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Electroencephalographic (EEG) neurofeedback (NFB) is a popular neuromodulation
method to help one selectively enhance or inhibit his/her brain activities by means of
real-time visual or auditory feedback of EEG signals. Sensory motor rhythm (SMR) NFB
protocol has been applied to improve cognitive performance, but a large proportion
of participants failed to self-regulate their brain activities and could not benefit from
NFB training. Therefore, it is important to identify the neural predictors of SMR up-
regulation NFB training performance for a better understanding the mechanisms of
individual difference in SMR NFB. Twenty-seven healthy participants (12 males, age:
23.1 ± 2.36) were enrolled to complete three sessions of SMR up-regulation NFB
training and collection of multimodal neuroimaging data [resting-state EEG, structural
magnetic resonance imaging (MRI), and resting-state functional MRI (fMRI)]. Correlation
analyses were performed between within-session NFB learning index and anatomical
and functional brain features extracted from multimodal neuroimaging data, in order
to identify the neuroanatomical and neurophysiological predictors for NFB learning
performance. Lastly, machine learning models were trained to predict NFB learning
performance using features from each modality as well as multimodal features.
According to our results, most participants were able to successfully increase the SMR
power and the NFB learning performance was significantly correlated with a set of
neuroimaging features, including resting-state EEG powers, gray/white matter volumes
from MRI, regional and functional connectivity (FC) of resting-state fMRI. Importantly,
results of prediction analysis indicate that NFB learning index can be better predicted
using multimodal features compared with features of single modality. In conclusion,
this study highlights the importance of multimodal neuroimaging technique as a tool to
explain the individual difference in within-session NFB learning performance, and could
provide a theoretical framework for early identification of individuals who cannot benefit
from NFB training.

Keywords: neurofeedback (NFB), multimodal neuroimaging, sensorimotor rhythm (SMR), learning, functional
connectivity (FC)

Frontiers in Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 699999

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.699999
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.699999
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.699999&domain=pdf&date_stamp=2021-07-20
https://www.frontiersin.org/articles/10.3389/fnins.2021.699999/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-699999 July 19, 2021 Time: 16:36 # 2

Li et al. Multimodal Neuroimaging Predictors of Neurofeedback

INTRODUCTION

Electroencephalographic (EEG) neurofeedback (NFB) training
is a popular neuromodulation method to train brain functions.
Through EEG NFB, one can learn to selectively enhance or
inhibit his/her brain activities by means of real-time visual or
auditory feedback of EEG signals (Sitaram et al., 2017). Since
its first attempts in the 1960s, EEG NFB has rapidly received
much attention because of its numerous potential applications for
healthy participants and patients (Gruzelier, 2014a,b,c; Sitaram
et al., 2017; Omejc et al., 2019). Among the diversity of NFB
training protocols, one popular protocol is to up-regulate the
amplitude of the sensory motor rhythm (SMR, 12-15 Hz), which
is associated with a mental state of “relaxed alertness” (Witte
et al., 2013). SMR NFB protocol has been applied to improve
cognitive performance, such as sustained attention and visuo-
motor skills of healthy participants (Gruzelier, 2014a; Kober
et al., 2020). In clinical situation, SMR NFB training could
improve the impaired cognitive functions in post-stroke patients
(Kober et al., 2015). However, the efficacy of EEG NFB has
been questioned recently because many sham-controlled studies
have shown that a large proportion of users (16% to 57%)
failed to self-regulate their brain activities and could not benefit
from EEG NFB training (Gruzelier, 2014c; Thibault and Raz,
2016; Alkoby et al., 2018; Weber et al., 2020; Zhang et al.,
2020a). It is of great importance to investigate the neural
mechanisms of the huge individual differences in EEG NFB
learning performance, because the successful learning during
EEG NFB training can directly contribute to the improvement
of disease symptoms in clinical patients (Gruzelier, 2014c). To
identify in advance those participants who are likely to benefit
from EEG NFB is a crucial step toward individualized and
precise neuromodulation. Therefore, it is highly desirable to
discover predictors of EEG NFB learning success and to establish
a machine learning model to predict the learning performance
based on identified predictors.

Some recent reviews concerned with the inefficiency problem
of EEG NFB training have summarized various types of
predictors of training performance (Alkoby et al., 2018; Weber
et al., 2020). However, according to these reviews, only a very
limited number of related studies have been carried out on and
their findings are not convergent and complete. Standardized
questionnaires or behavioral tasks are naturally considered as
candidate predictors, but existing evidence showed that these
questionnaires or tasks can predict NFB learning performance
to a limited extend (Kleih et al., 2010; Nan et al., 2012; Witte
et al., 2013; Alkoby et al., 2018). A batch of studies were
focused on neurophysiological signals, mainly EEG recorded
prior to training, for the prediction of performance during NFB
training. In a resting-state EEG study, Nan et al. found that the
amplitude of low beta (12–15 Hz) EEG rhythm measured before
training could predict the NFB learning ability of low beta (15–
18 Hz)/theta (4–7 Hz) ratio training (Nan et al., 2015). This
research group later proposed that, eye-closed resting-state EEG
activities in broad frequency bands, including lower alpha and
theta, measured before training could distinguish learners/non-
learners of alpha down-regulating NFB (Nan et al., 2018).

Similarly, resting-state SMR power before training was related to
the NFB training target at SMR activities (Reichert et al., 2015).

Besides above EEG predictors of NFB learning performance,
magnetic resonance imaging (MRI) has also been more and more
popularly used to investigate the problem of NFB inefficacy.
because multimodal MRI can provide various types of predictors
from brain structure, function, and connectivity with high spatial
resolution. For example, structural MRI (sMRI) studies found
that, the gray/white matter volume (GMV/WMV) could be the
predictors of NFB performance and they were related to the
neuroanatomical basis of the ability to learn to self-regulate
one’s own brain activity (Weber et al., 2020). Resting-state
functional MRI (rsfMRI) have also been applied to study neural
mechanisms of individual differences in self-regulation of many
other behaviors and brain functions (Kelley et al., 2015). Resting-
state functional MRI also offers many metrices of local brain
activity, such as regional homogeneity (ReHo) (Zang et al.,
2004) and the amplitude of low-frequency fluctuations (ALFF)
or fractional ALFF (fALFF) (Zou et al., 2008). All of this metrics
can be used to investigated correlation between baseline brain
activities and cognitive performance (Dong et al., 2015; Xiang
et al., 2016; Xie et al., 2021). Particularly, because the interactions
between brain regions are crucial for supporting cognitive
functions, recent studies suggested that functional connectivity
(FC) might be more promising for predicting complex high-
order cognitive processes than those measured based on local
brain regions (Qi et al., 2019; Horien et al., 2020). An fMRI-
based NFB study suggested that rsfMRI FC can be used to identify
individuals who are likely to benefit from fMRI NFB training
to control anxiety symptom (Scheinost et al., 2014). However,
rsfMRI (no matter which type of metrics) is still seldom used to
investigate the inefficiency problem of SMR NFB.

In summary, the predictors of SMR up-regulation in NFB
training has not been well understood yet. Multimodal brain
imaging techniques could provide complementary and/or novel
information about brain function, structure, and connectivity,
so it is promising that more predictors could be discovered
from multimodal brain imaging data and the accuracy to
predict NFB learning performance can be improved. Thus,
in the present study, we collected multimodal neuroimaging
data (resting-state EEG, sMRI, and rsfMRI) before SMR-
NFB experiments, with aims to identify the multimodal
neuroanatomical and neurophysiological predictors for within-
session learning performance of SMR up-regulation. The work
could obtain an early identification of individuals who would not
benefit from NFB training, and could increase the efficacy and
cost-effectiveness of NFB technique in practical uses.

MATERIALS AND METHODS

Participants
This study was approved by the Medical Ethics Committee of
the Health Science Center of Shenzhen University. Thirty-four
healthy participants (17 males, mean ± SD age: 22.8 ± 2.23)
were recruited from Shenzhen University. The participants
had no history of major medical illness, psychiatric or
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neurological disorder and had normal corrected-to-normal
vision. All participants gave their written informed consent
and the experimental procedure was approved by the local
ethics committee.

Data Acquisition
Electroencephalographic (EEG) signal during the NFB training
was recorded with a 32-bit OpenBCI Board (Cyton Biosensing)
connected to a lithium-ion polymer rechargeable battery. The
OpenBCI board was connected to Ag/AgCl wet electrodes
secured within an elastomeric EEG head-cap (Easy-Cap; Brain
Products GmbH, Munich, Germany). Electrodes were placed at
C1, C2, Cz, CPz, TP9, and TP10 positions according to the 10–20
electrode montage system. The reference electrode was located at
FCz, and the ground electrode was located at the forehead.

Resting-state whole-brain EEG measurements (3-min eyes-
open and eyes-closed) were also collected for each participant in
a separate session before the first session of NFB training. EEG
recordings were obtained with 64 Ag/AgCl electrodes placed on
the EasyCap (Brain Products GmbH, Munich, Germany) with a
reference electrode positioned at FCz. Vertical electrooculogram
was recorded with the electrode placed on the superior to the
nasion of the right eye. Input impedances were kept below
10 k� and the records were taken simultaneously at a sampling
frequency of 1000 Hz.

Structural and resting-state functional MRI Images were
collected using a 3.0 Tesla Siemens Trio scanner (Siemens
Medical, Erlangen, Germany) at Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. A standard 12-
channel birdcage head coil was used and each participant’s head
was fixed by foam pads in order to reduce head movement.
Functional images were acquired with echo planar imaging
sequence with the following parameters: 31 contiguous slices
with a slice thickness of 4 mm; TR/TE = 2000/30 ms, 90◦ flip
angle; field of view (FOV) 192 × 192 mm2; 64 × 64 data matrix.
During the scanning of resting-state fMRI data, participants were
asked to remain motionless, keep their eyes open, stay awake, and
stare at the “+” sign. High resolution T1-weighted images were
collected with a volumetric three-dimensional spoiled gradient
recall sequence with the parameters: TR/TE = 2000/30 ms,
FOV = 240 × 240 mm2, matrix size = 256 × 256, flip angle = 90◦,
slice number = 176, voxel size = 0.9 × 0.9 × 1 mm3.

NFB Training
The SMR (12–15 Hz) up-regulating EEG NFB protocol was
employed in this study, and each participant had to complete
three sessions within one week and usually one day apart for
continuous sessions. Each session consisted of 10 NFB training
runs (3 min each). The first run is the baseline run during which
the participants saw moving feedback bar but were instructed
to relax themselves without trying to control the feedback bar
voluntarily. The EEG signal recorded in the NFB baseline run was
used to calculate initial individual threshold for SMR feedback
and the threshold of SMR power was adapted after each run using
the median value of SMR power in previous run.

During NFB training, the EEG signal was sampled at 250 Hz
and band-pass filtered between 0.5 Hz and 45 Hz. The SMR

power was calculated by fast Fourier-transforms (FFT) every
100 ms with a 10-s data window. The real-time SMR power (12–
15 Hz) was presented on the screen in front of the participants
as one vertical feedback bar. We only gave the participants
a minimum degree of guidance, telling them to relax and
concentrate physically during NFB training to increase the SMR
power. When the SMR power exceeded the threshold, the color of
the feedback bar changed from red to blue. Furthermore, when
participants were able to move SMR feedback bars above the
threshold and keeping for more than 1 s, they were rewarded with
one more point displayed on the top of the screen.

The within-session NFB learning performance was assessed
using a learning index (LI), which is calculated from the SMR
powers of all NFB training runs and has been successfully applied
in previous studies (Wan et al., 2014). Specifically, for each
session, the median values of SMR power were calculated for all
12 training runs and then a linear regression was performed on
these median values. Then LI was calculated as the average of the
regression slopes across three sessions. The learning performance
(LI) was checked for normality using Shapiro–Wilk test. It should
be noted that the NFB learning index LI was calculated using
SMR power values obtained from online EEG recorded by the
OpenBCI cap during NFB training, because these on-line EEG
results could better reflect the training performance.

Analysis of Resting-State EEG
Resting-state EEG data recorded by the 64-channel EasyCap were
analyzed by the Letswave toolbox1 and self-written MATLAB
scripts. Continuous data were bandpass filtered between 1 Hz
and 100 Hz. After visual inspection, bad channels were
interpolated with adjacent channels. Then the signal was split
into 1-s epochs and epochs with artefacts were rejected after
visual inspection. These remaining epochs were submitted to
an informax algorithm to decompose into their independent
components (Makeig et al., 1997; Jung et al., 2001; Olbrich et al.,
2011). The components related to eye blinking or movement were
removed from the original data. Finally, all EEG signals were
re-referenced to a common reference.

After preprocessing, data were transformed into the frequency
domain by the Welch’s method (with 1000-point FFT, 50%
overlapping, and Hamming windows). Then we extracted the
power values at four frequency bands: theta (4–8 Hz), alpha (8–
12 Hz), SMR (12–15 Hz) and beta (12.5–30 Hz). Because EEG
showed great inter-individual variabilities in the power, relative
SMR power was calculated as the ratio of the power within a
specific frequency band and the power and the total power in the
full frequency band. For each NFB run, the relative power values
were calculated for each epoch and then standardized across all
epochs. Finally, the median value of relative powers of all epochs
was taken as the relative power for the entire run. Furthermore,
to assess the topological distribution of relative powers, nine scalp
regions of interest (ROI) were defined (as shown in Figure 1) and
they are: left frontal (F5, F3, FC5, FC3), middle frontal (F1, Fz,
F2, FC1, FCz, FC2), right frontal (F4, F6, FC4, FC6), left central
(C5, C3, CP5, CP3), middle central (C1, Cz, C2, CP1, CPz, CP2),

1https://github.com/NOCIONS/letswave6
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FIGURE 1 | Distribution of NFB learning index LI.

right central (C4, C6, CP4, CP6), left parietal (P5, P3, PO7, PO3),
middle parietal (P1, Pz, P2, POz), right parietal (P4, P6, PO4,
PO8) (Reichert et al., 2015). The relative power of each ROI was
calculated as the average across all the electrodes within this ROI.

Because the learning index (LI) of NFB training is not
normally distributed (P = 0.0002), Spearman’s correlation
analysis was performed to evaluate the correlation between
resting-state EEG power and the learning performance (LI)
of NFB training for each ROI at each frequency band. False
discovery rate (FDR) correction was performed to address the
multiple comparison problem (Benjamini and Hochberg, 1995).

Analysis of Structural MRI Data
Voxel based morphometry analysis of sMRI images were
performed using Computational Anatomy Toolbox2, which
is an extension toolbox of Statistical Parametric Mapping
(SPM123). The sMRI images were segmented into gray matter,
white matter and cerebrospinal fluid areas using the unified
standard segmentation option in SPM12. The individual
structural images were then normalized into standard Montreal
Neurological Institute (MNI) template. Spatial normalization
into the MNI standard space was done by the high-dimensional
DARTEL (Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra) approach. Then the generated gray
matter and white matter images were smoothed with an 8-mm
full-width at half-maximum (FWHM) Gaussian kernel.

The voxel-wise statistical analyses were performed using
statistical non-parametric mapping (SnPM) toolbox4. The non-
parametric permutation approach was applied because it did not
require any assumption on data normality (Nichols and Holmes,
2002). The standard general linear model (GLM) design setup
was used by creating design matrices for multiple regression
analysis of GMV or WMV, with individual NFB performance
(LI), age and gender as regressors. General linear model was used
to construct pseudo t-statistic images, which were then assessed

2http://www.neuro.uni-jena.de/cat/
3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
4http://warwick.ac.uk/snpm

for significance using a standard non-parametric multiple
comparisons procedure based on randomization/permutation
testing (N = 10000). Significant clusters were extracted with
voxel-level P > 0.005 and cluster size >50.

Analysis of Resting-State fMRI
The rsfMRI data were processed by using the Data Processing
Assistant for Resting State fMRI (DPARSF5), which is based
on SPM12 and the toolbox for Data Processing & Analysis
of Brain Imaging (DPABI6). The preprocessing procedure was
as follows. The first 10 volumes were removed to avoid T1
equilibration effects. Slice timing used the middle slice as the
reference. Then the time series of rsfMRI images for each
participant were realigned using a six-parameter (rigid body)
linear transformation. The T1 images were co-registered to the
mean functional image and then segmented into gray matter,
white matter and cerebrospinal fluid. The Friston 24-parameter
model was used to remove the linear trend and other nuisance
signals (including Friston’s 24 motion parameters, cerebrospinal
fluid, white matter). The rsfMRI data were then normalized to the
MNI space and re-sampled to 3-mm isotropic voxels. A 6 mm
FWHM Gaussian kernel were applied to smooth the rsfMRI data.
Finally, a bandpass filter (0.01–0.1 Hz) was then performed on
the rsfMRI data.

Three rsfMRI regional features, including ALFF, fALFF, and
ReHo, were calculated. Amplitude of low-frequency fluctuations
is the mean of amplitudes within a specific frequency domain
of a voxel’s time course, and fALFF represents the relative
contribution of specific oscillations to the whole detectable
frequency range. ReHo is a rank-based Kendall’s coefficient of
concordance (KCC) which shows the synchronization among a
given voxel and its nearest neighbors (26 voxels) time courses.
ALFF/fALFF was calculated using smoothed (unfiltered) rsfMRI
timeseries, and ReHo was calculated using unsmoothed time
series. The metric maps for ALFF/fALFF and ReHo were
z-standardized (subtracting the mean value for the entire brain
from each voxel, and dividing by the corresponding standard
deviation). Normalized ReHo maps were then smoothed
using a 6-mm FWHM.

The relationship between the learning index LI and three
regional features were explored using SnPM toolbox. Standard
GLM design setup was used by creating design matrices for
multiple regression analysis of gray matter intensity, with
individual NFB performance (learning index LI), age and gender
as regressors. General linear model was used to construct pseudo
t-statistic images, which were then assessed for significance using
a standard non-parametric multiple comparisons procedure
based on randomization/permutation testing (N = 10000).
Significant clusters were extracted with voxel level P > 0.005 and
cluster size >50.

Besides three regional rsfMRI features mentioned above, we
also calculated the whole-brain FC using164 ROIs (160 ROIs
from the Dosenbach atlas and four emotional related ROIs)
(Dosenbach et al., 2010). The 164 ROIs were assigned into

5http://rfmri.org/DPARSF
6http://rfmri.org/dpabi
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7 intrinsic connectivity networks: (1) cerebellar, (2) cingulo-
opercular, (3) default mode, (4) frontoparietal, (5) occipital, (6)
sensorimotor, and (7) emotional. Each of the 164 ROIs was
defined as a sphere with an 8 mm radius and the mean time
series from all of the voxels within the ROI was extracted from
preprocessed rsfMRI timeseries. We then calculated Pearson’s
correlations between all pairs of ROIs for each participant
to generate a 164 × 164 correlation matrix. The obtained
correlation matrix for each participant was normalized using
Fisher’s z-transformation.

Subsequently, we calculated the correlation between the
learning index LI and rsfMRI FC strength between each ROI
pairs, using the Spearman partial correlation analysis with age
and gender as nuisance regressors. Significant resting-state FC
were extracted with P < 0.005.

Prediction of NFB Learning Performance
Lastly, machine learning models were trained to predict NFB
learning performance (LI) from multimodal neuroimaging
predictors (correlates), which were identified based on above
mentioned analyses of multimodal neuroimaging data (Sections
“Analysis of resting-state EEG,” “Analysis of structural MRI data,”
and “Analysis of resting-state fMRI”). According to previous
correlation analysis results between the NFB learning index and
features of each imaging modality, four sets of features were
employed in the prediction analysis: (1) band-limited relative
power of resting-state EEG, (2) GMV/WMV of sMRI, (3) three
regional features (ALFF, fALFF, ReHo) of rsfMRI, (4) FC of
rsfMRI. To investigate whether the combination of multimodal
features can improve the performance in predication of NFB
learning index, we further compare the prediction performance
using features from each modality as well as multimodal
features. The set of multimodal features were constructed by
concatenating all four types of feature vectors. Across-individual
normalization was performed for each feature as well as the
learning index LI before training the machine learning models.

Four machine learning techniques, namely, linear support
vector regression (SVR), linear regression (LR), Bayesian
automatic relevance determination regression (ARDR), and
random forest regression (RFR), were used here to quantitatively
predict the NFB learning index from multimodal neuroimaging
features (Pereira et al., 2009). Note that, because there is only one
EEG correlate (SMR power of the left central region) found to
be significantly correlated with LI (see Section “EEG correlates
of NFB learning performance”), a linear regression model was
used instead of SVR to predict LI from this EEG predictor.
A leave-one-out-cross-validation (LOOCV) strategy was adopted
to evaluate the performance of the prediction models. For each
iteration in LOOCV, one participant was selected as the test
sample and fed to the linear regression model (for EEG) or the
SVR model (for MRI and combined multimodal features) trained
with remaining samples, and the iterations were repeated for
each participant. To quantify the prediction performance, mean
absolute error (MAE), which was calculated as the average of
the absolute difference between actual and predicted values, as
well as Pearson correlation between actual and predicted values
were used. Furthermore, we compared the Pearson correlation

coefficient obtained using multimodal features and the Pearson
correlation coefficient obtained using each set of features from
single modality. The calculation and comparison of Pearson
correlations in this part were carried out using SPSS (SPSS
Statistics, version 22, IBM, Armonk, NY).

RESULTS

NFB Learning Performance
Seven participants were excluded from analysis due to incomplete
training or excessive EEG artifacts. Therefore, data from 27
participants (12 males, age: 23.1 ± 2.36) were available for
subsequent analysis. Most of the participants (19 of 27) were able
to increase their SMR power within-session as suggested by their
positive NFB learning index LI (as shown in Figure 1).

EEG correlates of NFB Learning
Performance
We performed correlation analysis between the NFB learning
index LI and EEG powers of nine scalp ROIs. As shown in
Figure 2, LI had significant positive correlations with SMR
power of left central ROI (including EEG channels C5, C3,
CP5, and CP3) during the eyes-open resting-state conditions
(P < 0.05, FDR-corrected).

sMRI Correlates of NFB Learning
Performance
General linear model (GLM) analysis revealed that the NFB
learning index LI was positively associated with GMV localized
in the inferior temporal gyrus and superior parietal gyrus,
and negatively associated with GMV localized in the frontal
gyrus, middle temporal gyrus, and supramarginal gyrus
(Figure 3A). For WMV, positive correlation was observed
mainly in the supplementary motor area, precuneus, and medial
occipitotemporal gyrus, and negative correlation was observed
in the precentral gyrus and hippocampus (Figure 3B). Detailed
information of these clusters with significant correlation can be
found in Supplementary Table 1.

rsfMRI Correlates of NFB Learning
Performance
GLM analysis found positive correlation between ALFF and
NFB learning index LI in the postcentral gyrus, lingual gyrus,
and hippocampus (as shown in Figure 4 and Supplementary
Table 2). However, other two types of regional rsfMRI features
(fALFF and ReHo) did not show any significant correlation
results with LI. As a result, only the identified ALFF features were
used to build a model for prediction of the NFB learning index.

Further, significant positive correlations between strength of
rsfMRI FC and NFB learning index LI were mainly observed
within the cingulo-opercular network, between the sensorimotor
network and occipital network (P < 0.005; Figure 4B); and
significant negative correlation was observed between the default
mode network and occipital network (P < 0.005; Figure 4C).
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FIGURE 2 | (A): Illustration of defined EEG-scalp regions of interest (ROI). (B): Positive correlation between SMR power at rest (baseline) and NFB learning index LI.
The ROI outlined in red contained C5, C3, CP5, CP3 and it showed significant correlation with LI (P < 0.05, FDR-corrected).

FIGURE 3 | Brain regions with (A) gray and (B) white volumes which show significant positive (red) or negative (blue) correlation with the NFB learning index LI
(P < 0.005, Cluster size > 50). SPG, Superior Parietal Gyrus; SFG, Superior Frontal Gyrus; MFG, Middle Frontal Gyrus; SMG, Supramarginal Gyrus; ITG, Inferior
Temporal Gyrus; MTG, Middle Temporal Gyrus; MTP, Middle Temporal Pole; SMA, Supplementary Motor Area; PCG, Postcentral Gyrus; MOG, Middle Occipital
Gyrus; FG, Fusiform Gyrus.
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FIGURE 4 | (A): Brain regions with rsfMRI ALFF which are significantly correlated with the NFB learning index LI (P < 0.005, Cluster size > 50). PCG: Postcentral
Gyrus; LG: Lingual Gyrus. (B) and (C) shows the correlation coefficients between rsfMRI FC and the NFB learning index LI (P < 0.005; (B), positive correlations; (C):
negative correlations). In B and C, nodes of different colors represent different brain regions, and the edge thickness represents the FC strength.

Prediction of NFB Learning Performance
Prediction analysis of the NFB learning index LI was performed
using features selected from each modality, as well as from
multimodal features. According to the results using SVR model,
the NFB learning index LI can be better predicted using
multimodal neuroimaging features, as compared with using
features of single modality (as shown in Figures 5). Specifically,
the MAE of multimodal features is 0.4341, which is smaller
than those of single modality (0.6136 for EEG features, 0.6565
for sMRI features, 0.6297 for rsfMRI ALFF features, 0.7994 for
rsfMRI FC features) (Figures 5A–D). Moreover, the correlation
coefficient between actual and predicted values using multimodal
features are significantly higher than the correlation coefficients
derived using features of single modality (Figure 5F). Prediction
of NFB learning index LI using other models can be found
in Supplementary Table 3 and Supplementary Figure 1, and
generally better results could be obtained using multimodal
neuroimaging features.

DISCUSSION

Investigating the neural correlates of an individual’s learning
ability during NFB training is important since the learning ability
has a crucial mediation link with the behavioral or clinical
outcome after NFB training (Gruzelier, 2014a). Prediction of NFB
learning performance would help prevent unnecessary time and
resources used on participants who cannot learn to modulate
their brain rhythms, and could make these participants choose
other treatment means earlier. However, reliable predictors of
NFB learning performance remain elusive. Thus, this study
was aimed to investigate the association between learning
performance during the SMR up-regulating NFB-training and
multimodal neuroimaging data (resting-state EEG, sMRI, and
rsfMRI), and then to assess whether NFB learning performance
can be better predicted using multimodal features. According to
our results, most participants were able to successfully increase

the SMR power and the learning performance was significantly
correlated with a set of EEG or MRI features. Importantly,
results of prediction analysis indicate that NFB learning index
can be better predicted using multimodal features compared
with features of single modality. These results will be discussed
in detail bellow.

Advantages of Using Multimodal Data
Neurofeedback (NFB) training is generally based on real-time
feedback of voluntarily induced changes of brain activities, and it
is a process of operant conditioning which leads to self-regulation
of brain activity. Successful self-regulation of brain activity during
NFB training can be considered as a personal skill, and a relatively
high proportion of participants cannot achieve stable self-
regulation of the target brain activity (Alkoby et al., 2018). In line
with the trend to study the relationship between an individual’s
brain structure or function and individual differences in behavior,
many NFB studies explained the individual differences of
NFB learning performance based on neural recordings and
brain imaging data, such as resting-state EEG features and
neuroanatomical features (Alkoby et al., 2018; Weber et al., 2020).
A number of EEG NFB studies suggested that participants can
be grouped as “learners” or “non-learners,” based on their brain
ability or inability to regulate their brain activity during the NFB
training. Then, machine learning models can be trained to predict
NFB learning performance using single-modality neuroimaging
predictors (Wan et al., 2014; Nan et al., 2015; Reichert et al., 2015;
Nan et al., 2018).

More and more studies used multimodal neuroimaging in
human brain researches because it overcomes the limitations
of individual modalities. Different neuroimaging techniques
have different biochemical/biophysical mechanisms, which
lead to different capabilities in probing the human brain’s
structure and function (Zhang et al., 2020b). Specifically, EEG
passively records electric changes induced by extra- and intra-
cellular electric currents associated with neuronal brain activity
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FIGURE 5 | Comparison of performance in prediction NFB within-session learning index LI using different feature sets. (A). Prediction results using EEG features.
(B). Prediction results using sMRI features. (C). Prediction results using rsfMRI ALFF. (D). Prediction results using rsfMRI FC. (E). Prediction results using multimodal
neuroimaging features. The red dashed lines represent y = x while the red solid lines represent the regression lines. Each black dot represents one participant.
(F) shows the comparison of correlation coefficients between predicted and actual LI values among five different feature sets (*, P < 0.05; **, P < 0.005).

(Michel and Murray, 2012). Electroencephalographic has a high
temporal resolution and it is safe, cheap, and easy to operate.
On the other hand, MRI has a good spatial resolution and
can provide a more complete as well as more detailed picture
of the brain. Structural MRI can provide static anatomical
information (Symms et al., 2004) and fMRI depicts brain activity
by detecting the changes in brain hemodynamics (Howseman
and Bowtell, 1999). Multimodal neuroimaging data analysis
could take the advantages from multiple imaging techniques,
such as improving both spatial and temporal resolution and
illustrating the anatomical basis for functional activities (Zhang
et al., 2020b). Numerous neuroimaging studies have shown
that, multiple neuroimaging modalities may provide a more
comprehensive understanding of the complex interplay between
the brain (including structure, function, and networks) and
behavior. For example, integrating both functional and structural
features could improve prediction accuracy of intelligence
of healthy subjects (Jiang et al., 2020). Here in the current
study, we identified a set of NFB learning-performance-related
multimodal neuroimaging features, which greatly broaden

our knowledge about the neural mechanisms of NFB learning
effects. The results suggested that, in view of the underspecified
and complex character of NFB training task, the individual
difference in NFB learning performance is not attributed
to single modality, the individual difference in SMR NFB
performance is not attributed to one single factor, but modulated
by the brain’s baseline neural activity, structure, function, and
functional connections.

Multimodal Predictors of SMR NFB
Learning Index
EEG Predictors
According to existing findings, a well-known predictor of
NFB learning index should be the baseline EEG activity.
A higher baseline level of the training parameter (brain
activity of the training target) is advantageous for better
NFB training performance (Wan et al., 2014; Nan et al., 2015;
Reichert et al., 2015). In consistence with previous studies
(Reichert et al., 2015; Nan et al., 2018), we found that the
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eyes-open resting-state SMR power showed positive correlation
with NFB learning index. Generally, the most relevant resting-
state SMR power located in central regions, especially the left
central regions. It has been proposed that a certain baseline level
of SMR power is associated with a higher neural adaptability
which may allow a better modulation of this EEG rhythm
(Reichert et al., 2015).

fMRI Predictors
Similar to rest EEG, rsfMRI data are also easy to collect and
have gained widespread applications. Two types of features,
regional activities (ALFF/fALFF/ReHo) and FC of intrinsic brain
networks, can be calculated from rsfMRI. However, there is
no study to examined rsfMRI-based predictors for EEG NFB
training performance. We found significant positive correlations
between the NFB learning performance and the strength of
a set of FC features, which were mainly observed within the
cingulo-opercular network, between the sensorimotor network
and occipital network. Similarly, FC having significant negative
correlations with the learning performance were observed
between the default mode network and occipital network.

Considering the underspecified content of NFB training task,
successful learning performance requires participants to show
self-initiated multitasking, such as to focus on inner mental
thoughts and external stimuli at the same time. Therefore, while
concentrating on real-time feedback, participants have to redirect
attention away from irrelevant thoughts and toward goal-related
thoughts (Kober et al., 2017). Hence, positive correlation between
resting-state within-network FC of cingulo-opercular network
might be explained by its positive effects for redirection of
attention and maintenance of tonic alertness (Sadaghiani and
D’Esposito, 2015). A previous study showed that the intention to
control the moving bar of sham feedback is sufficient to engage
a broad cingulate-opercular network related to cognitive control
(Ninaus et al., 2013).

The default mode network is implicated in self-referential
and integrative processes and it generally has negative FC with
other task-positive networks during resting-state (Fox et al.,
2005). The anticorrelation between the default mode network
and task-positive visual networks may reflect the dichotomy
between NFB training requiring introspectively oriented and
extrospectively oriented attentional modes (Fransson, 2005).
The strength of this negative correlation could be considered
as an index of the degree of regulation in the default mode
and task-positive networks, and showed positive correlation
with behavioral performance (Kelly et al., 2008). Consistently,
better NFB training performance showed negative correlation
with resting-state FC between the default mode and occipital
networks, i.e., the higher the negative correlation, the better
the NFB training performance. Besides, performance during
NFB training is also positively correlated with resting-state FC
between occipital and sensorimotor networks. Both occipital and
sensorimotor networks are known to support more specialized
and mostly externally driven functions, and the FC between these
two networks is normally low during resting-state (Doucet et al.,
2011; Gu et al., 2015; Lee and Frangou, 2017). In addition to FC,
we also observed positive correlation between ALFF and NFB

learning performance in brain regions within the sensorimotor
and occipital networks, such as the postcentral gyrus and
lingual gyrus. Considering increased FC between the networks
responsible for processing different types of sensory information,
it can be inferred that better NFB learning performance might be
related to multisensory integration.

sMRI Predictors
VBM analysis of sMRI data measures the neuroanatomy
characteristic of the human brain, and it has been used in
previous studies to investigate the link between brain anatomical
properties and the individual difference in cognitive function
(Kanai and Rees, 2011). In order to reveal the neuroanatomical
basis of the ability to achieve self-regulation of one’s own brain
activity, two studies investigated structural predictors of learning
performance during up-regulation of SMR power (Ninaus et al.,
2015; Kober et al., 2017). Compared with these two studies, the
current study observed relevant findings on GMV and WMV
of more widely distributed brain regions. Specifically, for the
default mode network, a positive relationship between GMV
and NFB performance was observed in the superior parietal
gyrus, precuneus, and inferior temporal gyrus, and a negative
relationship was observed in the frontal gyrus and temporal pole.
Besides, a number of brain regions within the occipital network,
including the middle occipital gyrus, calcarine sulcus, lingual
gyrus, and fusiform gyrus, showed positive correlation between
WMV and NFB performance. As mentioned before, NFB
performance showed significantly correlation with the rsfMRI
FC strength between the default mode network and occipital
network. These results underscore the importance of these two
functional networks to the capability of learning self-regulation
of brain activity from the neuroanatomical perspective. So
far, a very limited number of studies investigated structural
predictors of NFB performance, and their results also explained
the neuroanatomical basis for learning self-regulation of brain
activity (Enriquez-Geppert et al., 2013; Ninaus et al., 2013,
2015; Kober et al., 2017). There are some differences between
the results obtained in this study and those reported before,
and the differences can be attributed to a number of reasons,
such as different NFB protocols, training characteristics, and
measurements of training performance. Future study should
attempt to reveal a more general “NFB network” in the brain,
regarding overlapping neuroanatomical correlates for different
NFB protocols (Weber et al., 2020).

Limitations
This present study has some limitations. First, the present study
was constrained in terms of the sample size, which could limit
and weaken the result of this study. Second, a corrected threshold
was only used for extraction of EEG correlates. The results
are sufficient to support our conclusion, but studies with more
strict feature selection approach are needed to verify the results
obtained here. Third, the multimodal prediction was primarily
achieved by simple concatenating brain features from different
modalities horizontally into a single, combined feature space,
thus not allowing for a full use of the joint information among
modalities (Sui et al., 2020). Forth, only within-session learning
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effect was evaluated in this study. There is no generally accepted
best measure for assessing NFB learning success so far. One
might speculate that observed predictors for NFB performance
might be different if we had used another measure of learning
performance. But here in this study, our main purpose is
to validate the necessary of utilizing multimodal data when
investigating predictors of NFB learning success, therefore we
used a learning index (LI), which has been successfully applied
in previous studies. Last but not least, we haven’t collected
any behavioral data to characterize subject’s psychological state
during NFB training, such as mental strategy. This should be
considered in future study together with pre-NFB baseline factors
to make a more comprehensive investigation of NFB learning
performance predictors.

CONCLUSION

In conclusion, inter-individual differences concerning the ability
to regulate one’s brain activity are in the focus of current
NFB research. Existing studies proposed that the individual
differences in NFB learning performance can be attributed
to electrophysiological and anatomical baseline characteristics.
Our results support and extend these findings, since we found
reliable predictors of within-session NFB learning performance
from multimodal neuroimaging data. The results of this study
highlight the importance of multimodal neuroimaging technique
as a tool to explain the individual difference in learning
performance during NFB training, and could provide a basic
theoretical framework for development of individualization
of NFB protocols.
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