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Astrocytes play a central role in inducing concerted phase synchronized neural-wave
patterns inside the brain. In this article, we demonstrate that injected radio-frequency
signal in underlying heavy metal layer of spin-orbit torque oscillator neurons mimic the
neuron phase synchronization effect realized by glial cells. Potential application of such
phase coupling effects is illustrated in the context of a temporal “binding problem.”
We also present the design of a coupled neuron-synapse-astrocyte network enabled
by compact neuromimetic devices by combining the concepts of local spike-timing
dependent plasticity and astrocyte induced neural phase synchrony.
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1. INTRODUCTION

Neuromorphic engineering is emerging to be a disruptive computing paradigm in recent times
driven by the unparalleled efficiency of the brain at solving cognitive tasks. Brain-inspired
computing attempts to emulate various aspects of the brain’s processing capability ranging
from synaptic plasticity mechanisms, neural spiking behavior to in-situ memory storage in the
underlying hardware substrate and architecture. The work presented in this article is guided by the
observation that current neuromorphic computing architectures have mainly focused on emulation
of bio-plausible computational models for neuron and synapse—but have not focused on other
computational units of the biological brain that might contribute to cognition.

Over the past few years, there has been increasing evidence that glial cells, and in particular,
astrocytes play an important role in multitude of brain functions (Allam et al., 2012). It is estimated
that glia form ~50% of the human brain cells (Méller et al., 2007) and participate by modulating
the neuronal firing behavior, though unable to discharge electrical impulses of their own. Indeed,
these glial-cells work in coordination with neural assemblies, to enable information processing
in the human brain and performing incisive operations. Astrocytes hold the recipe to potentiate
or suppress neurotransmitter activity within networks and are responsible for phenomenon
like synchronous network firing (Fell and Axmacher, 2011; Wade et al., 2011) and self-repair
mechanisms (Wade et al., 2012; Rastogi et al., 2020). It is therefore increasingly important to
capture the dynamics of such ensembles, a step toward realizing more sophisticated neuromimetic
machines and ultimately enabling cognitive electronics.

Recently, there has been extensive literature reporting astrocyte computational models and
their impact on synaptic learning (De Pitta et al., 2012; Manninen et al., 2018). Continuing these
fundamental investigations to decode neuro-glia interaction, there have been recent neuromorphic
implementations of astrocyte functionality in analog and digital Complementary Metal Oxide
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Semiconductor (CMOS) hardware (Moller et al., 2007; Irizarry-
Valle and Parker, 2015; Naeem et al., 2015; Ranjbar and Amiri,
2017; Karimi et al., 2018; Faramarzi et al., 2019). For instance,
analog CMOS circuits capturing the neural-glial transmitter
behavior have been demonstrated (Joshi et al., 2011; Irizarry-
Valle et al., 2013; Irizarry-Valle and Parker, 2015; Lee and
Parker, 2016). There is also increasing interest in low-complexity
FPGA implementation of the astrocyte computation models
(Nazari et al., 2015; Ranjbar and Amiri, 2016, 2017; Karimi
et al., 2018; Faramarzi et al., 2019). However, the primary focus
has been on a brain-emulation perspective, i.e., implementing
astrocyte computational models with high degree of detail in the
underlying hardware.

On the other hand, recent advances in emerging post-CMOS
technologies like phase change materials, resistive memories,
ferromagentic, and ferroelectric materials (Jo et al., 2010; Kuzum
et al, 2011; Ramakrishnan et al.,, 2011; Jackson et al., 2013;
Sengupta and Roy, 2017; Saha et al, 2021), among others
have resulted in the development of electronic device structures
that can reproduce various biomimetic characteristics at low
operating voltages through their intrinsic physics. However,
while there has been extensive work on exploring post-CMOS
technologies for mimicking bio-realistic computations due to
the prospects of low-power and compact hardware design,
they have been only studied from standalone neuron/synapse
perspective. Emulation of the neuron-astrocyte crosstalk using
bio-mimetic devices has largely been neglected, and no such
literature exists hitherto, to the best of our knowledge. This work
is therefore an effort to bridge this gap and, specifically, elucidates
the emulation of transient synchronous activity resulting from
neural-glial interactions by utilizing spin-orbit torque induced
phase synchronization of spintronic oscillator neurons. It is
worth mentioning here that we abstract the neuron functionality
as a non-linear oscillator, in agreement with prior neuroscience
and computational models (Jaeger and Haas, 2004). Emulation of
astrocyte induced neural phase synchrony through the intrinsic
physics of spintronic devices will be critical to enable the
next generation of resource constrained cognitive intelligence
platforms like robotic locomotion (Polykretis et al., 2020). This
work also presents an important addition to the wide variety
of next-generation computational paradigms like associative
computing, vowel-recognition, physical reservoir computing
among others (Fan et al., 2015; Torrejon et al., 2017; Romera
et al,, 2018, 2020; Riou et al., 2019; Tsunegi et al., 2019), being
implemented using spin-torque oscillator devices.

2. NEUROSCIENCE BACKGROUND

The human brain houses multiple-independent local neuronal
groups which perform dedicated computations in relevance to
their assigned tasks. Besides this general uncorrelated activity
of neurons, multiple neural spiking data recordings reveal that
the independent signals from these neural assemblies frequently
coalesce in time to generate a synchronous output (Fries, 2005;
Fell and Axmacher, 2011). Multiple reports on the cause of such
patterns now provide compelling evidence that astrocytes are the

agents of this phenomenon (Fellin et al., 2004; Wade et al., 2011).
Astrocytes modulate the concentration of neurotransmitters
like glutamate inside the synaptic clefts in response to its
internal Calcium (Ca?T) oscillations (Newman, 2003; Garbo
et al, 2007). A single astrocyte spans tens of thousands of
synapses, where units called microdomains (concentrated Ca®"
stores within the astrocyte) monitor the activity for a group
of neurons and perform subsequent chemical actions (Volterra
and Meldolesi, 2005; Haydon and Carmignoto, 2006). The
astrocyte-derived glutamate binds to extrasynaptic NMDAR
(N-methyl-D-aspartate) receptor channels, and induce Slow-
inward Currents (SIC) in the post-synaptic membrane. SICs
are attributed to triggering a simultaneous response in different
synapses with high timing precision, and its large amplitude
and slow-decay rate provide an increased timescale for the
correlated activity (Fellin et al., 2004; Wade et al., 2011). The
astrocytic units influencing synapses, can act both independently
or in coordination enabling long-distance indirect signaling
among independent neuronal groups. Furthermore, an increased
intensity of synaptic activity can trigger multiple astrocytes
to share their information through their gap-junctions and
elicit coherent behaviors among different uncorrelated neuronal
networks. We in this paper do not discriminate among the two
signaling processes. Thus, the two astrocytes shown in Figure 1A
for different sub-networks can also imply microdomains within a
single astrocyte. These units control the synchronization signal to
networks A and B. Figure 1A captures the biological perspective
of such a system which controls the neural synchronization
among neurons present in these different sub-networks. Sub-
networks A and B each consist of three different neurons,
which in-turn generate oscillatory outputs. The temporal profiles,
shown in Figure 1B, depict the neuron outputs before and
after synchronization is initiated by Astrocyte 1 in the network
A. Interested readers are referred to Wade et al. (2011) for
details on the astrocyte computational models. It is worth
mentioning here that unlike CMOS implementations that are
able to implement computational models with a high degree
of detail, emerging device based implementations usually focus
on mimicking key aspects of the neurosynaptic functionality
necessary from computing perspective since the exact behavior
is governed by the intrinsic device physics. In this work, we
primarily consider emulating the neural phase synchrony effect
of astrocytes and evaluate it in the context of a temporal
information binding application.

3. ASTROCYTIC SYNCHRONIZATION
EMULATION

3.1. Device Basics

In this work, we utilize Magnetic Tunnel Junctions (MT]s)
(Julliere, 1975) as the core hardware primitive to mimic neural
oscillations. The MT] consists of two ferromagnetic layers
(pinned layer and free layer) with a spacer oxide layer in between.
The direction of magnetization of the pinned layer (PL) is
fixed, while that of the free layer (FL) can be manipulated
by external stimuli (spin current/magnetic field). The MT]
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FIGURE 1 | (A) Top-level network depicting the synchronization control by astrocytic injection. Astrocytes share information among their glial network. (B) The curves
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stack exhibits a varying resistance depending on the relative
magnetic orientations of the PL and the FL. The extreme
resistive states are referred to as the parallel (P) and anti-parallel
(AP) states depending on the relative FL magnetization. The
magnetization dynamics of the FL can be modeled by Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation with stochastic
thermal noise (Sengupta and Roy, 2017):

i .1
d%“ = —y (1 x Hy) + a (i x di:)er(m x I x ) (1)

In Equation (1), 1 is the unit vector representing the
magnetization direction of FL, H,g is the effective magnetic field
including thermal noise (Scholz et al., 2001), demagnetization
field and external magnetic field, y is the gyromagnetic ratio,
« is Gilberts damping ratio, I; is the spin current, g is the
electronic charge, and N; = % is the number of spins in
free layer of volume V (M; is saturation magnetization and
up is Bohr magneton). If the magnitude of spin current and
external magnetic field are chosen appropriately such that the
damping due to the effective magnetic field is compensated, a
steady procession of the FL magnetization can be obtained. It is
worth mentioning here that the intrinsic magnetization dynamics
in Equation (1) is used to model the oscillator dynamics. Other

Magnetic field
®H
)

Write current

FIGURE 2 | Spin-orbit torque device undergoes oscillation due to applied
external magnetic field, H, and charge current, /.. Note that the directions of
both the magnetic field and magnetic anisotropy are in-plane.

variants of oscillatory behavior can be achieved by modified spin
device structures (Matsumoto et al., 2019).

In order to achieve decoupled output oscillator readout
and astrocyte injection induced phase coupling, we utilize
a three terminal device structure, as shown in Figure2, in
which a nanomagnet with in-plane magnetic anisotropy lies
on top of a heavy metal (HM) layer with high spin-orbit
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TABLE 1 | MTJ device simulation parameters.

Parameters Value
Ferromagnet area, Aqy 40 x 100 nm
HM thickness, tyu 3nm
Energy barrier, £, 62.76 kT
Saturation magnetization, Ms % A/m
Spin-hall angle, sy 0.3
Spin-flip length, A¢r 1.4 nm
Gilbert damping factor, « 0.03
External magnetic field, H 750 Oe
TMR ratio, TMR 200%
Temperature, T 300 K

coupling. Due to spin-Hall effect (Hirsch, 1999), a transverse
spin current is injected into the MTJ FL by charge current,
I., flowing through the HM between terminals T2 and T3.
The relation between spin current I; and charge current I,

is,
A t
I, = QSHﬂ 1 — sech [ 2™ I, (2)
Apm )‘sf

where, Apy and Apyr are the FM and HM cross-sectional
areas respectively, Osy is the spin-Hall angle (Hirsch, 1999),
ty is the HM thickness and Ay is the spin-flip length.
Note that an in-plane magnetic field, H, is also applied to
achieve sustained oscillation. The MT]J state is read using the
current sensed through terminal T1. The device simulation
parameters are tabulated in Table1 and are based on typical
experimental measurements reported in literature (Fan et al.,
2015). However, the conclusions presented in this study are
not specific to these parameters. Experimental demonstration
of injection locked spin-torque oscillators have been achieved
(Rippard et al., 2005, 2013; Georges et al, 2008; Demidov
et al, 2014). It is worth mentioning here that we assume
all the devices are magnetically isolated and sufficiently
spaced such that dipolar coupling is negligible (Yogendra
et al, 2017). We also consider that the generated charge
current in the HM layer due to FL magnetic precession
via the Inverse spin-Hall effect (ISHE) is not dominant
enough to impact the phase coupling phenomena. While
recent studies have shown that the ISHE modulated current
alone, without any amplification, is not sufficient to impact
phase locking (Elyasi et al., 2015), such effects can be also
overcome by limiting the number of oscillators sharing a
common HM substrate.

3.2. Phase Synchronization of MTJ

Oscillator Neurons

The electrical analog of Figure 1A is shown in Figure 3,
where the MT]Js represent the oscillatory neurons present in
a particular network. The neurons share a HM layer which
acts as the common substrate for the driving astrocyte signal.

The current flowing through the HM has two components—
a DC current input which determines the free-running
frequency of the oscillator and a radio-frequency signal
which represents the astrocyte input. Figure 4A highlights the
oscillation characteristics of the MTJ. The DC current controls
the precession frequency in absence of other inputs. This DC
input is analogous to the external stimulus determining the
frequency of neuron oscillation in a particular network. In the
absence of the RF signal, all the neurons oscillate at the same
frequency (dependent on stimulus magnitude or DC current)
but out-of-phase due to thermal noise. Upon the application
of the external RF astrocyte signal, the device oscillation locks
in phase and frequency to this input. Higher peak-to-peak
amplitude of the astrocyte locking signal increases the locking
range of the device. It is worth mentioning here that the locking
frequency of neurons in a particular network is dependent on the
stimulus and astrocytes only induce phase locking. Therefore, the
alternating astrocyte signal flowing through the HM layer can
be generated from a separate astrocyte device that is driven by
the corresponding DC input of the network, thereby ensuring
independent phase and frequency control. The astrocyte device
is interfaced with a Reference MTJ and a voltage-to-current
converter to drive the alternating current signal through the
common HM layer. The Reference MT]J state is fixed to the AP
state (by ensuring that the read supply voltage, Vpp = 0.65V
is not high enough to write the MTJ state) and forms a resistive
divider with the oscillating Astrocyte MTJ resistance. Therefore,
the gate voltage of the interfaced PMOS transistor, Vg =
Mfﬁ Vpp where Ry is the Astrocyte MT] resistance and Rpgr
is the Reference MT]J resistance, also varies accordingly, which in
turn, modulates the current flowing through the common HM
layer proportionally.

In order to evaluate the degree of phase synchronization in
presence of thermal noise, we consider two MTJ devices lying
on top of a common HM layer at room temperature. Cross-
correlation metric is evaluated for the two MTJ output signals to
measure the similarity among them as a function of displacement
of one relative to the other. Considering two time-domain
functions x(t) and y(t), whose power spectrum density (PSD) is
given by Syx(w) and S, (w), respectively, their cross-correlation is
defined by:

oo

x(t — v)y(t) dt (3)

Ruy() = (% 9)(x) = f

where, x(t) represents the complex conjugate of x(¢) and t
denotes the lag parameter. Further, cross-power spectral density
(CPSD) is defined as the Fourier transformation of cross-
spectrum in (3) and is given by:

Sy(w) = / h Ryy(t)e 7! dt (4)

—0o0

Sxy comprises of both magnitude and phase (/) information
at different frequencies present in [w] vector. When
two signals are phase synchronized, the cross-spectrum
phase vector becomes zero, indicating high correlation.
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FIGURE 3 | Electrical emulation of astrocyte induced neural synchrony is shown where an astrocyte device drives an alternating current through a common HM
substrate to phase-lock the MTJ oscillator neurons.
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FIGURE 4 | (A) Oscillator frequency plotted against the DC current input to the device. Higher AC amplitudes lead to increased DC locking range at the injected RF
signal of 6.5 GHz frequency. (B) Cross-spectrum phase for 100 independent stochastic LLGS simulations of two noisy MTJ neurons, under RF injection of 5GHz.
Average CPSD phase indicates tight phase-coupling at the required frequency with un-correlated activity at other frequencies. (C) Average cross-spectrum phase at

the injection frequency accounting for device dimension variations.

Such a property is highlighted in Figure4B where 100
independent stochastic-LLGS simulations are performed for
two neuronal devices placed on a common HM layer with
a 5 GHz injected RF current. Cross-spectrum phase at the
injection frequency, i.e., 5 GHz converges close to zero. Average
cross-spectrum phase is also shown in the plot depicting
tight phase-coupling between the neurons at the injection
frequency. Notably, a sharp reduction of average phase offset
to just 7.22° at 5 GHz is observed compared to 90° for
other frequencies, thereby establishing the robustness of the
synchronization scheme. Additionally, the impact of non-
idealities like device dimension variations on the phase coupling
phenomena is evaluated in Figure 4C. The results are reported
for 50 independent Monte-Carlo simulations with variation in
both the length and width of the MTJ]. Each Monte-Carlo
simulation consisted of 50 stochastic LLGS simulation for the
average cross-spectrum phase calculation. The phase correlation
between the device oscillations remains reasonably high even
with 7.5% variation in both length and width dimensions of the
MT]J. Related discussions on oscillator dynamics with respect to
perturbative current and correspondence of the results with the
Kuramoto model for oscillator synchronization is provided in the
Supplementary Material.

4. BINDING PROBLEM
4.1. Problem Formulation

Next, we discuss a renowned problem which is envisioned
to be solved by neural synchronous activity. Amongst the
most intriguing themes of neuro-psychological studies is the
“binding problem” (BP) (Feldman, 2013; Fields et al., 2014). It
concerns with how different attributes of sensory information are
encoded, processed, and perceived for decision-making by the
human brain circuits. With a now widely accepted viewpoint of
distributive computing and segregated processing for different
features (especially visual) and later integration into a unified
percept via re-entrant connections (Milner, 1974; Bartels and
Zeki, 2006), we have progressed further toward understanding
cognition. Primate brains have evolved to continuously assimilate
the voluminous perceptive information available in their social
setting and find a best fit for the primate’s goals in the quickest
manner. This training and growth, although very crucial in most
situations—sometimes also leads to “misbinding” (Whitney,
2009). In particular, optical illusions, such as shown in Figure 5A,
exploit the feature patterns ingrained in the human visual
percept, causing misbinding. The figure is a bistable portrait
of an elephant, or an overlap of two (seemingly) possible
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FIGURE 5 | (A) The optical illusion induces confusion in the viewer concerning association among different apparent limbs with the body and the background
(Courtesy of Roger Shepard’s “L’egsistential paradox") (Shepard, 1990). (B) MTJ system architecture depicting hierarchical organization of neurons. The illustrated
binding problem is mapped to this hardware with one possible interpretation shown. The connection between different neuron layers is implemented by the
memristive cross-bar array with initially untuned synaptic weights. Unsupervised STDP learning rule causes the weights to evolve, making the network to finally elicit

Tac

interpretations, obtained by associating different body parts to
other features of the image. For instance, the labels 1 and 2
can be viewed associated with the body (A), while 3 and 4 to
the background (B) to paint one such possible interpretation.
The other interpretation can be visualized if the roles A and B
are reversed. For an in-depth discussion, interested readers are
directed to Hasz and Miller (2013) and Ignatov et al. (2017).
In this work, we do not address the clustering mechanism of
labels 1-2 and 3-4. This labeling and identification can be
potentially attributed to the agent’s visual attention. In particular,
attention captures the most relevant information present in a
space-time lapse by masking (filtering) off the distractor areas,
while performing feature labeling of the cropped scene (Kosiorek
etal., 2017). Assuming that attention performs the role of spatio-
temporal integration among such multiple attributes captured by
a visual scene, synchronous activity in the neurons is considered
as the underlying mechanism in brain to create a coherent
episode of perception, and perhaps cognition. Indeed, it is now
becoming more evident that cognitive processes like attention
and behavioral efficiency elicit targeted synchronous activity in
different brain regions tuned to responding toward different
spatial and featural attributes of the attended sensory input
(Ward, 2003; Womelsdorf and Fries, 2007).

4.2. Hardware Mapping

In order to correlate our spin-orbit torque oscillator phase
synchronization due to astrocyte injection locking in the
context of “temporal binding,” we consider a network as shown
in Figure 5B. Adhering to the currently prominent view of
hierarchical organization in the neural assemblies, spin-torque
neurons Nj, N2, N3, Ny here are dedicated to processing simple
attributes, while N, and Nj, after receiving inputs from previous
layers perform complex feature processing corresponding to the

assigned task. In reference to potential processing applications
like cognitive feature binding, each spin-orbit torque neuron
in the network represents the corresponding feature in the
elephant’s bistable image, previously shown in Figure 5A. All
neuronal devices are mounted atop a HM with Ig. = 420pA
DC drive (fgee = 7.05 GHz). The network utilizes two
different injection signals with the same frequency of 7.05
GHz with 180° phase difference (corresponding to the two
different interpretations/configurations of the bistable image).
Here, we use two RF voltage sources, namely V,c; and Ve
with amplitude of 250 mV. The connection between the two
neuron layers is achieved by means of a resistive synaptic cross-
bar array. We combine the concepts of bio-inspired unsupervised
Spike-Timing Dependent Plasticity (STDP) (Bi and Poo, 1998)
and astrocyte induced neural phase synchrony to automatically
enable the network to learn to elicit such behavioral patterns,
on the fly. The developed system sets off from an unlearnt state
where all neurons have an independent response and remain
unsynchronized in phase. However, upon system activation (and
consequently astrocyte RF injection), the architecture eventually
learns to bind the different possible configurations for the
visual scene through phase correlation to either Ve or Vi,e.
It is to be noted that neurons Nj,N;,N3, N4 comprise of
pre-neurons while N, and Ny are post neurons, separated
by the resistive cross-bar array. Ultimately, a tight phase and
frequency locking is observed among a particular pair of pre-
neurons (Nj, N, and N3, Ny) and post-neurons (N, and Np).
Due to random thermal fluctuations, the devices can converge to
either of the two possible configurations for the bistable image,
thereby illustrating the concept of optical illusion. The work
can potentially pave the way for efficient hardware realization of
coupled neuron-synapse-astrocyte networks enabled by compact
neuromimetic devices.
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4.3. Learning Phase Correlation

The premise for triggering the synchronous activity via astrocyte
is accredited to the sensory attention as discussed before, and
can be mapped in our proposed system to the amplitude of RF
injection signal. Similar to better binding observed with increased
attention, larger amplitudes lead to improved neural coupling.
The strength of each input current to N, and Ny, is controlled by
the synaptic conductances G; — G2, of the memristive cross-bar
array as shown in Figure 5B. Implementation of such cross-bar
arrays with in-situ STDP learning has been previously explored
for spintronic devices (Sengupta et al., 2016; Sengupta and Roy,
2017) and other post-CMOS technologies (Jo et al., 2010; Kuzum
et al., 2011; Saha et al, 2021). It is worth mentioning here
that each cross-connection also features a prior filtering “bias
tee” to eliminate any possible DC current interactions among
different devices. The DC paths of the bias tee are terminated
to ground, while the AC signals get passed on to the cross-bar
for coupling. Elaborating, the input AC current to the jy, post-
neuronal device (considering HM resistance to be considerably
lower in comparison to the synaptic resistances at each cross-
point) can be described by Equation (5) as:

Lo, () = Y Gi.Vi(t) (5)

We now elucidate how our proposed architecture captures the
essence of the optical illusion problem, shown in Figure 5, in
reference frame of an observer. Specifically, the system should be
able to adapt and converge to one of the possible interpretation
discussed above. In particular, biologically inspired unsupervised
STDP principles are used to train the programmable synaptic
conductances (G;; — Gpy) in the cross-bar architecture for
this purpose. The STDP weight (conductance) update equations
are given by: Aw = nyw exp(_r—ft) (for At > 0) and
Aw =
learning hyperparameters, Aw is the synaptic weight update and
At is the timing difference between the spikes corresponding
to the selected post- and pre-neuron. The positive learning
window (At > 0) update occurs whenever a post-neuron
fires while the negative learning window (At < 0) update
occurs at a pre-neuron firing event. It is worth pointing out
here that we use a symmetric STDP learning rule in this
work, ie., the synaptic weight is potentiated for both the
positive and negative learning windows. This is in contrast to
the more popular asymmetric STDP observed in glutamatergic
synapses (Bi and Poo, 1998), typically used in neuromorphic
algorithms (Diehl and Cook, 2015). While symmetric STDP
has also been observed in GABAergic synapses (Woodin et al.,
2003), further neuroscience insights are required to substantiate
the exact underlying mechanisms and cause of this plasticity.
Asymmetric STDP is useful in application domains requiring
temporal ordering of spikes, i.e., a pre-synaptic neuron spike
will trigger a post-neuron spike. However, for our scenario, a
temporal correlation is crucial irrespective of the sequence, which
is enabled by the symmetric STDP behavior. Implementation of
symmetric STDP in memristive cross-bar arrays can be easily
achieved by proper waveform engineering of the programming

nyw exp(f—:) (for At < 0), where n4 and 7y are

TABLE 2 | Learning simulation parameters.

Parameters Value
Time-step for LLG simulation 0.1 ps
STDP learning rate, n 0.25
STDP time constant, 7. 5
Inhibition learning rate, n— 0.15
Inhibition time constant, 7_ 5
Maximum synapse resistance in cross-bar array 25 kQ

voltage applied across the synapses (Serrano-Gotarredona et al.,
2013; Sengupta et al., 2016). The cross-bar resistances are
considered to have an ON/OFF resistance ratio of 10. The
different input spike trains are derived from each devices
magnetoresistance (MR) where a spike is triggered when the
MR crosses its mean-value of 2 K. Because N; (N3) and
N, (N4) share a common HM, either of them can be used to
extract the pre-neuron spikes during the weight update period.
Besides STDP, a lateral inhibition effect (Diehl and Cook, 2015)
is utilized. Whenever a spike occurs for any pre-neuron (post-
neuron), the corresponding row (column) weights of the array
are potentiated. However, the remaining rows (columns) are
depressed proportionately. The lateral inhibition weight update
equations are given by: Aw = —n_w exp(_—m) (for At > 0)

T—

and Aw = —n_w exp(%) (for At < 0), where n_ and 7_ are
learning hyperparameters, Aw is the synaptic weight update and
At is the timing difference corresponding to the symmetric STDP
weight update for the row or column which experiences weight
potentiation. The lateral inhibition scheme is a simple extension
of the synaptic programming voltage waveform engineering
used in prior work (Indiveri et al., 2011; Serrano-Gotarredona
et al., 2013; Sengupta et al.,, 2016). During the learning phase,
this lateral inhibition effect causes the neuron under study to
start responding selectively toward a specific configuration. This,
in turn, enables the network to later converge to one of the
interpretations for Figure 5A, as mentioned previously. The
network simulation parameters are outlined in Table 2. The
tabulated time-constants are measured with respect to the time-
step for LLG simulation.

4.4. Simulation Results

The net currents for devices A and B, evolving through time, is
portrayed for one of the simulations in Figures 6A,B respectively.
Meanwhile, the corresponding synaptic resistances for the
network are plotted in Figure 6C to elucidate the learning process
discussed previously. The learning phase for the simulation
is plotted as a function of timestep of the LLG simulation
of the MTJ devices (0.1 ps). Observing the temporal profiles,
an interesting deduction can be formulated, confirming that
the different post-neurons get dominantly locked to different
injection frequencies. The two sinusoids, being initially out of
phase and adding up in comparable amounts for post-neurons,
result in very low net currents. But, as the learning progresses,
it becomes clear that one of the frequency gets dominant for a
particular post-neuron, and thus the envelope tends to flatten in
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FIGURE 6 | (A,B) The temporal evolution profiles of the net currents (DC+AC)
flowing through the heavy metal for devices A and B are shown. The
increasing AC amplitudes about the mean DC value can be seen. The relatively
flattened envelopes post-learning suggest that the post-neuron devices are
dominantly locked to one of the frequencies. (C) Temporal evolution of the
cross-bar resistances during the learning process is shown.

the end. It is worth mentioning here that the synaptic learning
simulation in this work was performed from an algorithmic
standpoint in a technology agnostic fashion. Depending on the
underlying synapse technology, prior proposals for peripheral
design for STDP learning needs to be considered (Serrano-
Gotarredona et al., 2013; Sengupta et al., 2016). Since the focus
of this article is on the MT] neural synchrony aspect, we did
not consider any specific synaptic device programming delay
constraint (which is reflected in the instantaneous state changes
of the synaptic connection strengths in Figure 6C). In reality,
from a system design perspective, we need to have interleaved
synaptic device state update phases that do not interfere with

the neuron oscillation behavior (for instance, through decoupled
write-read phases of three-terminal synaptic devices; Sengupta
et al., 2016). The convergence was also not affected with reduced
programming resolution of the synaptic connections (4-bits),
thereby indicating resiliency to quantization (Hu et al., 2021).

Cohesing to one of the percept should surmise of a
random event to provide equal chance for any of the two
possible configurations to develop. Indeed, it is observed in
our network that the synchronization occurs for random first
and second layer neurons, post-training. Such a phenomenon
can be accredited to the natural thermal fluctuations in our
system, which tend to perturb the MT] device’s periodic nature.
Figures 7A,B, respectively, depict the FFTs and cross-spectrum
phase for various devices in the network for one such possible
configuration upon learning termination. Specifically, cross-
spectrum phases for device-pairs 1 & A (blue curve), 1 & 3
(yellow curve), and 1 & B (green curve) in Figure 7B are plotted
to highlight that device 1, 2, and A get locked in phase at the
injection frequency (7.05 GHz) while being completely out of
phase with devices 3, 4, and B for the considered configuration.

Figure8 plots the temporal profile of device
magnetoresistance (MR) for N,N;, and N, devices in the
top panel, along with MR of N3, Ny, and N}, devices shown in
the bottom panel. Initially all neuronal devices, albeit operating
at the same free-running frequency (fg.. = 7.05 GHz), elicit
un-correlated phases, and hence temporal spike response due to
devices’ inherent thermal noise. After the astrocyte AC signal
injection and STDP learning commences, it is observed that
the devices N; (N3) and N, (N4) achieve a gradual coherent
phase along with device N, (N}), getting locked to the respective
injection signal, as can be clearly seen in the right panels. The
subsequent cross-correlation phase at the 7.05 GHz injection
frequency post-synchronization averages to 1.6232° for the
three-possible temporal profile pairs among Nj, N, and N,
(N7 * N»: 0.88°, N, » N,: 2.136°, and N1 %= N,: 1.856°). Likewise,
N3, Ny, and N, after learning, achieve an average cross-phase
of 1.848°. Bio-physically equivalent, this can be interpreted as a
tight correlation among the attributes 1, 2, and A, corresponding
to one of the interpretations of the bistable image. Finally, an
increasing phase-mismatch is visible in neuronal outputs of all
devices if the synchronization is revoked by the astrocyte, and
the devices revert to their uncorrelated original free running
frequency. This can be attributed to a diverted attention toward
the sensory modal-input features leading to the impairment in
correlated activity.

5. DISCUSSION

Even though this work proves to be a good preliminary
framework for emulating such brain-like functions, more
investigation is required for decoding the neural code in such
processes along with integrating these insights in Artificial
Intelligence (AI) systems. For instance, selectivity bias toward
some features among the myriad available sensory information,
and, reductionism (down-streaming) of such higher-level modal
inputs to local neuronal groups in the hierarchical structure,
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is poorly understood. There have been some efforts to study
such processes using a reverse approach, where robots like
Darwin VIII, inspired by the re-entrant neuroanatomy and
synaptic plasticity, are developed and trained on visual mode
data (Seth et al., 2004). In agreement with our work, they show
synchronous activity binds different representative features of the
detected object. Incorporating such connections in our system
can be explored to further bridge the gap between real cortical
networks and the respective inspired models. Supported by both
neuroscience research and AI hardware developments, coupled
astrocyte-neuron network architectures can potentially pave the
way for a new generation of artificial cognitive-intelligence.
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