architecture is made up of deep
convolutional GAN, and it works on static images. The input is
individual event TS formed by discretizing the events. It provides
an anomaly score as a measure of fit of the predicted event TS to
the original TS. The TensorFlow implementation is available at
https://github.com/tSchlegl/f-AnoGAN.

AnoDet D (Liu et al., 2018) depends on the optical flow
network to extract motion information for anomaly detection.
Hence, it has been tested without training, which leads to
deficient performance. Implementation is available at https://
github.com/StevenLiuWen/ano_pred_cvpr2018.

4.5.1. Classification Performance Analysis
As we compare methods based on AUC, EER, and ROC curves,
the experiment is not sensitive to the threshold setting used
to classify a particular event frame as normal or anomaly.
It could be inferred from Table 6 that the proposed network
performs better than the state-of-the-art frame-based anomaly
detection networks.We have also provided the comparison of the
proposed method with state-of-the-art methods in terms of ROC
(Figure 9) generated from AUC and EER.

4.5.2. Computational Complexity Analysis
The conventional frame-based anomaly networks are made up
of deep generator networks. Moreover, they use an additional
network such as optical flow or temporal autoencoder, or
LSTM to capture the motion analytic. This additional network
results in substantial computational complexity. In order to
mitigate this effect, the proposed solution includes SSC layers (as
mentioned in section 3) to build the generator of the proposed

TABLE 6 | Comparison of the proposed anomaly network with state-of-the-art

frame-based anomaly networks in terms of AUC and Equal Error Rate (EER).

Dataset details are as mentioned in the previous sections.

Method AUC (%) EER (%)

AnoDet A (Predicted image) (Schlegl et al., 2017) 86 11

AnoDet B (Chong and Tay, 2017) 59 43

AnoDet C (Hasan et al., 2016) 92 14

AnoDet D (Liu et al., 2018) 93 18

AnoDet E (Predicted feature) (Schlegl et al., 2017) 92% 15

AnoDet F (William et al., 2016) 89 15

Proposed (EvAn) 96 13

FIGURE 9 | Comparison of the proposed anomaly network with

state-of-the-art frame-based anomaly networks in terms of ROC.

TABLE 7 | FLOPs (Floating Point OPerations) of conventional frame-based

anomaly detection networks in comparison to the proposed network (128× 128).

Methods FLOPs

Ravanbakhsh et al. (2017a) 2.8× 1010

Ravanbakhsh et al. (2017b) 2.8× 1010

Liu et al. (2018) 6.4× 1010

Proposed
(
Na
mn

= 0.25,N2
k = 1

)
4.1× 107

Proposed
(
Na
mn

= 0.0625,N2
k = 1

)
8.6× 106

Proposed
(
Na
mn

= 0.25,N2
k = 2

)
8.3× 107

Proposed
(
Na
mn

= 0.0625,N2
k = 2

)
2.08× 107

Proposed
(
Na
mn

= 0.0625,N2
k = 5

)
1.04× 108

As the sparsity provided by the event camera is utilized optimally with Submanifold Sparse

Convolution (SSC) layers, the proposed anomaly detection network displays a huge

reduction in computational complexity. Proposed method experiment results are provided

in bold.

anomaly network and a thin encoder network (DL memory
surface network) in the place of optical flow networks. These
networks exploit the benefits of the sparsity of the event data
and the time information encoded in the event data, respectively.
These properties make our solution a desirable choice with
good prediction accuracy and lesser computation (as shown in
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Table 7), more suitable for real-time hardware implementations
with less computation budget.

5. CONCLUSION

This paper presented the first baseline for the event-based sparse
convolutional anomaly detection model. The proposed solution
involves cGAN with SSC layers, which capture the anomaly in
the event domain with reduced computational complexity. We
have also proposed an unsupervised DL solution to effectively
encode the time information encoded in the event data into
a sparse DL memory surface. The sparsity of the DL memory
surface could be controlled by tuning the sparsity term in the
loss function. DL memory surface network allows us to replace
computationally costly networks such as optical flow network,
which is generally included in the design of vision tasks to capture
motion features.

Furthermore, our DL memory surface is data dependant
(unsupervised), unlike supervised DL-based event data
representations proposed earlier in the literature. Unsupervised
learning makes our solution a preferred choice for any
motion-based video analytic task irrespective of the task
at hand. We have also provided an event-based anomaly
dataset on which the proposed algorithm has been validated
from different perspectives. In addition to the empirical
analysis of the proposed solution, we have also furnished
analytical explanations of the proposed networks in
Supplementary Material. It has also been displayed that
the proposed method utilizes the advantages obtained

from the event sensor effectively. The proposed solution
resulted in considerable computation savings without
compromising on performance compared to state-of-the-
art conventional frame-based anomaly detection networks.
Thus, making it a suitable solution for resource-constrained
hardware platforms.
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