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The identification of the organization principles on the basis of the brain connectivity can
be performed in terms of structural (i.e., morphological), functional (i.e., statistical), or
effective (i.e., causal) connectivity. If structural connectivity is based on the detection of
the morphological (synaptically mediated) links among neurons, functional and effective
relationships derive from the recording of the patterns of electrophysiological activity
(e.g., spikes, local field potentials). Correlation or information theory-based algorithms
are typical routes pursued to find statistical dependencies and to build a functional
connectivity matrix. As long as the matrix collects the possible associations among
the network nodes, each interaction between the neuron i and j is different from zero,
even though there was no morphological, statistical or causal connection between
them. Hence, it becomes essential to find and identify only the significant functional
connections that are predictive of the structural ones. For this reason, a robust, fast,
and automatized procedure should be implemented to discard the “noisy” connections.
In this work, we present a Double Threshold (DDT) algorithm based on the definition
of two statistical thresholds. The main goal is not to lose weak but significant links,
whose arbitrary exclusion could generate functional networks with a too small number
of connections and altered topological properties. The algorithm allows overcoming the
limits of the simplest threshold-based methods in terms of precision and guaranteeing
excellent computational performances compared to shuffling-based approaches. The
presented DDT algorithm was compared with other methods proposed in the literature
by using a benchmarking procedure based on synthetic data coming from the
simulations of large-scale neuronal networks with different structural topologies.

Keywords: connectivity matrix, functional connectivity, neuronal assemblies, threshold, topology, simulations

INTRODUCTION

The brain or more in general nervous systems are complex networks par excellence, made up
of thousands of neurons synaptically interconnected. Such huge connectivity and the intrinsic
topological organization make it possible to generate and integrate information from multiple
external and internal sources in real time (Sporns et al., 2000). In the last decade, the identification
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of such connectivity pathways has become a great and debated
topic in the field of basic as well as clinical neuroscience since
alterations of the modes of connectivity are often associated
with the pathogenesis of brain impairments (Ding et al., 2013;
Kemmotsu et al., 2013; Kim et al., 2014). However, from a
structural, functional, and effective point of view (Feldt et al.,
2011), the common outcome is a full square connectivity matrix
(CM) with N2 elements, where N indicates the number of
considered neurons, brain regions, or assemblies. The functional
connectivity matrix is relative to the correlation between time
series from different sources without any underlying causal
model. Correlation- and information theory-based methods are
two families of algorithms used to infer functional properties
(Bastos and Schoffelen, 2016). The effective connectivity matrix
identifies the direct influences that one neuronal system exerts
on another, relying on a network model in which different
populations appear structurally connected (Lang et al., 2012).
Finally, the structural connectivity matrix takes into account
the physical (synaptically mediated) connections existing among
neurons or small assemblies. The resolution of such CMs depends
on the used technologies to acquire morphological (structural
connectivity) or dynamical (functional and effective connectivity)
information. By using high-density micro-electrode arrays at
both in vitro (Simi et al., 2014) and in vivo (Jun et al., 2017) level,
it is possible to map the neuronal position (and connections)
with a single-cell resolution (tens of micrometers); on the
contrary, using fMRI-based devices such a resolution is limited
to small/medium brain regions (van den Heuvel and Hulshoff
Pol, 2010). In any case, the CM contains different information
regarding the connectivity of the considered network, from
the kind of connections (i.e., excitatory vs. inhibitory links),
to the synaptic weights (i.e., an indication of the synaptic
efficacy), up to the delays introduced by the synaptic transmission
(Fornito et al., 2016).

Once CM has been obtained, some questions arise: What
are the real connections? Which are the significant ones? How
many false-positive (FP) and false-negative (FN) connections are
mapped inside the CM? Are weak connections significant? The
answers to this batch of queries become relevant in order to
keep only the relevant connections inside a CM. In other words,
spurious links should be removed from the graph representing
the connections of a CM. The ideal algorithm of CM thresholding
should guarantee a high degree of true-positive (TP) connections,
removing only the noisy ones that do not exist in the real
neuronal network. With the high efficacy in keeping only
the real connections, computational efficiency is also a crucial
factor to consider, especially when CMs derive from large-scale
neuronal networks. Many of the simplest (and fast) approaches
to threshold a CM are heuristic-based and work on the detection
of the weakest connections, whose removal introduces severe
errors. These pruning algorithms are extremely sensible, and it
is common that starting from the same CM, the application of
different heuristic thresholds might achieve different thresholded
connectivity matrices (TCMs). A completely different approach is
based on shuffling procedures (Grun and Rotter, 2010) that allow
destroying the information stored in the input signal (e.g., spike
timing), obtaining independent spike trains (i.e., surrogate data).

Shuffling techniques are more precise than methods based on the
definition of arbitrary thresholds, but they are computationally
heavy (depending on the number of generated surrogates). For
this reason, it is essential to choose the best compromise between
reliability and computational time.

In this work, we developed a Double Threshold (DDT)
algorithm to enhance the performances of threshold-based
algorithms without increasing the computational load as shuffle-
based algorithms have. DDT is based on a double threshold
whose fundamental aim is not to lose weak but significant
connections. One of the principal drawbacks of threshold-based
algorithms is that to be conservative (i.e., to not introduce many
FPs), a large number of connections is arbitrarily discarded,
generating graphs with a small number of connections and
altered topological properties. In this work, we tested the DDT
method to recover the significant connections of functional
CMs obtained by applying a cross-correlation algorithm (De
Blasi et al., 2019) to synthetic spike trains generated by the
simulation of large-scale neuronal network models. The goodness
of the DDT algorithm was evaluated comparing the TCM with
the structural one, known a priori since part of the in silico
model. We generated different network configurations changing
the topological properties of the structural CMs. In particular,
random (Erdos and Rényi, 1959), small-world (Watts and
Strogatz, 1998), and scale-free (Barabási and Albert, 1999) graphs
were used. Thus, we applied DDT algorithm to the functional
CMs comparing its performances to the ones obtained using
standard threshold-based methods, like hard threshold (HT)
(Poli et al., 2015), density-based threshold (DT) (van den Heuvel
et al., 2017), and a shuffling method (SH) (Kamiński et al.,
2001). It is clear that the main quality for a CM thresholding
method in terms of accuracy is identifying the correct size
of the functional network (van Wijk et al., 2010). The DDT
method highlighted how an increase in the classification accuracy
led to a better quantification of the topological properties
(Small-World Index and Degree Distribution) of the functional
networks. Furthermore, the computational simplicity of the
method ensured a computational time shorter than that required
by shuffling-based approaches without losing the accuracy of link
classification. Finally, we demonstrated the DDT ability to self-
adapt to the size of the analyzed network: In real experimental
scenarios (both in vitro and in vivo), where the real size of the
network is not known a priori (e.g., in silico model), the method’s
accuracy became better than the other ones, recovering the real
topological characteristics of the network.

MATERIALS AND METHODS

The ij elements of a CM identify the strength of the relationship
between nodes (i.e., neurons) i and j. Any thresholding method
should keep only statistically significant connections, i.e., those
due to an active connectivity between the considered nodes.
In this work, we obtained CMs by means of the Total
Spiking Probability Edge (TSPE) algorithm, a correlation-based
method, which allows discriminating inhibitory and excitatory
connections (De Blasi et al., 2019). Since structural connectivity
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properties are preserved in the functional CM (Bullmore and
Sporns, 2009), a reliable thresholding algorithm should maintain
the significant connections of the functional graph, keeping
unchanged the topological properties of the structural network
as well as the balance of excitatory and inhibitory links.

The Double Threshold Algorithm (DDT)
To improve the performance of the current pruning thresholding
algorithms, which consider only the strongest connections
(bringing a possible incorrect description of the network’s
topological properties), it was necessary to develop an adaptive
algorithm that allows detecting even weak (statistically
significant) connections (Schneidman et al., 2006; van Wijk
et al., 2010) and that should not change the topological properties
of the network for small variations of the network features (i.e.,
the average network’s degree).

The DDT method consists of four steps:

(1) Application of a HT to all the elements of the CM. The
outcomes of this first step are two matrices: (i) the first-
step thresholded connectivity matrix (T1CM) containing
the strongest connections, and (ii) the rejected connectivity
matrix (RM) that holds every connectivity value discarded
by the application of the first threshold. The used threshold
for obtaining the T1CM and the RM matrices is evaluated
as the mean plus n-times the standard deviation of the
connections’ strength.

(2) Extraction of the thresholding matrix (TM), which
contains, for each ij element, the second thresholding
values to be applied on RM. In particular:{

Thexc
ij = µexc

i, 6⊂ij + mexc
· σexc

i, 6⊂ij
Thinh

ij = µinh
i, 6⊂ij − minh

· σinh
i, 6⊂ij

(1)

where µi 6⊂ij and σi 6⊂ij are the mean and the standard
deviation values of the ith row’s non-zero-elements
excluding the ij element, respectively, m is a positive
arbitrary parameter. The superscripts identify the sign
of the connections (excitatory or inhibitory). This step
compares a single connectivity value RMij with the
distribution of RM values in the ith row. If the jth and the
xth (with x 6= j) spike train are not correlated, we can think
about the xth spike train as a “pseudo-shuffled” version
of the jth spike train. Then, accounting for the whole ith
row, it means that we are comparing the ij value with
the distribution of a “pseudo-surrogate” shuffled dataset,
accounting for the null hypothesis for the neuron ith to be
functionally connected with a neuron xth. This is likely to
be true as long as the number of spurious connection values
is much larger than the number of true connection values
in the ith row.

(3) Definition of the second thresholded matrix (T2CM)
containing all the RM’s elements, which become higher
than their corresponding TM’s element:

T2CMij = RMij if RMij > TMij (2)

(4) Finally, the functional connectivity matrix (FM) is defined
as the union of T1CM and T2CM:

FM = T1CM ∪ T2CM (3)

To better understand the working principle of the DDT
algorithm, the aforementioned four steps are applied to a
“dummy” network made of n = 5 nodes (i.e., neurons) and
k = 7 structural excitatory connections (i.e., synapses) among
them (Figure 1A). The arrows identify the directionality of the
connection. It is worth noticing that some connections are mono-
directional (e.g., b → a), while other ones are bi-directional
(e.g., a↔ d). Each node embeds neuronal dynamics (described
with the Izhikevich model), while each link incorporates a
synaptic model (cf., section “Network Model”). We simulated
900 s of spontaneous activity, from which we inferred the CM
by means of the TPSE algorithm (Figure 1B, where green
squares indicate those values of the functional connections that
actually correspond to the structural connections of the graph
in Figure 1A). After applying the first HT (set as the mean
plus one standard deviation of the non-zero elements of the
CM), the T1CM is obtained (Figure 1C). This first step correctly
removes all spurious values but rejects about 57% of the structural
connections, i.e., false negatives (green squares with red circles,
Figure 1C) that should not be discarded. In order to recover
them, the RM matrix is computed (Figure 1D, left). For each
ij element of the RM matrix (rows 1–2 of the pseudocode,
Figure 1D, right), a new threshold is identified: all the non-null
values of the ith row (rows 3–4) are identified, the jth value is
excluded (row 5), and the threshold is computed as the average
plus the standard deviation of these values (row 6). All the
threshold values are collected in the TM (Figure 1E). The third
step of the algorithm (Figure 1F) provides the T2CM, containing
only the structural connections neglected in the first step. Finally,
Figure 1G shows the final FM and the relative functional graph,
which perfectly resembles the original structural one (Figure 1A).

Selected Thresholding Algorithms for
Comparison With DDT
We evaluated the performance of the DDT algorithm by
comparing it with three widely employed thresholding
algorithms in the literature.

The simplest, but widely used of such procedures is the
HT algorithm (Poli et al., 2015), which defines a threshold
on the basis of statistic distribution within the CM’s elements.
In particular, considering a CM where both excitatory and
inhibitory connections are present, the HT algorithm sets
a threshold independently evaluated for the two kinds of
connections, Thexc and Thinh defined as:{

Thexc = µexc + nexc · σexc
Thinh = µinh − ninh · σinh

(4)

where µexc and µinh. are the positive mean of the excitatory
elements and negative mean of the inhibitory ones of the CM;
σexc and σinh are the standard deviations of positive and negative
CM’s values, respectively. Means and standard deviations are
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FIGURE 1 | Double Threshold (DDT) algorithm operating principle applied to a simple network. (A) Structural graph made up of n = 5 nodes and the k = 7 structural
directed links (left). Structural connectivity matrix (SM) where each green square identifies a structural connection in the graph (right). (B) Functional connectivity
matrix (CM) obtained by applying the correlation algorithm to each pair of spike train. In the CM, the green squares show the functional connectivity values that
correspond to the actually existing structural links in the network. (C) Applying the first hard threshold (n = 1), the T1CM matrix was computed. In T1CM, the red
circles point to those connections incorrectly deleted from the CM (false negatives). (D) The rejected connectivity matrix (RM) is made of all the values that have been
previously deleted by applying the hard threshold to the CM. By applying the stripping process summarized in the pseudo-code, (E) the thresholding matrix (TM)
resulting from the application of the second step of DDT to the RM is achieved. It contains the threshold for each corresponding value of T1CM. (F) The T2CM
shows every RM value that satisfies the condition RM > TM. (G) Final functional thresholded connectivity matrix (FM) and its relative functional graph.

computed over all the non-zero elements of the CM. Finally,
nexc and ninh are two arbitrarily chosen integers.

The second considered method is the density-based threshold
(DT) algorithm (van den Heuvel et al., 2017). Its working
principle is based on the assumption that the network has a
certain level of link density or, better, a specific M number of
significative links. After sorting the inferred connections based on
the synaptic weights, only the M strongest connections of the CM
are taken into account. Even in this case, the algorithm consided
both the Mi inhibitory and Me excitatory strongest connections.

Among the considered thresholding methods, DT is the only
one that does not perform any mathematical computation of
the CM’s weights. The threshold value is set in a completely
arbitrary manner. Thus, in order to avoid any bias introduced
by arbitrary choices and compare the DT performance with
the other methods, we set the number of Me/Mi strongest
excitatory/inhibitory connections equal to the ones identified by
the DDT algorithm.

The last method is based on shuffling (SH) procedures. It
is completely different from both the HT and the DT, since it

Frontiers in Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 705103

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-705103 August 10, 2021 Time: 12:24 # 5

Boschi et al. Thresholding Functional Connectivity Matrices

is based on the definition of shuffled spike trains. Taken two
spike trains X and Y, we randomly shuffled the timing of each
spike in the Y train, keeping constant the total number of spikes
(i.e., constant MFR) but varying the interspike temporal interval
(i.e., ISI). Once the Y spike train is shuffled, we computed the
temporal correlation (De Blasi et al., 2019) between the X- and
Y-shuffled spike trains, obtaining a null-case value of connectivity
between the neuron X and Y. By iterating such operation a
number of time Nshuffling, we were able to obtain a distribution
of values that quantify the strength of the functional connectivity
between X and Y while the two neurons were not functionally
connected. We then compared such null-case distribution with
the real connectivity values XY in the CM by a z-test at a
certain significance level (α), assuming the null-case distribution
to be normally distributed. Indeed, the SH procedure (Kamiński
et al., 2001) allows achieving null-case distribution by iterating
the cross-correlation estimation on different surrogate data sets
obtained by shuffling the spike timings of original spike trains
in order to disrupt the temporal relationship between them
(Toppi et al., 2013). Although particularly accurate, SH is more
time-consuming than the HT and DT methods.

The parameters of each thresholding method were kept
constant for all the simulations. In particular, we set nexc =

1 and ninh = 2 for the first step of the DDT and mexc = 3
and minh = 3 for the second one. The parameters of the HT
method are the same for the first step of the DDT. Finally, for
the shuffling method, we set αexc = αinh = 0.01. The choices
of the DDT parameters have been validated by sweeping their
values and evaluating the number of functional links detected
and the correspondent accuracy (Supplementary Figure 1) on
n = 6 RND networks.

Benchmarking Procedures
To evaluate the performance of the DDT algorithm and
compare its results with the selected thresholding methods,
we developed a large-scale neuronal network model with
different topological features. In this way, we evaluated the
sensibility of the DDT method to different connectivity
configurations. The developed model mimicked and reproduced
the typical patterns of electrophysiological activity (spiking
and bursting signatures) experimentally found in dissociated
cortical networks coupled to Micro-Electrode Arrays (MEAs),
where connectivity spontaneously evolves following different
configurations (Massobrio et al., 2015).

The use of an in silico model reproducing the behavior of the
actual network allowed achieving a valid benchmark to test the
proposed DDT algorithm since it gave the possibility to have
a fully controllable system where the structural features were
known a priori. In this way, a comparison between the functional
connectivity maps obtained by thresholding the CM and the
structural one can be mathematically quantified.

Network Model
The in silico model consists of a sparse network of 500
interconnected Izhikevich spiking neurons with Spike Timing
Dependent Plasticity (STDP) and conduction delays (Izhikevich,
2006). We set the ratio between excitatory and inhibitory neurons

at 0.8 (Marom and Shahaf, 2002). Hence, we modeled the
excitatory population with 400 regular spiking neurons and the
inhibitory one with 100 fast-spiking neurons (Izhikevich, 2003)
according to the Izhikevich equations:

v
′

= 0.04v2
+ 5v+ 140− u+ I

u
′

= a
(
bv− u

)
if v ≥ 30 mV, then

{
v← c

u← u+ d
(5)

where a, b, c, and d are dimensionless parameters that define
the neuronal type and its relative firing patterns; v and u are
the neuronal membrane potential and the recovery variable,
respectively. In the model, we set a = 0.02, b = 0.2, c = –65, and
d = 8 for the regular spiking neurons, and a = 0.1, b = 0.2, c = –65,
and d = 8 for the fast-spiking neurons. The synaptic transmission
was modeled as a conduction delay between the presynaptic
spike and the postsynaptic membrane potential stimulation,
which was randomly assigned for each excitatory neuron in a
range between 1 and 20 ms. For the inhibitory neurons, the
synaptic delay was fixed at 1 ms. The network model also
embedded a spike-timing dependent plasticity (STDP) model
(Song et al., 2000; Caporale and Dan, 2008), where the magnitude

of change of the connection weights increased as A+e
−t/τ+ and

decreased as A−e
−t/τ− , where τ+ = τ− = 20 ms, A+ = 0.1

and A− = 0.12 (Izhikevich, 2006).
The aforementioned neuron models were linked to define

complex neuronal networks following the three canonical
topologies, namely, random (RND), small-world (SW), and
scale-free (SF). Independently of the topology, each network
model contains 20,000 structural links, keeping the same
excitatory/inhibitory neuronal ratio fixed at 0.8.

RND networks were characterized by a Poisson distribution of
the node degree:

p
(
k
)
=

e−δδk

k!
(6)

where k is the mean connectivity degree of the network and
δ is the average value of the node degree distribution (Erdos
and Rényi, 1959). Random network topology was obtained
interconnecting the ith neuron with k randomly chosen different
neurons. Autapses were not allowed. In our implementation, we
defined three modules having the same characteristics: the first
one included excitatory connections linking excitatory neurons
(regular spiking); the second one included excitatory connections
outgoing from excitatory neurons and incoming to inhibitory
ones (fast-spiking); the third one was relative to inhibitory
connections going out from inhibitory neurons to excitatory
ones (fast-spiking).

The SW network topology was obtained customizing the
Watt–Strogatz definition (Watts and Strogatz, 1998). We
generated a structural connectivity matrix made up of three
different modules. First, we defined SW connections among
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excitatory neurons, building the “ring lattice” and then randomly
redistributing a number of connections defined by the rewiring
probability value, which in our simulation was set at 0.3.
Second, we built SW excitatory connections from excitatory to
inhibitory neurons. As long as a minimum number of strong
connections in this module supported the activation of the
whole inhibitory network, its presence was crucial for balancing
excitation and inhibition. We randomly picked a number of
connections from the ring lattice and we translated them to
the connections between excitatory to inhibitory neurons. Third,
we built the inhibitory module that defined the inhibitory
connections generated by inhibitory neurons and that affected
the excitatory ones. This module was randomly connected to
the excitatory one.

Finally, SF networks were characterized by a power-law degree
distribution according to Eq. (7):

p
(
k
)
= αk−γ. (7)

where γ is the characteristic exponent, which usually lies between
1.3 (slice recordings) and 3 (fMRI recordings) (Eguìluz et al.,
2005; Bonifazi et al., 2009). Such distribution highlights the
presence of highly connected nodes (hub neurons), which are
able to influence the whole dynamics. Since the network degree
is power-law stributed, we considered hubs those high-degree
nodes (i.e., nodes with a degree at least one standardeviation
above the average degree of the network; Sporns et al., 2007).
For the aim of our analysis, we did not perform any kind of hub
classification, meaning that we did not classify hubs on the basis
of their participation coefficients (Sporns et al., 2007).

The SF network topology was obtained customizing the
Albert–Barabasi model (Barabási and Albert, 1999). We built
the SF structural connectivity matrix made up of three different
modules. First, we built SF connections among excitatory
neurons as defined in Barabási and Albert (1999), choosing the
minimum number of SF connections per neuron. Second, we
established excitatory connections from excitatory to inhibitory
neurons: we defined this part of the network as a SF module
with the same proprieties as the previous one. Third, we
built the inhibitory module, which connected inhibitory to
excitatory neurons, as another SF module with the same
proprieties of the previous two. Then, since we shuffled each
row of the connectivity matrix, to reduce the percentage of
bi-directional connections, the SF proprieties of the network
were maintained row by row. It means that the generated SF
networks displayed normal incoming (i.e., accounting for the
number of connections incoming a neuron) and SF outgoing
(i.e., accounting for the number of connections outgoing from
a neuron) degree distributions.

In addition to the canonical topological connectivity rules, we
also designed a network model with 500 neurons arranged in
three interconnected modules (two excitatory and one inhibitory,
Supplementary Figure 2A) exhibiting clearly distinct firing
patterns of activity (Supplementary Figure 2B) with respect to
the homogeneous configurations (Figures 2A–C). As also found
in similar experimental configurations (Shein-Idelson et al., 2011;
Bisio et al., 2014; Narula et al., 2017), the presence of weak

connected clusters induces a decrease of the synchronization level
of the network and an increase of spiking activity. This model
was used as further configuration to assess the performances of
the DDT algorithm.

Performance Evaluation
Topological Metrics
In order to quantify the topological features of the neural
networks, different quantitative metrics have been developed over
the years. An exhaustive description can be found in Rubinov
and Sporns (2010) and in the updated software collection Brain
Connectivity Toolbox.1 In this work, we made use of the metrics
we defined below.

Number of links. It is the total number of connections
that define a graph (together with the number of nodes).
It is the simplest feature that quantifies the network size.
From the number of links, it is feasible to derive the degree
distribution, which allows identifying stereotyped graphs (cf.
section “Network Model”).

Small-World-Index (SWI). It is a metric that identifies the
emergence of small-world properties of a network. It is computed
as:

SWI =
Cg

Crand
Lg

Lrand

(8)

where the Average Cluster Coefficient (Cg) and the Path Length
(Lg) of the network are normalized on the expected values
from random networks (Crand and Lrand, respectively) with the
same number of nodes and links (Erdos and Rényi, 1959). The
network exhibits SW properties if SWI > 1 (Humphries and
Gurney, 2008). The Cg quantifies the network segregation and is
computed as the average of all Cluster Coefficient of each node
(Ci):

Ci =
# of links between neighbors of i

ki(ki−1)
2

(9)

where ki is the number of connections of the ith node. The Path
Length (Lg) identifies the integration level of the network and it is
computed as the shortest distance d(i,j) between ith and jth nodes
averaged over all pairs of nodes in the network:

Lg =
2

N(N − 1)

∑
i

d(i, j) (10)

where N is the number of nodes.

Confusion Matrices and Accuracy Value
The confusion matrix is a tool usually adopted to solve
classification problems: it compares predicted and actual values,
dividing them into multiple classes if required (i.e., multi-
class classification problems). Usually, the values reported in a
confusion matrix are summarized in the accuracy value (ACC),
defined as the fraction of correctly classified values:

ACC =
TE+ TI + TN

TE+ TI + FE+ FI + FN
(11)

1https://sites.google.com/site/bctnet/
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FIGURE 2 | Simulated spontaneous activity of a representative (A) Random, (B) Small-World, and (C) Scale-Free network. The close-ups magnify 2 s of activity.
(D) Mean firing rate (MFR), (E) mean bursting rate (MBR), and (F) burst duration (BD) averaged over 15 simulations for each topology (***p < 0.001, Kruskal–Wallis,
non-parametric test).

In Eq. (11), TI and TE refer to True Inhibitory and True
Excitatory values (i.e., the inhibitory/excitatory connections
correctly classified). FE and FI identify the false excitatory and the
False Inhibitory values (i.e., the inhibitory/excitatory connections
wrongly classified). Finally, TN refers to True Negative, i.e.,
the correct classification of the absence of connections between
node pairs, and FN stands for False Negative, i.e., the existing
connections not detected by the algorithm.

RESULTS

Simulated Network Dynamics as
Function of the Network Topologies
The network model, organized according to the RND, SW, and
SF topologies described in section “Network Model,” was tuned
up in order to generate firing dynamics reflecting the behavior
of mature in vitro cortical cultures (Wagenaar et al., 2006). For
each network topology, we simulated 15 realizations of 15 min
changing: (i) the seed of the noise (modeled according to a

Gaussian process) used to generate the spontaneous activity; (ii)
the connections among neurons inside each network realization.

The out-degree was fixed at k = 40. Initial excitatory/inhibitory
synaptic weights were chosen from two normal distributions
(we = 7, σWe = 1; wi = –7, σWi = 1). Due to the STDP evolving, the
excitatory weights changed toward a bi-modal STDP distribution
(Bi and Poo, 1998) after 5 min of simulation. Then, each
excitatory weight was kept constant during the remaining 10 min
of simulation. Figures 2A–C show 10 s of spontaneous activity
(after STDP) of three representative RND, SW, and SF networks.
Excitatory neurons were labeled from 1 to 400, while the
inhibitory ones were labeled from 401 to 500. All the networks
displayed the classical in vitro patterns of electrophysiological
activity, i.e., high synchronized network bursts involving most
of the neurons of the network, as well as bursting and spiking
activity. The magnifications allow appreciating qualitatively the
different modes of activation as well as the involved neuronal
units. We quantified the dynamical properties of the simulated
networks by means of first-order spiking/bursting metrics
(Figures 2D–F). Spiking and bursting features of the simulated
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dataset were characterized in terms of mean firing rate (MFR),
i.e., the number of spikes per second averaged over the number
of the neurons of the network, mean bursting rate (MBR), i.e.,
the number of bursts per minute averaged over the number of
the neurons of the network, and the burst duration (BD), i.e.,
the temporal duration of these events averaged over the entire
number of detected bursts. Bursts were detected applying the
string method algorithm devised in Chiappalone et al. (2005). We
tuned the model parameters to achieve no significant differences
in the MFR values among the three topologies (Figure 2D).
Such condition was a fundamental requirement in order to
ensure the comparability of the functional connectivity analysis
among the different topologies. Figure 2E shows the frequency
of the bursting events (we defined burst an event with three or
more temporally packed spikes followed by a quiescent period
longer than 100 ms). While RND and SW networks did not
present statistical differences in the MBR values, with average
values of 32 ± 2 and 32 ± 3 bursts/min respectively, in SF
networks, higher MBR values (41 ± 3 bursts/min) were detected
(pSF−RND = 3 · 10−6, pSF−SW = 3 · 10−6)2. Finally, the BD was
affected by the clustering feature of the SW networks (Figure 2F).
Indeed, this network’s topology exhibited bursts longer than those
detected in RND assemblies (pSW−RND = 0.0004) and in SF ones
(pSW−SF = 0.0004).

Such stereotyped patterns of electrophysiological activity
were partially attenuated by simulating the electrophysiological
activity of interconnected networks (Supplementary Figure 2A).
From the simulations of these networks, we derived an overall
MFR of 1.18 ± 0.14. spikes/s and MBR of 4.11 ± 0.68
bursts/min (Supplementary Figure 2B). It is worth to underline
that it is possible to distinguish the neurons belonging to the
modules from those that are not: such neurons showed a MFR
of 1.78 ± 0.21 spikes/s while the neurons outside the modules
displayed a MFR of 0.77 ± 0.15 spikes/s. Moreover, the neurons
belonging to the modules were the only ones able to sustain
bursting activity (Supplementary Figure 2B).

Size of the Thresholded Network
The network size and the physiological balance between
excitation and inhibition are two of the fundamental features
affecting the assessment of the network topological properties
(van Wijk et al., 2010; Rubin et al., 2017). Thus, any thresholding
method should identify both the right number of connections
and the correct excitation/inhibition ratio. As described in
section ”Network Model” each network model contained 20,000
structural links, keeping the same excitatory/inhibitory neuronal
composition (Pastore et al., 2018). All outgoing connections
coming from excitatory neurons had a positive weight (therefore
considered excitatory) and can target both excitatory and
inhibitory neurons. On the contrary, inhibitory connections,
coming from inhibitory neurons, always projected to excitatory
neurons. For the following analysis, n = 6 realizations for each
topology were considered. First, we evaluated and compared

2Since data do not follow a normal distribution (Kolmogorov–Smirnov normality
test), the non-parametric Kruskal–Wallis test was applied. Significance levels were
set at p < 0.05.

the total number of links (Figure 3A) and the ratio between
excitatory and inhibitory links (Figure 3B) identified by the four
thresholding methods applied to the three topologies (RND, SW,
and SF). Since the DT method sets a threshold value depending
on the desired density to achieve, to compare without any kind of
bias DT with the other three methods, we forced DT to detect the
same number of links of DDT as described in section “Selected
Thresholding Algorithms for Comparison With DDT”. For this
reason, the number of links (Figure 3A) obtained by the DDT
and DT methods were exactly the same.

In RND networks, the SH method provided the same number
of functional links identified by the DDT one (pDDT−SH = 0.323).
The DDT identified 20,377 ± 138 links, close to the structural
target set at 20,000 connections. In this topological organization,
only HT algorithm underestimated the number of links by
detecting 17,095± 92 connections, significantly lower than DDT
(pDDT−HT = 0.004).

In SW networks, the SH method underestimated the number
of functional links with respect to DDT (p = 0.004), while DDT
detected the highest value of links 20,794 ± 97. As in RND
networks, HT neglected about 16% of significant links. Given
the intrinsic structural “small-world” properties, we evaluated
the SWI (Eq. 8) of the inferred functional networks, and we
compared it with the structural target (Figure 3A, middle, inset).
All the thresholding methods allowed achieving SWI values
greater than 1, meaning that reconstructed functional networks
maintained the small-worldness properties. By analyzing the
SWI values of the single methods, we found that SH showed
the highest value (1.73 ± 0.01). Nevertheless, the DDT
guaranteed a SWI = 1.67 ± 0.02, different but close to SH
(pDDT−SH = 0.004) and significantly higher than HT, which
showed a SWI = 1.37 ± 0.02 (pDDT−HT = 0.004). Since
the structural SW networks showed SWI = 1.83 ± 0.01, we
demonstrated that the weak connections recovered by the DDT
algorithm contribute to bring the SW properties of the functional
networks closer to those of structural ones.

Also in SF networks, the DDT detected a number of
connections comparable to the SH method and significantly
higher than HT (pDDT−HT 0.004). The key feature of SF networks
is the existence of hub neurons. We evaluated how the number
of hubs was influenced by the thresholded methods (Figure 3A,
right, inset). The number of hub neurons computed over all the
SF structural matrices was 49 ± 2. The implementation of the
DDT algorithm allowed detecting 52 ± 2. Significant differences
were observed between DDT and DT (pDDT−DT = 0.004) and
SH methods (pDDT−SH = 0.003), suggesting that the weaker
links recovered by DDT were non-uniformly distributed within
SF networks, but, on the contrary, made a greater contribution
to the hub growth.

The excitatory/inhibitory ratio (Figure 3B) detected by
the DDT method was higher than HT in every considered
topology [pDDT−HT (RND) = 0.006, pDDT−HT (SW) = 0.004,
pDDT−HT (SF) = 0.004], lying in between HT and SH. Overall,
the four considered methods were able to detect a percentage of
excitation close to the structural target of 80%.

The same investigations were performed on the modular
networks shown in Supplementary Figure 2. In this type of
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FIGURE 3 | Network features as a function of the considered thresholded methods. (A) Number of functional links and (B) ratio between excitation and inhibition for
RND (right), SW (middle), and SF (right) networks. The insets in the middle and right panels of (A) show the distributions of the SWI and of the detected hubs in SW
and SF networks, respectively (*p < 0.05, **p < 0.01, Kruskal–Wallis, non-parametric test).

network, the HT method detects a number of connections close
to the structural model (Supplementary Figure 2C). Under
these conditions, the number of connections recovered by DDT
is consistently lower than in RND, SW, and SF networks
and does not change the accuracy of the link classification
(section “Accuracy and Computational Time”). Also, in modular
networks, the excitation/inhibition ratio is very close to the
structural level of 80% (Supplementary Figure 2B) and there are
no statistical differences between the various methods.

Degree Distribution of the Networks
While topological features of SW networks can be quantified by
the computation of the SWI (section “Network Model”), RND
and SF topologies are identified by their degree distributions,
which should resemble normal and power-law relationships,
respectively (section “Network Model”). Thus, we verified
the capability of DDT (and the other methods) to recover
the structural degree distribution of the simulated RND and
SF networks from the thresholded functional connectivity
matrices. Figures 4A–D,F–I show the cumulative degree
distribution of n = 6 RND and SF networks, respectively,
by splitting the excitatory (red) and inhibitory (blue) sub-
populations and the different thresholding algorithms. The
structural degree distributions (target) of both RND (normal
distribution, R2

exc = 0.99; R2
inh = 0.98) and SF (power-law

distribution, R2
exc = 0.90; R2

inh = 0.78) networks are reported in

Figures 4E,J. For all the thresholding methods, the goodness
of the Gaussian fit showed significant values for the excitatory
subnetworks (R2 greater than 0.97), while for the inhibitory
one, the accuracy of the fit spanned from 0.76 for the DDT
to 0.84 for the SH (Table 1). Such a result could be explained
by the smaller number of inhibitory neurons within each
RND network, which makes a good reconstruction of the
distribution more difficult.

From the fitting curves, we estimated the mean and the
standard deviation of the Gaussian curves (Table 2), which were
comparable with the structural degree distribution of excitatory
(30.9± 7.2) and inhibitory (10.1± 4.6) connections.

As previously pointed out (Figure 3A), the HT method
underestimated the size of the networks and consequently the
average values of the distribution of the number of connections
of each single neuron (26.0 ± 5 for excitatory neurons; 9.78 ±
4.0 for the inhibitory ones).

The same analyses and comparisons were performed for SF
networks too (Tables 3, 4). In this configuration, the goodness
of the fit derived from the four methods was almost equivalent
(Table 3). Overall, the coefficients of determination were lower
than those of the RND topology, indicating that the SF properties
were more difficult to recover.

Power-law fitting curves were evaluated in terms of their
slopes and compared to the structural ones (Table 4). For
each thresholding method, we observed greater slope (absolute)
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FIGURE 4 | Degree distribution of RND and SF networks as a function of the different thresholding methods. Each panel shows the cumulative degree distributions
evaluated over n = 6 simulations, considering separately the excitatory (red) and inhibitory (blue) subnetworks. (A–D) Degree distributions of RND networks
thresholded with DDT, DT, HT and SH methods, respectively. (E) Structural degree distribution of the randomly connected excitatory and inhibitory sub-populations.
(F–I) Degree distribution of SF networks thresholded by DDT, DT, HT, and SH methods, respectively. (J) Structural degree distribution of the SF excitatory and
inhibitory sub-populations. *p < 0.05, **p < 0.01.

values of the excitatory subnetworks than of the inhibitory ones
in accordance with the structural fitting. Numerically, all the
thresholding methods allowed achieving closed value to the

structural degree distributions (which presented a slope of –2.5
and –2.2 for excitatory and inhibitory neurons, respectively,
Table 4). These results suggested how the structural properties
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TABLE 1 | Coefficients of determination of the excitatory (R2
exc) and inhibitory

(R2
inh) gaussian models used to fit RND networks degree distribution.

Coefficient of determination
(RND)

DDT DT HT SH

R2
exc 0.99 0.99 0.97 0.99

R2
inh 0.76 0.79 0.77 0.84

TABLE 2 | Mean and standard deviation of the fitting gaussian curve.

Mean ± std
Gaussian
distribution

Structural
target

DDT DT HT SH

Exc population 30.9 ± 7.2 31.8 ± 8.3 31.8 ± 8.1 26.0 ± 5.4 33.0 ± 9.6

Inh population 10.1 ± 4.6 11.0 ± 5.2 10.3 ± 5.1 9.78 ± 4.0 9.5 ± 3.9

TABLE 3 | Coefficients of determination of the excitatory (R2
exc) and inhibitory

(R2
inh) power-law models used to fit SF network degree distribution.

Coefficient of determination (SF) DDT DT HT SH

R2
exc 0.88 0.88 0.90 0.89

R2
inh 0.80 0.81 0.76 0.80

TABLE 4 | Slope of the fitting power law for SF network degree distrinution using
the different thresholding methods.

Slope of fitting
curve (SF)

Structural target DDT DT HT SH

Slopeexc –2.5 –2.6 –2.6 –2.5 –2.6

Slopeinh –2.2 –2.1 –2.2 –2.0 –2.0

of SF networks were well coded also in the correspondent
functional networks.

Accuracy and Computational Time
In order to evaluate the performances and the accuracy of the
four thresholding methods, we evaluated the confusion matrices
of the different network topologies.

Each confusion matrix shows the classification over three
classes (i.e., excitatory connections, inhibitory connections, or
non-connection) of the links identified by the DDT. The “output
class” refers to the class in which the thresholding algorithm
classified each link, while the “target class” refers to the class
of each considered structural link. Looking at the fractions
of correctly/incorrectly classified connections in the confusion
matrices (green/red squares), we were able to compare the
accuracy of the DDT method in the three topologies. Figures 5A–
C show three confusion matrices relative to one simulation of
each network topology whose CM was thresholded by the DDT
algorithm. RND topology presented the lowest percentage of
misclassified connections (0.7%), confirming to be the easiest
topology to recover. Further on, the classification of links in
the SW and SF networks showed a different trend. In the SW
assemblies, we estimated a greater number of false excitatory (FE)
than false-negative (FN) samples, while the opposite scenario
occurred in SF networks. Referring to the SW examples reported

in Figure 5B, 1,038 connections (0.4%) were classified as FE,
when they actually are non-existent connections at a structural
level. On the contrary in the SF network of Figure 5C, the
DDT method classified as FN 1,730 excitatory connections (0.7%)
that actually are excitatory structural connections. The same
observations can be made about inhibitory links. Since the DDT
parameters did not change over the topologies, such behavior was
only affected by the way in which the connection weights were
distributed within the two network types.

The accuracy of RND, SW, and SF networks is compared
in Figure 5D. For all the topologies, no significant differences
in the accuracy between DDT and SH were observed. In each
topology, both DDT and SH outperformed the accuracy achieved
with the HT (pDDT−HT = 0.004, pSH−HT = 0.004). It is worth
noticing that in SF networks, DT results are more accurate than
DDT (p = 0.006): such a result can be partially explained by
the presence of hubs that introduced a lack of homogeneity
in the distribution of the connectivity, on which the statistics
underlying the HT and DDT methods were based. The modular
configuration and a lower firing rate of the network led to a more
difficult identification of the conntions. Indeed, the DDT showed
an overall accuracy level of 0.971 ± 0.001 (Supplementary
Figure 2E), and there are no statistical differences with any of
the other methods. In our opinion, this may be due to two
main factors: firstly, the starting point of our analysis was the
algorithm of cross-correlation that allowed inferring the measure
of connectivity. These kinds of correlation-based algorithms
suffer low values of firing rate (Aertsen and Gerstein, 1985;
Aertsen and Gerstein, 1991). Thus, modular networks could
display dynamics more difficult to encode in terms of functional
connectivity, leading to a less accurate non-thresholded CMs.
Secondly, we explored a case where the first DDT threshold (i.e.,
the HT) already identified a number of connections close to the
structural target. Even though the second threshold added other
links to the first thresholded network, this addition: (i) added few
links with respect to the RND, SW, and SF networks (this can be
appreciated by looking at the differential between the number of
links detected by DDT and HT); and (ii) did not affect the overall
accuracy of the thresholding in a case where there is no need.

Finally, the computational effort requested by the methods
was computed. All the tests were carried out on an Intel
Xeon 2.7 GHz, RAM 64 GB, on a subset of n = 6 random
networks. The DT and HT methods could be considered
instantaneous methods, since they threshold a CM in 0.03± 0.01
s and 0.05 ± 0.02 s, respectively. On the other hand, about
16 ± 1 h were required to perform the same operation with
SH (pSH−DT = 0.004, pSH−HT = 0.004). Considering the
performances obtained with the DDT method (Figures 3, 5D),
its process time is indeed a good compromise: It reduces the time
cost of the SH of about 99% (pDDT−SH = 0.004) (Figure 5E).
Thus, the DDT and DT algorithms became the two methods that
guarantee better performances and lower process time.

To prove the advantage of the DDT algorithm in the
reconstruction of neuronal networks with respect to DT, we
evaluated the stability and reliability of the two methods
under conditions similar to the experimental ones. This allows
examining networks where the topology is not known a priori or
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FIGURE 5 | Accuracy of the thresholding methods. Three examples of confusion matrices obtained with the DDT algorithm for (A) RND, (B) SW, and (C) SF
topologies. The target and the output classes have been divided in excitatory (Exc), absent (No-Conn), and inhibitory (Inh) connections. Green/red squares indicate
correct/incorrect number/percentage of classified links. (D) Accuracy evaluated through confusion matrices over all kind of topologies and thresholding algorithms.
(E) Computational time requested by each method to threshold n = 6 CM of RND networks (*p < 0.05, ** p < 0.01, Kruskal–Wallis, non-parametric test).

that present a mixture of topological properes such as hubs and
clustered ensembles, defining SF networks with SW attributes
(Pastore et al., 2018). The presence of unknown different
configurations makes it harder to identify the right number
of structural links (especially in the case of highly connected
networks), as well as the synaptic efficacy (synaptic strength).

In addition, we analyzed the behavior of DT and DDT fixing
the parameters of both methods and varying the network degree.
For the DT, we fixed Mi and Me to match the percentage of
existing links (i.e., density) with the median value of density
curves over all the variation of the degree k (Figures 6A–C,
insets). We set to a final density values of 8% in the RND and
SF networks and 7% in the SW networks. The accuracy of DDT
and DT was evaluated over 90 simulated RND (Figure 6A), SW
(Figure 6B), and SF (Figure 6C) networks. The DDT accuracy
curve (red line) in the RND network was always above the one
obtned with DT (black line), except at k = 50 (Figure 6A).
For such a degree, where the maximum accuracy values were
obtained, the density of the structural network (8%) is exactly
equal to the median value indicated by the blue arrow in
the inset and used as a threshold in the DT method. The
outcome highlighted the effectiveness of the DT only if the
number of connections is known exactly beforehand. As soon
as this information was missing, the reliability of this method
collapses, as its accuracy does. On the contrary, the DDT method
maintained a minimum accuracy of 0.97 over the entire range

of k variation. The same considerations were also preserved in
SW (Figure 6B) and SF (Figure 6C) networks, although we
should observe a more pronounced fall in the accuracy for both
DDT and DT methods. This trend could probably be due to
the nature of the structural connectivity of the SW and SF
networks, which makes their reconstruction from functional
networks more difficult.

The previous analysis proved that a crucial feature of a
thresholding method is the capability of inferring the number of
connections that define the real structural network and to recover
a functional network with a comparable size. The accuracy
of the DDT and DT methods was pretty similar when they
were forced to detect the same number of links (intersection
between black and red curves of Figures 6A–C). When the
assumed network density was different from the structural
density of the network, the two curves diverged (Figure 6).
An excessive number of missing links may lead to incorrect
quantification of the network size in the case of RND networks,
and to an underestimation of SWI values in SW networks.
Similarly, an excess of links may lead to a rapid fall in the
accuracy (Figure 6A). Considering the RND realizations, if
network density was overestimated of about 2% (8% in the
functional vs. 6% in the structural network), the accuracy of
DT thresholding dropped from 0.99 to about 0.97. In the same
condition, DDT provided a slower fall in accuracy than DT
(p = 0.008).
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FIGURE 6 | Accuracy analysis of DDT and DT algorithms by sweeping the mean degree of RND and SW networks, and the minimum number of connections for SF
networks. (A–C) The trend of the link classification accuracy values in RND, SW, and SF matrices, respectively, calculated by applying the DDT (red line) and DT
(black line) methods. For each value of k, three networks were simulated, for each of the different topologies. In each of these panels, the trend of the density of the
structural networks (in the form of percentages of links actually existing in the network with respect to the total possible number of connections) is represented as an
inset, increasing the average degree k in the RND and SW networks, the minimum number of connections k for each neuron in the SF networks. The blue arrows
indicate the median value of the density curve, which is used to define the Mi and Me parameters by applying the DT method. (D) Mean value of the fitted excitatory
normal degree distribution computed across all networks by varying the structural degree k, comparing networks thresholded with DDT (red line), DT (black line), and
the structural target (blue line). The inset shows the fitted inhibitory degree. (E) SWI of SW networks by varying the structural degree k, comparing networks
thresholded with DDT (red line), those with DT (black line), and the structural target (blue line). (F) Slope of the fitted total (i.e., both excitatory and inhibitory links)
power-law degree distribution computed across all networks by varying the structural degree k, comparing networks thresholded with DDT (red line), those with DT
(black line), and the structural target (blue line).

Finally, we proved how the lack of accuracy led to a
significant variation of the topological properties of the networks.
From the same RND, SW, and SF networks used to analyze
the accuracy of the DDT and DT methods as a function of
the degree k, we evaluated the mean value of the normal
excitatory degree distribution in the RND (Figure 6D, inhibitory
degree distribution as inset), the SWI for the SW (Figure 6E),
and the slope of the power-law fitting of the SF networks
(Figure 6F). The CM of RND networks thresholded with
the DDT algorithm displayed an average value of the normal
fitting distribution statistically equivalent to the structural ones
(Figure 6D, blue curve) for k = [30, 60], both for the excitatory
(Figure 6D, red curve) and inhibitory links (Figure 6D, red
curve, inset). This means by sweeping the degree k, and
therefore the number of connections within the functional RND
networks, the DDT method managed to adapt the number of
connections recovered to maximize the accuracy and reconstruct
the RND feature.

On the other hand, the DT method (Figure 6D, black
curve) kept a constant average degree for all the considered
range, without following the increase in the number of
excitatory connections of the structural networks. Such
behavior was not observed in the fitting of the inhibitory

degree (inset of Figure 6D). For the entire range of
variation of k, the CM thresholded by DDT and DT
showed average values of inhibitory degree not different
from each other, and statistically equal to the structural target
highlighted in blue.

A similar trend was found for SW networks (Figure 6E),
where the SWI obtained through DDT showed a trend (red line)
resembling the structural one (blue line) but shifted down since
structural and functional networks are only partially correlated
(Straathof et al., 2019). On the contrary, the SWI profile achieved
by the DT method (blue line) displayed values statistically
lower (p < 0.05) than both the structural networks and the
ones obtained with DDT for all the considered points of the
graph, except for the k values that correspond to the DT
accuracy peak (k = 35 and 40 for the structural and functional
networks, respectively).

Finally, the use of DT algorithm in SF networks induced a
drop in accuracy and led to a marked error in quantifying the
slope of the degree fitting distribution (Figure 6F). For all k
values, the slope of the power-law fitting obtained in the networks
stripped with the DDT method (red line) remained closer to the
structural target curve (blue line) than that obtained with the DT
method (black line).
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The same investigation was performed on the modular
networks described in (section “Network Model”). By spanning
the degree of such networks within the interval of k = [60, 95], the
overall accuracy of the link classification never reaches 98% with
either DDT or DT (Supplementary Figure 2E). By setting the
DT threshold parameters in order to achieve a network density
of 6.5% (Supplementary Figure 2E, inset), a statistical difference
in accuracy between DDT and DT can be seen for k = [60, 70]
(p = 0.008).

DISCUSSION AND CONCLUSION

In the last years, several attempts have been performed to
develop computational approaches and algorithms able to derive
functional connectivity matrices from different kinds of time
series deriving from the recording of electrophysiological activity
(Ito et al., 2011; van Bussel et al., 2011; Poli et al., 2016;
Pastore et al., 2018). The boost that also technological efforts
gave in developing new powerful devices able to acquire
both at in vitro and in vivo level a huge number of units
allowed to manage large connectivity matrices mapping large-
scale neuronal ensembles (Simi et al., 2014; Jun et al., 2017).
However, no universal standard methodologies exist to threshold
such connectivity matrices in order to discharge unfruitful
connections. The necessity to find a high-performing method
comes from the fact that this operation of selection of the
significant connections can dramatically modify all the analyses
regarding the topological properties of the network. To this
end, we developed and tested a method that brings together
the merits of some of the currently used approaches but
increasing the accuracy as well as the computational load.
To test the DDT method and compare with a selection
of state-of-the-art algorithms, we developed in silico large-
scale neuronal networks, with different topologies, namely,
random, small-world, and scale-free, in order to mimic the
electrophysiological patterns of spontaneous activity of cortical
in vitro assemblies.

The DDT algorithm ensured a better estimation of the size
of functional networks, in terms of number of links and the
ratio between excitatory and inhibitory links, leading to better
accuracy of link classification and a better transition from
structural to functional networks.

The DDT method allowed the detection of a number of links
comparable to the ones provided by the SH (and compatible

with the structural target) but reduced the computational time
by more than 99%. Also, the accuracy of the DDT method
evaluated over the different topologies (Figure 5D) highlights its
goodness (together with DT and SH) to identify the right (i.e.,
functional with a structural counterpart) connections. However,
it is worth noticing that DT and DDT are able to generate a
thresholded CM in a quasi-real-time fashion, differently from
SH, which requires tens of hours. In this sense, DDT and DT
are the best candidates to efficiently and effectively threshold
a CM. However, the application of DT, unfortunately, involves
a completely arbitrary choice of the size of the network that
is obtained by this method. When this choice turns out to
be largely outside the true size of the network one wants to
reconstruct, the results can lead to networks whose features
are very far from the real ones. On the other hand, thanks to
two successive thresholding steps, the DDT manages to be a
good compromise between the complete arbitrariness of simpler
thresholding methods and the statistical significance of shuffling-
based methods.
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