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Central neuropathic pain (CNP) negatively impacts the quality of life in a large proportion

of people with spinal cord injury (SCI). With no cure at present, it is crucial to

improve our understanding of how CNP manifests, to develop diagnostic biomarkers

for drug development, and to explore prognostic biomarkers for personalised therapy.

Previous work has found early evidence of diagnostic and prognostic markers analysing

Electroencephalogram (EEG) oscillatory features. In this paper, we explore whether

non-linear non-oscillatory EEG features, specifically Higuchi Fractal Dimension (HFD),

can be used as prognostic biomarkers to increase the repertoire of available analyses

on the EEG of people with subacute SCI, where having both linear and non-linear

features for classifying pain may ultimately lead to higher classification accuracy and

an intrinsically transferable classifier. We focus on EEG recorded during imagined

movement because of the known relation between the motor cortex over-activity and

CNP. Analyses were performed on two existing datasets. The first dataset consists of

EEG recordings from able-bodied participants (N = 10), participants with chronic SCI

and chronic CNP (N = 10), and participants with chronic SCI and no CNP (N = 10).

We tested for statistically significant differences in HFD across all pairs of groups using

bootstrapping, and found significant differences between all pairs of groups at multiple

electrode locations. The second dataset consists of EEG recordings from participants

with subacute SCI and no CNP (N= 20). They were followed-up 6months post recording

to test for CNP, at which point (N = 10) participants had developed CNP and (N = 10)

participants had not developed CNP. We tested for statistically significant differences

in HFD between these two groups using bootstrapping and, encouragingly, also found

significant differences at multiple electrode locations. Transferable machine learning

classifiers achieved over 80% accuracy discriminating between groups of participants

with chronic SCI based on only a single EEG channel as input. The most significant

finding is that future and chronic CNP share common features and as a result, the same

classifier can be used for both. This sheds new light on pain chronification by showing

that frontal areas, involved in the affective aspects of pain and believed to be influenced

by long-standing pain, are affected in a much earlier phase of pain development.

Keywords: Higuchi fractal dimension, non-oscillatory features, central neuropathic pain, EEG, movement

imagination, spinal cord injury
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1. INTRODUCTION

Central neuropathic pain (CNP) is an excruciating secondary

consequence of spinal cord injury (SCI). CNP is a chronic
condition caused by an injury to the somatosensory system
(Jensen et al., 2011) and affects more than 50% of all people with
SCI (Siddall et al., 2003; Finnerup, 2013) and subsequently, their
quality of life (Mann et al., 2013). There is currently no cure

for CNP with primary treatments focussed on pain management
rather than elimination. It is thought that the development
of CNP in SCI is the result of neuronal hyperexcitability

that develops following damage to the spinal cord, eventually

resulting in the perception of pain (Wasner et al., 2008;
Zeilig et al., 2012; Finnerup et al., 2014). At the supraspinal
level, many studies have shown a relationship between CNP
and the reorganisation of the sensorimotor cortex because of

sensory losses and changes to the central nervous system (CNS)
caused by injury (Wrigley et al., 2009; Gustin et al., 2010).
While most neuroimaging studies have been based on fMRI,

changes in the cortical pain matrix can also be detected using
electroencephalography (EEG). For example, at the cortical level,
pain is known to cause thalamocortical dysrhythmia, which
presents as increased theta and beta band EEG power, reduced
alpha band power and slowed-down dominant alpha frequency
(Sarnthein et al., 2006; Stern et al., 2006; Boord et al., 2008; Jensen
et al., 2013; Vuckovic et al., 2014, 2018a).

With regards to SCI related pain, fMRI studies on people
who imagined movement of otherwise paralysed limbs, showed
that the sensory-motor cortex can be over-active in people
with neuropathic pain (Gustin et al., 2010). Based on EEG
analysis, in a similar experimental paradigm based on movement
imagination, our group defined dynamic markers of chronic SCI
related to CNP, that changed with time and were frequency-
specific (Vuckovic et al., 2014). In a subsequent study, on people
with recent (subacute) SCI, applying a similar experimental
paradigm, we discovered EEG prognostic markers of “future”
CNP, in participants with SCI who developed pain within 6
months following EEG recording (Jarjees, 2017). A resting state
EEG of these participants also contained highly discriminable
oscillatory markers of future pain in the theta, alpha and beta
bands (Vuckovic et al., 2018a) based on which we developed
transferable classifiers (Vuckovic et al., 2018b). These classifiers
were able to predict, with an average accuracy of 86%, the risk of
developing pain for participants outside of the training set.

Alterations in human EEG activity following spinal injury can
be analysed using sophisticated linear and non-linear methods
to assess for changes to brain function. Linear methods based on
time-frequency analysis are best suited to describe the oscillatory,
frequency-specific nature of EEG signals. However more recently
non-linear methods, originating from the chaos theory, have
shown to provide a separate and partly independent set of
information about the signals (Bhattacharya, 2000; Natarajan
et al., 2004; Acharya et al., 2005; Stam, 2005). Of these non-linear
methods, one most frequently used to analyse and define non-
oscillatory EEG signals is fractal dimension (Accardo et al., 1997),
which acts as a measure of signal complexity (Higuchi, 1988;
Katz, 1988; Petrosian, 1995; Kalauzi et al., 2005). Higuchi’s fractal

dimension (HFD) (Higuchi, 1988) has been applied extensively
to EEG signals in various studies which characterise EEG in
healthy participants and with a range of neurological problems
such as Alzheimer’s, brain injury, dementia, epilepsy, and stroke
(Henderson et al., 2000; Li et al., 2005; Spasic et al., 2011; Smits
et al., 2016). Fractal values have repeatedly shown to be lower
in people suffering from brain disorders than healthy people
(Staudinger and Polikar, 2011; Ahmadlou et al., 2012; Kesić and
Spasić, 2016), where a loss of complexity in brain activity leads to
the neural system of the brain becoming less flexible and efficient
in processing (Goldberger et al., 2002; Zappasodi et al., 2014).

HFD has previously been used to classify pain evoked
potentials in the EEG of healthy adults (Tripanpitak et al.,
2020) in which evidence was presented that using non-linear
features, such as HFD, could classify between different perception
levels from non-invasive electrical stimulation. On the basis that
oscillatory features of CNP in SCI have been established we
consider that, using HFD as a measure for signal analysis, we
may be able to find classifiable, non-oscillatory markers of CNP
using fractals. Complimentary to this, features from entropy
during resting state EEG, a non-linear analysis technique, have
been used to classify between different phases of migraine
that precede/follow pain (Cao et al., 2018). This indicates the
possibility for classifiable non-linear EEG features.

Consequently, we aimed to look for non-linear EEG features
of pain during movement imagination (MI), given that FD
(Fractal Dimension) markers of movement-related tasks have
previously been determined in the EEG of healthy participants.
Phothisonothai and Nakagawa (2007) were able to extract fractal
information specific to four different motor imagery tasks
presented to healthy participants. Their participants showed that
the FD values of proposed motor imagery tasks existed using
different fractal algorithms, for which they offer benefits in
different applications. They indicated that the Higuchi method
is suited for evaluating the FD of EEG data with high precision.

Results of these studies indicate that it might be possible to
apply HFD analysis to movement-related EEG to diagnose CNP
in a similar way that the oscillatory activity of the brain is able
to do (Sarnthein et al., 2006; Stern et al., 2006; Boord et al., 2008;
Jensen et al., 2013; Vuckovic et al., 2014, 2018a). The potential
advantage of HFD-based, non-linear features being to increase
the repertoire of available analyses on the EEG of people with
subacute SCI, where having both linear and non-linear features
for classifying pain may ultimately lead to higher classification
accuracy and an intrinsically transferable classifier. In the current
study, we explore the application of HFD to identify classifiable,
movement-related EEG features.

Having considered the results of the discussed studies, we
establish two novel aspects to this study: (i) identifying non-
linear features of CNP (ii) using non-linear features based on
induced dynamic activity, rather than resting state, to classify
a neurological disorder, such as pain. Our previous research
showed that chronic and subacute CNP have some common
markers, as described by the oscillatory EEG activity, and that
these markers are frequency specific. We hypothesise therefore
that if common markers exist, a diagnostic classifier developed
on EEG of people with chronic pain could also be applied as a
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prognostic painmarker in a subacute state. Furthermore, because
optimal frequency bands for each participant do not need to
be identified, unlike the case with dynamic EEG responses, we
also hypothesise that a classifier based on non-oscillatory features
may be less sensitive to any differences between diagnostic and
prognostic markers than oscillatory features. We test therefore
the aforementioned diagnostic classifier on EEG data of people
with subacute SCI in order to distinguish those who are about to
develop pain from those who are not going to develop pain.

2. MATERIALS AND METHODS

2.1. Datasets
Two pre-existing datasets of cue-based MI recordings were used
for this study (Vuckovic et al., 2014, 2018b).

Dataset 1 (Vuckovic et al., 2014) was recorded with a 61-
channel EEG (Synamp 2; NeuroScan, Charlotte, NC) at 250
Hz and involves three groups of participants: 10 able-bodied
volunteers (3 F, 7 M, age 39.1 ± 10.1), referred to as group AB,
10 chronic paraplegic participants with diagnosed CNP below
the level of their SCI (3 female [F], 7 male [M], age 45.2 ± 9.1
[mean ± standard deviation], 5 incomplete SCI), referred to as
chronic SCI participants with pain (cPWP), 10 participants with
chronic SCI and no pain (2 F, 8 M, age 44.4 ± 8.1, 3 incomplete
SCI), referred to as chronic SCI participants with no pain (cPNP).
All participants with SCI were at least 1 year post-injury, with a
spinal lesion at or below T1. Inclusion criteria for participants
with CNP were a positive diagnosis of CNP and a treatment
history of CNP for at least 6 months. All participants with CNP
reported their pain to be in their lower abdomen and legs.

Dataset 2 (Vuckovic et al., 2018b) was recorded with a 48-
channel EEG at 256 Hz and involves subacute (less than 6
months post-injury) paraplegic and tetraplegic participants who
showed no CNP symptoms at the time of the study. Participants
were assessed for CNP 6 months after recording and assigned
to one of two groups based on their diagnosis. 10 participants
with SCI developed CNP (4 tetraplegic, 4 incomplete SCI); they
will collectively be referred to as subacute SCI participants that
developed CNP (sPDP). 10 participants with SCI did not develop
pain (4 tetraplegic, 6 incomplete SCI); they will collectively be
referred to as subacute SCI participants with no pain (sPNP).

Both datasets were recorded following the same experimental
design (Figure 1), and recorded data was pre-processed in the
same manner. Participants were presented with a visual warning
(a cross) at t = −1 s, followed by an initiation cue (an arrow)
after 1 s (at t = 0 s) which remained visible for 1.25 s. Participants
were instructed to imagine movement of the left hand (←), right
hand (→) or both feet (↓) until the disappearance of the warning
cue (at t = 3 s). A total of 60 repetitions were recorded from each
participant for each limb movement in a semi-random order. An
illustration of the total available data and its organisation is given
in Figure 2 (top). Whilst most people with paraplegia and CNP
experience pain in their legs, i.e., below the level of their injury, it
is of interest to examine data from potentially non-painful limbs,
i.e., MI of limbs above the level of injury. Dynamic EEG changes
during pain have previously been observed in the sensory-motor
cortex (Gustin et al., 2010), which is activated during MI. Thus,

FIGURE 1 | Experimental setup for cue-based motor imagery (MI) tasks as

used in both Dataset 1 (Vuckovic et al., 2014) and Dataset 2 (Vuckovic et al.,

2018b). At t = −1 s a warning signal (a cross) appeared on a computer

screen, followed by a cue (an arrow) at t = 0 s. The cue stayed on the screen

until t = 1.25 s while the warning stayed until t = 3 s. A volunteer was asked

to perform repetitive imagination of movement from t = 0 s until the warning

disappeared at t = 3 s. Different arrows indicated motor imagery of different

limbs.

we include data recorded during imagined hand movements in
individuals with paraplegia to explore whether discriminatory
non-linear information exists in motor-cortex activation. For
details on the experimental paradigm and on data pre-processing
please refer to Vuckovic et al. (2014).

In both studies, informed consent was obtained from all
participants, and ethical approval was obtained from the National
Health Service ethical committee for the patient groups and from
the university ethical committee for the able-bodied group.

2.2. Feature Extraction
As features for data analysis and classification, we explore
Higuchi’s fractal dimension (HFD) of data from individual EEG
channels (Higuchi, 1988). The fractal dimension D is a statistical
measure relating signal complexity to the scale at which a signal
is measured, with higher values of D corresponding to higher
signal complexity. For timeseries, data D ∈ [1, 2]. As HFD
analysis is more effective and more efficient on shorter time
windows (Kesić and Spasić, 2016) we use EEG data cropped to
2.0 s windows with 50% overlap. We consider time windows with
0, 1, 2, and 3 s offset from the start of the recording, respectively,
to investigate whether HFD at specific stages of cue-basedMI can
offer more discriminatory information about participants with
SCI and CNP. This could identify whether there exist smaller
time intervals of the recordings that could help train a better
classifier on HFD features compared to classification using the
full time series of each repetition.

The HFD is estimated as follows. First, the length L(k) of a
timeseries S(t), t = 1, ...,N is calculated using Equations (1)–(2)
for exponentially increasing values of k = 2, ...,≤ kmax.

Lm(k) =







⌊N−m
k
⌋

∑

i=1

|S(m+ ik)− S(m+ (i− 1)k)|
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k
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FIGURE 2 | Dataset organisation (top) and feature extraction (bottom). Dataset 1 includes data from three groups (AB, cPWP, cPNP) with 10 participants in each

group. Each participant’s MI of three different movements (RH, LH, L) were recorded with 60 repetitions per movement conducted in semi-random order. Each

recording contains 5 s data sampled at 250 Hz at 61 electrode positions. Dataset 2 includes data from two groups (sPDP, sPNP) with 10 participants in each group.

Each participant followed the same experimental protocol as in Dataset 1. Each recording contains 5 s data sampled at 256 Hz at 48 electrode positions. See section

2.1 for more detail. HFD features were extracted at each electrode position from four temporal windows of 2 s length, each offset by 50%. See section 2.2 for more

detail.

Then, the fractal dimension D is estimated from the slope of the
linear least squares fit of L(k) onto k on a doubly logarithmic scale
such that, for statistically self-similar curves, L(k) ∝ k−D. We
used an open source Python implementation1 and set kmax =

7. Our choice of kmax = 7 was motivated by previous work
showing particularly accurate estimation of the fractal dimension
in EEG signals with kmax near 6 (Accardo et al., 1997). We extract
HFD features from each temporal window, at each electrode
position, in each repetition of MI recorded from all participants
(see Figure 2, bottom).

Example distributions of HFD estimated from EEG data of
both participant groups in Dataset 2 at one electrode (FCz)
during Left Hand (LH) movement imaginations are shown in
Figure 3. HFD values range from 1.5 to 2.0 and are most
frequently close to 1.85, with a larger proportion of HFD
features extracted from EEG data of participants in the group
sPNP at lower values, and a larger proportion of HFD features
extraced from EEG data of participants in the group sPDP at
higher values.

2.3. Analysis
To analyse spatio-temporal variations in HFD within participant
groups, HFD features were aggregated across all trials and
participants within each group by estimating their mean value
(see Figure 4, top). A separate group mean was estimated for
each group, each time offset, each MI, and each electrode

1HFD implementation: https://github.com/inuritdino/HiguchiFractalDimension.

FIGURE 3 | Example distributions of HFD estimated from EEG data of both

participant groups in Dataset 2 at one electrode (FCz) during Left Hand (LH)

movement imaginations. HFD values range from 1.5 to 2.0 and are most

frequently close to 1.85, with a larger proportion of HFD features extracted

from EEG data of participants in the group sPNP at lower values, and a larger

proportion of HFD features extraced from EEG data of participants in the

group sPDP at higher values.

position, respectively. Group-level differences in mean HFD
features were computed separately for each pair of groups (only
considering pairings within each dataset), each time offset, each
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FIGURE 4 | HFD features were aggregated across all trials and participants within each group by estimating their mean value. Group-level differences in HFD features

were computed separately for each pair of groups (within each dataset), each time offset, each MI, and each electrode position. See section 2.3 for details.
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MI, and each electrode position. Figure 4 (bottom) illustrates a
full enumeration of conditions that were explored.

As HFD features were not normally distributed, the statistical
significance of differences in the mean HFD features between
groups was tested using the bootstrap method. M = 1, 000, 000
samples of differences in mean HFD features were drawn by
first generating M synthetic datasets of HFD features, where (60
trials × 10 participants = 600) HFD features were sampled with
replacement from each group, and then estimating their group
mean as above. The empirical cumulative density function of

M samples ECDF(τ ) = #{x≤τ }
M approximates the cumulative

density function Prob(x ≤ τ ). The null hypothesis H0 :µa −

µb = 0 in the two-tailed test is not rejected with probability
p if

p
2 < ECDF(0) < 1 −

p
2 , and rejected with probability p

otherwise.We tested for p = 0.05. To account for spurious results
due to multiple comparisons, one for each EEG channel, the
significance threshold was adjusted using Bonferroni Correction
by multiplying p with α = 1

61 for Dataset 1 and with

α = 1
48 for Dataset 2, respectively. This process is illustrated

in Figure 5, which also enumerates all pairwise comparisons
we considered.

2.4. Classification
In addition to analysing correlations between HFD of individual
EEG channels and participant groups we explore the potential
of HFD as features for classification using linear Support Vector
Machines (SVM). SVMs have been shown to outperform other
methods in a large number of EEG classification problems, which
is attributed, in part, to SVMs’ ability to classify relatively small
datasets (Lotte et al., 2007). SVM classifier training involves
representing the training data points in a multi-dimensional
vector space and finding a hyperplane that separates the data
points belonging to different classes, while maximising the
distance between the hyperplane and the data points closest to
it, which are referred to as ’support vectors’ in Schölkopf et al.
(2000). Here, we used the Sklearn implementation2 of the ν-SVC
classifier by Schölkopf et al. (2000).

The SVM input vector space was constructed from HFD
features extracted from a subset of EEG channels. Hyper-
parameter search thus involved optimising this subset of EEG
channels, optimising the ν-SVC hyper-parameter ν ∈ (0, 1],
which bounds the fraction of support vectors and margin errors,
and optimising the choice of time offset from the start of
EEG recording. We optimised these jointly via nested cross-
validation on the training set, using a wrapper method for
EEG channel selection known as greedy forward feature selection
(Deng and Moore, 1998; Figueroa and Neumann, 2014). Greedy
forward feature selection starts by estimating the cross-validation
accuracy of a ν-SVC trained on HFD features from each EEG
channel independently. The algorithm adds the channel with
highest observed mean accuracy to the initially empty selected
set. In each subsequent iteration, cross-validation accuracy of
a ν-SVC trained on each non-selected channel in conjunction
with all the features in the selected set is evaluated, and the

2Sklearn ν-SVC implementation: https://scikit-learn.org/stable/modules/

generated/sklearn.svm.NuSVC.html.

best performing further channel is added to the selected set. The
procedure halts when there is no further channel to add without
reducing classification accuracy. For a more detailed description
and a pseudo-algorithm see Chapter 7.3 in Deng and Moore
(1998). The parameters ν and the time offset are determined
via grid-search and cross-validation on the training set, where
the subset of channels used is re-optimised for each parameter
value. Figure 6 illustrates the nested training procedure (top) and
enumerates all pair-wise classifiers we consider (bottom).

To explore whether HFD features can be used as diagnostic
markers for CNP, we trained SVM classifiers on Dataset 1 to
discriminate between cPWP and cPNP. To test transferability,
classifiers were trained on examples from all but one participant
and evaluated on the held-out participant repeatedly with
each participant being held out once. To explore whether
HFD features can be used as prognostic markers for CNP in
participants with subacute SCI, we trained classifiers on Dataset
2 to discriminate between sPDP and sPNP. We also explored
whether additional knowledge gained from diagnostic classifier
training can be transferred to the prognostic classifier, by
using channels and time-window offsets that performed best on
Dataset 1, cPWP vs.cPNP classification to optimise classifiers on
Dataset 2, sPDP vs. sPNP. Using a multiway analysis of variance
(ANOVA) we tested for statistically significant main effects of the
time window offset and the type of movement imagination on
classification accuracy, as well as their interaction effect.

In addition to evaluating mean accuracy per trial, we explored
the potential for using repeated measurements to improve
prediction performance by aggregating predictions for each
participant via majority voting: determining a participant-level
class prediction based on the class that was most frequently
predicted across all individual recordings.

3. RESULTS

3.1. Correlation of HFD With Participant
Groups
Heat maps of group-wise mean HFD features estimated on
Dataset 1 are shown in Figure 7. The heat maps provide a
visual representation in 2 dimensions of the group-wise mean
complexity of the signal at each channel location for each time
offset. The start of each time window is indicated on the y-
axis of the heat maps, with 0 s offset coinciding with the onset
of the warning signal. Each column represents the activity at
each of the 61 EEG channels recorded in Dataset 1, for all
repetitions of either Right Hand (RH), Left Hand (LH) or Leg
(L) movement imaginations (MI) from participants in groups;
able-bodied volunters (AB), participants with chronic SCI and
chronic CNP (cPWP) and participants with chronic SCI and
no pain (cPNP), respectively. Bright yellow colours indicate
higher group-wise mean HFD corresponding to greater signal
complexity whilst blue colours represent lower complexity.

Our group-wise mean HFD analyses demonstrate that AB
have, on average, higher mean HFD than both participant groups
with SCI (cPWP and cPNP). The heat maps of mean HFD are
similar for MI of all three limbs with highest values of mean HFD
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FIGURE 5 | Bootstrap was used to test for statistical significance of differences in group-mean HFD features. The bootstrap sample distribution of differences

between groups, the corresponding empirical cumulative density function, and significance thresholds are illustrated for one example pair of groups (AB vs. cPWP),

time offset (3 s), MI (RH), and electrode position. A full enumeration of all pairwise differences that were tested is illustrated at the bottom. See section 2.3 for details.

over the left motor cortex. Mean HFD from both participant
groups with SCI are similar for MI of each limb with highest
mean HFD for the left (dominant) sensory-motor cortex at

locations C1, C3, Cp1, Cp3. There is no systematic difference in
mean HFD across time windows which start at different times
with respect to the cue-based movements. The largest difference
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FIGURE 6 | Nested training procedure (top) and enumeration of all pair-wise classifiers (bottom). Nested leave-one-subject-out-cross-validation is used to estimate

classifier generalisation performance. Hyper-parameters are optimised using grid search and cross-validation on the training set, with greedy forward selection of

electrodes used as input to the classifier. One pairwise classifier for each MI task was trained on Dataset 1 (cPWP vs. cPNP) and on Dataset 2 (sPDP vs. sPNP). We

also explored whether additional knowledge gained from diagnostic classifier training can be transferred to the prognostic classifier, by using channels and

time-window offsets that performed best on cPWP vs. cPNP to optimise classifiers on sPDP vs. sPNP. See section 2.4 for details.
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FIGURE 7 | (Dataset 1) Heat maps of group-wise mean Higuchi Fractal Dimension features extracted from EEG signals recorded during movement imagination from

able-bodied volunteers (AB), participants with chronic SCI and no pain (cPNP), and participants with chronic SCI and chronic CNP (cPWP). Colours represent low

(blue), medium (green), and high (yellow) mean HFD values ordered by channel along the x-axis and by time offset along the y-axis.

between participant groups with SCI was observed over the
parietal area (secondary sensory cortex) which is part of the pain
matrix (also see bottom row of Figure 9).

The analysis of mean HFD on Dataset 2 indicates high
complexity during MI of all limbs across the frontal-parietal
lobe and in many central electrodes (see Figure 8). In both
groups of participants with subacute SCI, highest mean HFD
were observed at the centro-frontal electrodes and in particular

over the right hemisphere. Interestingly, the lowest mean HFD
were observed at the pre-frontal electrodes Fp1, Fpz, and
Fp2. Often the frontal area is associated with the affective
aspects of pain (Jensen et al., 2013) and our results indicate
that the lowest signal complexity can be observed in the
3 most frontal electrodes for all movements in people with
subacute SCI who will not develop CNP within 6 months
post recording.
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FIGURE 8 | (Dataset 2) Heat maps of group-wise mean Higuchi Fractal Dimension features extracted from EEG signals recorded during movement imagination from

participants with subacute SCI that did not developed pain (sPNP) and participants with subacute SCI that later developed pain (sPDP). Colours represent low (blue),

medium (green), and high (yellow) mean HFD ordered by channel along the x-axis and by time offset along the y-axis.

3.2. Differences in HFD Across Participant
Groups
Analysing Dataset 1, significant differences in mean HFD
were found between all pairs of groups in at least some
electrodes. Visual representations of all pair-wise comparisons
of mean HFD between participant groups in Figure 9 show the
electrode locations at which statistically significant differences
in mean HFD were found in relation to the topographic spatial
distributions of differences in mean HFD at each location.
Black electrodes indicate statistically significant differences after
correction for multiple comparisons. Grey electrodes indicate
significance before correction. All plots are representations of
differences in mean HFD extracted from time windows with 2
s time offset.

AB exhibited the greatest HFD values, illustrated by large
positive differences (red) in comparisons with cPNP and cPWP,
respectively. Differences were found to be statistically significant
(using bootstrap, p = 0.05, before and after Bonferroni

Correction) at most electrode locations covering the whole cortex
(see Figure 9, top and middle rows). Both the cPNP and cPWP
groups had reduced mean HFD compared to AB across all 4 time
windows (not shown). Comparing cPWP and cPNP (Figure 9,
bottom row), we observed large positive differences in mean
HFD, indicating higher mean HFD in the cPWP group and thus,
an overall increase in the complexity of EEG signals during MI
in participants with chronic SCI and chronic CNP compared to
participants with chronic SCI and no CNP.

Across all limb movement imaginations (L, RH, and LH),

fewest areas of statistically significant differences were seen in the

comparison cPWP - cPNP. For MI of non-painful limbs (RH and
LH), and in particular for the MI of the dominant right hand,

the areas of largest difference between cPWP and cPNP were

located over the parietal (secondary sensory) and pre-frontal
cortex which are considered part of the “pain matrix” (Jensen

et al., 2011). On the contrary, for painful legs, larger differences
were found over the left (dominant) central cortex at C3 and
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FIGURE 9 | (Dataset 1) Comparison of mean HFD between able-bodied volunteers vs. participants with chronic SCI and no pain (AB - cPNP, top), AB vs. participants

with chronic SCI and with CNP (AB - cPWP, middle), and cPWP vs. cPNP (bottom) during MI of L, RH, and LH, in the left, center, and right column, respectively,

shown as an example for the time window with 2 s offset. Dots represent the locations of all 61 channels; black dots represent electrodes with statistically significant

differences in mean HFD and correction for multiple comparisons, and grey dots represent electrodes with statistically significant differences (p = 0.05) without

correction for multiple comparisons. Spatial distributions demonstrate the difference between mean HFD across each pair of groups, where red represents a large

positive difference and blue indicates a large negative difference.

C5, indicating larger EEG signal complexity over the primary
motor cortex.

The same analyses were performed on Dataset 2, which
showed that participants with subacute SCI who later developed
pain (sPDP) have generally higher mean HFD than those who
later did not develop pain (sPNP) in Figure 10. The areas
of largest difference between sPDP and sPNP were located
over occipital and frontal-parietal electrodes. The topographic
representation of these electrodes in Figure 10 shows several
locations of significant differences in mean HFD for all limb
movements. During MI of legs, fewer locations with significant
differences were observed than during MI of hands. Large

differences in HFD values were observed in the sensorimotor
cortex during MI of all limbs. Additionally, for MI of legs,
there was a cluster of electrodes over the right central cortex
revealing negative differences in mean HFD, indicating that HFD
values were greater in sPNP than sPDP during MI of legs. These
differences were also statistically significant.

3.3. Discrimination of Participant Groups
Can HFD features be used as diagnostic markers? Table 1

shows classification performance obtained with transferable
classifiers trained on Dataset 1 to discriminate between cPWP
and cPNP from examples of each type of movement imagination,
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FIGURE 10 | (Dataset 2) Comparisons of mean HFD between participants with subacute SCI that later developed pain (sPDP) and subacute SCI that did not

developed pain (sPNP) during MI of L, RH, and LH, in the left, center, and right column, respectively, shown as an example for the time window with 2 s offset. Dots

represent the locations of all 48 channels; black dots represent electrodes with statistically significant differences in mean HFD and correction for multiple

comparisons, and grey dots represent electrodes with statistically significant differences (p = 0.05) without correction for multiple comparisons. Spatial distributions

demonstrate the difference in mean HFD across groups, where red represents a large positive difference and blue indicates a large negative difference.

TABLE 1 | (Dataset 1) Classification performance on cPWP vs. cPNP, evaluated separately on Right Hand (RH), Left Hand (LH), and Leg (L) data.

Time Selected Top Accuracy Participants

Limb offset (s) channels SVM-ν mean ± st. dev. Sensitivity Specificity correct (%)

RH 2 F2 0.15 0.82 ± 0.29 0.87 0.78 84

LH 0 F3 0.1 0.84 ± 0.28 0.83 0.84 89

L 3 F2 0.5 0.84 ± 0.29 0.95 0.71 89

Time Offset, Selected Channels, and Top SVM-ν specify the hyper-parameters with maximum LOOCV mean accuracy. The final column Participants correct shows participant-level

class prediction accuracy based on the class that was most frequently predicted across individual recordings.

respectively. It also states the hyper-parameter values optimised
via nested cross-validation, i.e., the time offset, the subset of
EEG channels, and the SVM-ν parameter. We observed a mean
accuracy across participants ≥ 82%, which is considerably above
chance level (50%, when class labels are chosen uniformly
at random). Highest mean accuracy across participants was
observed with leg and left hand movements, respectively. We
note a large variability in accuracy across participants, indicating
that classification errors are correlated across trials recorded from
the same participant. At the same time, aggregating predictions
across repeated trials shows a clear benefit, as can be observed
from the fraction of participants for which the majority of
trials were classified correctly (Table 1, column Participants
correct), which is consistently higher than the corresponding
mean accuracy. Using the classifier trained on leg movement
data (Table 1, bottom row), for example, 89% participants were
classified correctly after aggregating predictions across all of their
trials compared to 84% mean accuracy per recording.

Using a multiway analysis of variance (ANOVA), we found
no statistically significant main effect of the time window offset
or the type of movement imagination on classification accuracy
and no significant interaction effect. Classification accuracies are
contrasted in Figure 11 and test statistics are detailed in the
Supplementary Material.

Jointly, these results strongly suggest that HFD features are
useful as diagnostic markers for CNP with robust per-recording

accuracy across types of movement imaginations and temporal
offset from visual cue, with further improvement gained from
repeated measurements. Highly discriminative features were
found in the frontal area, based on data from a single electrode.

Can HFD features be used as prognostic markers for CNP
in participants with subacute SCI? Table 2 shows classification
performance obtained with transferable classifiers trained on
Dataset 2 to discriminate between sPDP and sPNP. We observed
a mean accuracy across participants of ≥ 85%. Highest mean
accuracy of 88% was observed with classifiers trained on right
hand (RH) and LH, respectively. The variability of classification
accuracy across participants was lower than we observed on
Dataset 1, cPWP vs. cPNP, and aggregating predictions across all
trials from each participant resulted in all participants classified
correctly using RH and L data, respectively (Table 2, column
Participants correct).

Differences in classification accuracy across time windows
and types of movement imagination were not significant (see
Figure 12 and Supplementary Material). These results further
suggest that HFD can be a useful prognostic marker for
CNP. Again, up to three channels sufficed to predict pain. In
comparison to discrimination between participants with chronic
SCI with and without chronic CNP on Dataset 1, cPWP vs.
cPNP, locations of channels were less consistent across types of
movement imaginations, but equally included frontal electrodes
for left and right hand movements.
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FIGURE 11 | (Dataset 1) Classification accuracy evaluated on cPWP vs. cPNP separately on Right Hand (RH), Left Hand (LH), and Leg (L) data (represented by bars

in different colours) varies with temporal window offset (groups along the x-axis).

TABLE 2 | (Dataset 2) Classification performance on sPDP vs. sPNP, evaluated separately on Right Hand (RH), Left Hand (LH), and Leg (L) data.

Time Selected Top Accuracy Participants

Limb offset (s) channels SVM-ν mean ± st. dev. Sensitivity Specificity correct (%)

RH 2 FC6, Oz, CPz 0.3 0.88 ± 0.11 0.9 0.83 100

LH 1 FCz 0.325 0.88 ± 0.17 0.91 0.85 85

L 3 CP3 0.725 0.85 ± 0.17 0.88 0.84 100

Time Offset, Selected Channels, and Top SVM-ν specify the hyper-parameters with maximum LOOCV mean accuracy. The final column Participants correct shows participant-level

class prediction accuracy based on the class that was most frequently predicted across individual recordings.

FIGURE 12 | (Dataset 2) Classification accuracy evaluated on sPDP vs. sPNP separately on Right Hand (RH), Left Hand (LH), and Leg (L) data (represented by bars

with different colours) varies with temporal window offset (groups along the x-axis).

Frontiers in Neuroscience | www.frontiersin.org 13 August 2021 | Volume 15 | Article 705652

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Anderson et al. Fractal EEG Neuropathic Pain Markers

The results from our exploration of whether parameters
optimised for diagnostic classification (Dataset 1, cPWP vs.
cPNP) can be transferred to prognostic classification (Dataset
2, sPDP vs. sPNP) are shown in Table 3. In this experiment,
we observed mean accuracy of 82, 70, and 72% with RH, LH,
and Leg (L) movement imaginations, respectively, which are
all considerably above chance level (50%, as above). Highest
accuracy was observed for RH, which originally had the most
discriminating features at a frontal electrode.

4. DISCUSSION

This study demonstrates that cortical changes due to SCI that
lead to the development of CNP can be identified and classified
using fractal analysis. The most significant finding is that future
and chronic CNP share common features and as a result, the
same classifier can be used for both. This sheds new light on
pain chronification by showing that frontal areas, involved in
the affective aspects of pain and believed to be influenced by
long-standing pain, are affected in a much earlier phase of pain
development. Another important finding is that both predictive
and diagnostic markers of pain can be identified with as little as
one frontal electrode, indicating a potential for more practical
clinical applications.

We did not find significant differences in classification
between different time windows, suggesting that HFD are not
affected by the phase of movement. It would be interesting to
test in the future whether discriminable HFD features could be
defined in a resting state EEG because we know that non-evoked
EEG contains classifiable linear features derived from frequency-
band analysis (Vuckovic et al., 2018a). Smits et al. (2016) have
found that, during rest, EEG-derived HFD values were sensitive
to neuronal changes related to aging in healthy people and
Alzheimer’s disease. Additionally, resting-state EEG activity has
been used to extract specific features of other neurological
disorders, using non-linear techniques such as entropy Cao et al.
(2018). From our results and those of other studies, it would
be rational to hypothesise that resting-state EEG may contain
discriminable HFD features of CNP.

Previous studies focused on neuropathic pain were based
on features derived from the resting state EEG, and included
greater numbers of electrodes for classification (Sarnthein et al.,
2006; Vanneste et al., 2018; Vuckovic et al., 2018a) compared
to the small numbers found in this study. Typically these

studies use conventional oscillatory features derived from time
frequency analysis for classification and have reached accuracies
greater than 85%. Vanneste et al. (2018) also utilised SVMs for
analysing resting-state EEG patters in people with a variety of
neurological conditions such as Parkinson’s disease, neuropathic
pain, tinnitus and depression. They identified specific and
classifiable mechanisms underlying these disorders and with
respect to pain, their observations saw SVM learning to
differentiate between pain and healthy control volunteers with an
accuracy of 92.5%.

While, to the best of our knowledge, there has been no
study defining EEG markers of neuropathic pain based on
non-oscillatory features, Cao et al. (2018) developed classifiers
based on entropy to identify the preictal phase of migraine,
which precedes the onset of pain, and the interictal phase. They
also found the most discriminable features of pain at frontal
electrodes during resting-state EEG rather MI. The orbitofrontal
cortex is involved in the affective aspects of chronic pain in
general, which may explain why similar locations were found in
the current study and Cao et al. (2018). Their study, however,
only investigated frontal and occipital electrodes following advice
from previous reporting that migraine patients suffer from lobe
disfunction in these areas. They also utilised a relatively small
selection of 4 electrodes when compared to similar studies.

Another study, also using oscillatory EEG features, but
investigating specifically people with SCI, used a 32 electrode
EEG montage and applied discrimination analysis and cross-
correlation to allocate SCI patients with above-level and below-
level NP according to their EEG peak frequency. 84.2% of all SCI
participants were allocated to the correct group (Wydenkeller
et al., 2009).

Tripanpitak et al. (2020) also hypothesised that features based
on non-linear analysis, specifically HFD, could catch useful
information about pain, more specifically evoked pain from
electrical stimulation. This study also employed artificial neural
networks, a classification technique, in order to predict the
evoked-pain perception levels. Features from HFD were able to
classify pain perception levels with above-chance level accuracies,
however it was reported that combining different FD-based
features, resulted in higher success rates.

We have shown that only up to 3 electrodes can suffice to
predict pain with accuracy great than 80%. A frontal location
is appealing, in particular, for practical applications. This is
because it is typically not covered by hair enabling fast set-up
with the potential for using commercially available EEG devices,

TABLE 3 | (Dataset 2) Classification performance on sPDP vs. sPNP using best-performing channels from (Dataset 1, cPWP vs. cPNP), evaluated separately on Right

Hand (RH), Left Hand (LH), and Leg (L) data.

Time Transferred Top Accuracy Participants

Limb offset (s) channels SVM-ν mean ± st. dev. Sensitivity Specificity correct (%)

RH 2 F2 0.475 0.82 ± 0.36 0.97 0.59 83

LH 0 F3 0.45 0.70 ± 0.38 0.75 0.64 71

L 3 F2 0.275 0.72 ± 0.4 0.60 0.80 75

Time Offset and Top SVM-ν specify the hyper-parameters with maximum LOOCV mean accuracy, whereas Transferred Channels specify the combination of channels identified by

training on Dataset 1, discriminating between participants with chronic SCI and with chronic CNP and participants with chronic SCI and without CNP (cPWP vs. cPNP).The final column

Participants correct shows participant-level class prediction accuracy based on the class that was most frequently predicted across individual recordings.
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most of which record EEG with few electrodes from the frontal
cortex. Our study that previously applied classifiers to predict SCI
CNP (Vuckovic et al., 2018a) identified the optimal numbers of
EEG channels to be between 9 and 18. This was dependent on
which classifier was being used and the groups being compared.
With future clinical applications in mind, this study also trained
the classifiers using features from the 10 best channels which
were identified by examining classification errors. By doing so,
accuracies were reduced but remained above chance level at
between 83 and 86%. Again, these classifiers utilised oscillatory
EEG behaviour.

With respect to study limitations, the first which we consider
is that, although this study utilised data with comparable sample
numbers to similar relevant studies, in order to generalise these
pain classification results it would be necessary to increase sample
numbers. It would also be beneficial to test the validity of
the classifiers on unlabelled data and follow up with patients
as to the status of their pain development. Secondly, we did
not have access to information relating to whether any of the
participants in the subacute population have developed pain
since the reported study was conducted. Consequently, we do not
know if some participants have been incorrectly labelled during
the classification process i.e., sPNP that in fact did develop pain
after study had finished reporting. Future studies should consider
ensuring that pain status could be followed up. However, it is
known that, in most people, CNP develops within the first 6
months post-injury (Siddall et al., 2003). As a result, we believe
that by following up patients for 6 months we managed to
identify correctly most participants who later developed pain.
Additionally, the heterogeneity of the data was not addressed in
this study. Vuckovic et al. (2018b) compared descriptive (pain)
and demographic factors (age, level of injury, time after injury)
between the groups using analysis of variance (ANOVA) and
compared completeness of injury using non-parametric testing.
There were no significant between-group differences in age, time
post-injury or ASIA level. The patient pain scores, and level
of injuries differed significantly between the groups. Also, the
sPNP group had injuries 8 levels lower than the sPDP group.
Age and completeness of injury were matched across groups in
the subacute dataset but the level of injury was not matched
between sPNP and sPDP groups. Previous analysis on this data
also indicated that it was not possible to extract features to
measure the influence that level of injury had on the presence
or development of pain although some believe there is no
correlation between level or completeness of injury and pain
(Siddall et al., 2003). Finnerup et al. (2014) have also reported
on the effects of demographic factors and injury characteristics
on the development of neuropathic pain with greater sample
sizes than that in the current study. They interestingly observed
that injury characteristics, such as completeness and neurological
level, could not predict at- or below-level neuropathic pain.
Comparisons of this nature, between groups in Dataset 1 (AB,
cPWP, cPNP) have not been performed. Given the small sample
sizes of both datasets, exploring the heterogeneity within these
groups would require further data but could provide potentially
valuable clinical information as to those more likely to develop
pain. We plan to address this in future research.

In conclusion, this study provides supporting evidence for
the potential of non-oscillatory non-linear features of EEG as
diagnostic and prognostic biomarkers for neurological disorders
and it suggests a new perspective on pain chronification showing
that frontal areas, involved in the affective aspects of pain,
are affected in a much earlier phase of pain development
than is commonly believed. In future work we will seek
to confirm our findings on a larger dataset involving more
subacute participants with SCI and explore pain chronification
by training and analysing machine learning models to predict
the delay after which participants with asymptomatic CNP start
showing symptoms.
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