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Objectives: Delayed neurocognitive recovery (DNR) seriously affects the post-operative
recovery of elderly surgical patients, but there is still a lack of effective methods to
recognize high-risk patients with DNR. This study proposed a machine learning method
based on a multi-order brain functional connectivity (FC) network to recognize DNR.

Method: Seventy-four patients who completed assessments were included in this
study, in which 16/74 (21.6%) had DNR following surgery. Based on resting-state
functional magnetic resonance imaging (rs-fMRI), we first constructed low-order FC
networks of 90 brain regions by calculating the correlation of brain region signal
changing in the time dimension. Then, we established high-order FC networks by
calculating correlations among each pair of brain regions. Afterward, we built sparse
representation-based machine learning model to recognize DNR on the extracted multi-
order FC network features. Finally, an independent testing was conducted to validate
the established recognition model.

Results: Three hundred ninety features of FC networks were finally extracted to identify
DNR. After performing the independent-sample T test between these features and the
categories, 15 features showed statistical differences (P < 0.05) and 3 features had
significant statistical differences (P < 0.01). By comparing DNR and non-DNR patients’
brain region connection matrices, it is found that there are more connections among
brain regions in DNR patients than in non-DNR patients. For the machine learning
recognition model based on multi-feature combination, the area under the receiver
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operating characteristic curve (AUC), accuracy, sensitivity, and specificity of the classifier
reached 95.61, 92.00, 66.67, and 100.00%, respectively.

Conclusion: This study not only reveals the significance of preoperative rs-fMRI in
recognizing post-operative DNR in elderly patients but also establishes a promising
machine learning method to recognize DNR.

Keywords: delayed neurocognitive recovery, resting-state functional magnetic resonance imaging, functional
connectivity, machine learning, sparse representation

INTRODUCTION

Clinically, the neurocognitive impairment including memory,
information processing, and execution identified from 7 to
30 days post-operatively is defined as delayed neurocognitive
recovery (DNR) (Berger et al., 2015; Evered et al., 2018). With
the improvement of medical order and the development of
aging society, more and more elderly patients are prone to
suffering DNR (Evered et al., 2017) after undergoing surgery
under anesthesia. The increase in DNR not only causes heavy
medical and social burden but also brings troubles to families.
Hence, it is crucial to understand the underlying pathological
mechanisms of DNR for the prevention and treatment of it.

Recent studies have shown that preoperative cognitive
function decline may be an important risk factor for cognitive
impairment following surgery and anesthesia (Hogue et al.,
2006), and some preoperative brain functional and structural
features related to DNR have been identified. Zhang et al.
(2019) found that there were differences of regional homogeneity
in the right hippocampus between DNR patients and non-
DNR patients. Jiang et al. (2020) found that the preoperative
higher amplitude of low-frequency fluctuation (ALFF) in the
bilateral middle cingulate cortex (MCC) and lower functional
connectivity (FC) between the bilateral MCC and left calcarine
were independently associated with the occurrence of DNR.
Although these studies have identified possible preoperative
neuroimaging risk factors for DNR, the correlation between
different factors was not further considered in the research
process, and a stable and reliable DNR patient recognition model
based on those factors has not been established.

Resting-state functional MRI (rs-fMRI) has provided a useful
tool to analyze the brain response and cognitive impairment by
describing both the localized neural activity and the connection
characteristics of the entire brain network (Rubinov and Sporns,
2010; Lei et al., 2020a). In most rs-fMRI-based brain function
studies, brain regions are usually considered as vertices, and
their functional interactions calculated by averaging correlations
of blood oxygenation order–dependent (BOLD) signals across
the whole scanning session are considered edges to build
a brain FC network. However, since neural synchronization
shifts very quickly to meet cognitive demands, this calculation
method of functional interaction makes it difficult for the
brain network to effectively describe the neural behavior in the
temporal dimension. Recently, dynamic FC based on spatial–
temporal joint analysis of BOLD time signal sequences has
become a powerful and promising framework in brain network
research (Chang and Glover, 2010; Kiviniemi et al., 2011;
Hutchison et al., 2013; Calhoun et al., 2014). These dynamic

FC methods utilize a sliding window to divide the entire
time series of the BOLD signal into numerous segments of
sub-series in advance and then establish a series of temporal
FC networks based on each segment of the signal. Since the
adjacent networks should share a similar topological pattern and
connection strength, some recognized changes can be utilized as
discriminative information to identify abnormal brain networks
(Chen et al., 2017; Zhao et al., 2018).

The higher-order FC features that regard fixed-position
brain regions as vertices and the interaction between brain
regions as edges are playing an increasingly important role in
brain network–based diagnostic research. Chen et al. (2016)
combine the extracted low-order and high-order FC networks to
discriminate between early mild cognitive impairment (eMCI)
and healthy controls and achieve a promising classification
accuracy of 88.14%. Zhao et al. (2018) propose to use a multi-
level, high-order FC network representation for autism spectrum
disorder (ASD) diagnosis. Experimental results show that the
integration of both low-order and first-level high-order FC
networks achieves the best ASD diagnostic accuracy (81%).
Moreover, they further find that the high-order FC features can
provide complementary information to the low-order FC features
in the ASD diagnosis. Lei et al. (2020b) build a machine learning
model based on the combination of high-order and low-order
features to recognize global cognitive impairment in moyamoya
disease (MMD). Experimental results demonstrate that high-
order features play a more important role than low-order features
in the classification model.

In the present study, based on the hypothesis that there
are differences in preoperative brain FC between DNR and
non-DNR patients, we first establish a set of multi-order brain
FC network feature extraction methods to quantify both the
connections between the activities of two brain regions and
the connections between the activities of brain region groups.
Then, we investigate the discriminative features between the
patients with and without DNR by simultaneously analyzing the
correlation between features and categories and the redundancy
between features. Finally, we build a complete set of machine
learning classification methods to identify DNR based on the
mined discriminative features.

MATERIALS AND METHODS

Participants
A total of 308 patients collected from September 2017 to
February 2019 at the Huadong Hospital Affiliated to Fudan
University were enrolled in this study. Included and excluded
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criteria (Jiang et al., 2020) are detailed as follows. The
included criteria were the following: (1) patients scheduled
to undergo non-cardiac surgery with an expected duration
of more than 2 h, under general anesthesia; (2) age ≥ 60;
and (3) American Society of Anesthesiologists classification I–
III. The excluded criteria were the following: (1) education
duration <6 years, (2) Mini-Mental State Examination (MMSE)
score prior to surgery <24 points, (3) pre-existing mental
and/or psychiatric disease, (4) Parkinson’s disease, (5) history
of cardiac and/or central nervous system vascular disease, (6)
history of cardiac and cranial surgeries, (7) taking sedatives
or antidepressants during the nearest year, (8) alcohol or
drug abuse, (9) severe hepatic or renal dysfunction, (10)
vision and audition impairment or language troubles impeding
communication, (11) situations unsuitable for an MRI scan,
and (12) unwillingness to complete repeat neuropsychological
tests. We use the Z-score method to determine whether DNR
occurs after surgery. Specifically, we first calculate the difference
between the baseline score and the post-operative score of a
certain neuropsychological test. Then, we calculate the difference
between the two scores of the healthy control group before
and after the test. Finally, we subtract the difference of the
control group from the difference of the patient group and
calculate the Z-score by dividing the result by the standard
deviation of the difference between the two scores of the
control group. When the Z score of two or more tests
was more than 1.96, the patient was judged to have DNR.
Anesthesia protocols and neurocognitive assessment have also
been published in our previous study (Jiang et al., 2020); for
more details, please refer to it. After the evaluation of the
included and excluded criteria, the final data of 74 cases,
including 16 cases of DNR and 58 cases of non-DNR, were
used for experimental model building and testing. This was a
nested case–control study approved by the Ethics Committee
of Huadong Hospital Affiliated to Fudan University with the
approval number of 20170020.

Image Acquisition and Pre-processing
All MRI scan were performed at least 1 day prior to surgery
on a 3.0 T MRI scanner (Skyra, Siemens, Munich, Germany).
The imaging parameters of rs-fMRI data included 33 axial slices,
slices of thickness = 4 mm with a 0-mm gap, TR = 3,000 ms,
TE = 30 ms, voxel size = 3.4 × 3.4 × 4 mm3, and
flip angle = 90◦. In this scan, 120 volumes were obtained.
Data preprocessing procedures were performed with Statistical
Parametric Mapping (SPM12, The Wellcome Trust Centre
for Human Neuroimaging, London, United Kingdom) and
RESTplus version 1.22 (Institutes of Psychological Sciences,
Hangzhou Normal University, Hangzhou, China) in MATLAB
version R2019b (MathWorks, Inc., Natick, MA, United States)
(Ren et al., 2016).

The first five volumes of each case were discarded to reduce
the potential noise interference of the imaging instrument.
The remaining volumes were subjected to slice-time correction,
realignment, and spatial smoothing with a 6 × 6 × 6 mm3

Gaussian kernel in turn. After the linear trend of time course
removal, temporal filtering (0.01–0.08 Hz) were performed to
remove the effects of low-frequency drift and high-frequency

noise. The cerebrospinal fluid and white matter signal were
regressed out as nuisance covariates. Finally, the volumes were
spatially normalized to the Automated Anatomical Labeling
(AAL-90) template and further partitioned into 90 regions of
interest (ROIs) (Tzourio-Mazoyer et al., 2002).

Feature Extraction of Brain FC Network
In order to construct a brain FC network, rs-fMRI images need
to be converted into brain activity signals. As shown in Figure 1,
by averaging the voxels of each brain region of each volume, we
can get a time series, which reflects the change in the activity of
each brain region. Then, we divide the time series into several
sub-series in the time dimension through the sliding window.
Denoted by t, w, and s the length of the original signal, sliding
window size, and sliding step size, respectively, there will be
K = ((t−w)/s)1 sub-series after the sliding window operation.
Denoted by xji(n) the j-th sub-series in the i-th ROI of case
n and denoted by Xj(n) =

{
xj1 (n) , xj2 (n) , ... xj90 (n)

}
the j-th

sub-series in total 90 brain regions of case n, the brain network
FC matrix Aj (n) corresponding to the j-th sub-series of case n
can be obtained by calculating the Pearson’s correlation strength
between two different ROIs (Salvador et al., 2005):

aj
p,q (n) = corr(xj

p (n) , xj
q (n) )

where p and q represent two ROIs. Regarding each ROI as a node
and the strength of the correlation coefficient between regions as
an edge, then a K dynamic brain FC network can be obtained for
each case. In our experiment, we set the sliding window size and
sliding step size to 90 and 1, respectively.

To describe the characteristics of the brain FC network more
comprehensively, we further construct the high-order dynamic
network by calculating the correlation between the elements
of the low-order connection matrix. Specifically, denoted by
yp,q (n) =

{
a1
p,q (n)

}
,
{
a2
p,q (n)

}
, ...,

{
aKp,q (n)

}
and yu,v (n) ={

a1
u,v (n)

}
,
{
a2
u,v (n)

}
, ...,

{
aKu,v (n)

}
the element sets of the p−q-

th and the u−v-th positions in the K low-order FC networks,
the high-order correlation between the p−q-th element and the
u−v-th element can be calculated as

hp,q,u,v (n) = corr(yp,q (n) , yu,v (n) )

This high-order dynamic network not only describes the
relevance of the activities of multiple groups of brain intervals but
also integrates the entire time dimension information to achieve a
higher temporal and spatial resolution of the description of brain
FCs. In fact, since the range of p, q, u, v is all 1–90, the high-
order brain network of one case has 904 elements, which may
not only lead to time-consuming computation but also contain
some redundant information. Thus, we use an element time series
clustering method to convert the element–order correlation
(90 × 90 vs. 90 × 90) into group correlation (300 vs. 300), where
300 is the number of clusters. When obtaining the low/high-
order FC networks, we establish weighted undirected graphs for
feature extraction. Note that for the K low-order networks, we
perform feature extraction on the averaged network. Based on
the undirected graphs, we extract local clustering coefficients to
quantify the brain function network. It describes the degree to
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FIGURE 1 | The overall framework of the proposed method. The pre-processed fMRI is registered to the ALL brain template and divided into 90 ROI regions in
advance. Then calculate the average gray value of each ROI regions to get the time series of each ROI region. Convert the time series of all ROI regions into
low-order FC network diagrams through sliding window operation and correlation calculations. Perform clustering and correlation analysis of the low-order FC
network to obtain the high-order FC network. Finally, extract the low/high-order FC network graph features, and establish machine learning model to recognize DNR.

which a node in the graph and its neighbor nodes gather to form a
clique (complete graph) and can be calculated as (Strogatz, 2001)

ci =
2
∑

j∈Ni
(wij)

1/3

|Ni| ( |Ni| −1)

where Ni denotes the number of neighbors of node i and wij is the
weight between nodes i and j.

Machine Learning Modeling
Ninety low-order and 300 high-order FC network features
were finally extracted for each subject. These features contain
some redundant information, which will not only increase
the computational complexity of the subsequent classification
model but also increase the risk of model overfitting (Wu
et al., 2019a). Therefore, before establishing the classification
model, we first perform feature dimensionality reduction. In
recent years, feature selection based on sparse representation
has achieved encouraging performances in many radiomics
studies (Wu et al., 2018, 2019b). Compared with traditional
statistical estimation-based feature selection methods, such
as independent-sample t-test, sparse representation feature
selection can consider both the correlation between features and
labels and the redundancy between features. Therefore, we utilize
sparse representation to select a few of discriminative features
for subsequent classification. The model can be formulated as

TABLE 1 | Baseline characteristics.

Variables DNR (16) Non-DNR (58) P

Age (years) 63.5 (62.0, 67.0) 64.0 (61.0, 68.3) 0.598

Sex (male/female) 12/4 29/29 0.075

Education (year) 6 (6, 9) 9 (9, 12) 0.002

Height (m) 1.68 (0.08) 1.65 (0.08) 0.185

Weight (kg) 59.0 (50.0, 70.5) 60.0 (54.8, 70.0) 0.324

BMI > 24, n 3 (18.8) 19 (32.8) 0.437

Smoking, n 7 (43.8) 15 (25.9) 0.281

Surgical history, n 6 (37.5) 28 (48.3) 0.444

In the statistical results of the age, education, and weight, the data in brackets give
the minimum and maximum values of the variable.

ϕ̂ = argmin
ϕ

||l−Fϕ||22 + η||ϕ||0

where l denotes the sample label set; F =
[
f1; ; f2; ; fJ

]
denotes

the sample feature set, J is the number of samples; and η is a
regularization parameter and is set to 0.1 in our experiments. The
absolute value of each element in the representation coefficient
ϕ̂ indicates the importance of the corresponding feature. Once
the elements of ϕ̂ are calculated, we rank the features according
to the values of ϕ̂ in descending order in advance. Then, we
use apply a cross-validation-based sequential forward selection
strategy to select the optimal feature subset (Zhu et al., 2016).
Specifically, first, we take the top five features as the initial
feature subset and evaluate the cross-validation classification
effect of the training data set based on the current feature
subset. Then, through the loop, we put the 6th to 100th
features into the feature subset in turn and evaluate the model
classification effect after each feature subset update. When
the loop ends, we can find the optimal model classification
result, and the feature subset corresponding to the result is the
optimal feature subset.

We build a classification model on the selected features
to predict DNR. In fact, our classification problem has two
challenges. On the one hand, the number of experimental samples
are relatively small (n < 100). On the other hand, the ratio
of positive and negative samples is quite different (16 vs. 58).
The sparse representation classifier (Wright et al., 2009) uses a
non-parametric training classification method, which reduces the
model complexity and the risk of model overfitting under small
samples. The model can be formulated as

β̂ = argmin
β

||f−Fβ||
2
2 + γ||β||0

where f denotes the testing sample feature after feature selection,
F = [F1, F2FC] denotes the feature set of the training sample after
feature selection, and C is the total number of sample categories.
γ is sparse representation of control parameters, which is set to
0.05 in this study. When the sparse representation coefficient β̂ is
obtained, calculate the residual:

rc(f ) = f−Fδc
(̂
β
)
, c [1, 2...C]
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FIGURE 2 | The constructed low-order FC networks. Each sub-figure corresponds to a different dynamic sliding window. Each element in the matrix is the
correlation between two brain regions through the pairwise Pearson’s correlation analysis. Element with light color indicates positive correlation, while the dark color
shows a competitive or anti-correlation relationship between regions.

where δc( · ) is used to select the coefficient corresponding to
the c-th feature. The final testing sample category is finally
determined by ID

(
f
)
= argminc rc(f ). It can be seen from the

working principle of the sparse representation classifier that it is
a non-parametric training classifier, so there is no model training
stage. Based on the idea of K proximity classification, in the
testing phase, it directly compares the similarity between the
test sample and the training sample between different categories
to determine the category of the test sample. In particular, the
similarity between samples here is measured by calculating the
characteristic Euclidean distance between samples. In addition,
in the classification process, thanks to the sparse constraints, the
classifier can effectively grab the most essential features of the
sample and suppress redundant features, thereby reducing the
adverse effects of the difference in the number of positive and
negative samples.

In the model validation stage, we first divide our data
into a training set and an independent testing set according
to a ratio of 2:1. Then, we perform feature selection and
10-fold cross-validation on the training set. Finally, we train
the model on the training set and test the model on the
independent testing set. Metrics including the area under
the receiver operating characteristic curve (AUC), accuracy
(ACC), sensitivity (SEN), and specificity (SPE) (Yu et al.,
2020; Zheng et al., 2020) are calculated to evaluate the
performance of our method.

RESULTS

Seventy-four patients who completed both preoperative and
post-operative MRI scans and all neuropsychological tests were
used for the final experimental analysis. Among these 74 patients,

16 cases were diagnosed as DNR and 58 cases were diagnosed as
non-DNR. According to statistics, the education order of DNR
patients was significantly lower than that of non-DNR patients,
while in terms of age, gender, height, weight, and obesity, there
was no difference between the two groups of patients. Table 1
reports a detailed comparison of the statistical results of the two
groups of patients.

Figure 2 shows the dynamic FC network obtained after sliding
window processing on the DNR patient time series signal, where
each sub-figure corresponds to a set of sliding window data. It
can be seen that there are certain differences in the correlation
between the activities of different brain regions in the FC network
constructed from the same signal with different time windows.
This implies that the dynamic FC network based on the sliding
window can effectively extract the time window information
of the brain activity. In addition, as shown in Figures 3A,B,
we average the FC network connection matrix of all patients
and all sliding windows in the DNR and non-DNR groups,
respectively, to visually compare the brain network activity of
the two groups. The brighter the region in the figure, the
stronger the connection between the corresponding two brain
regions. In addition, it is obvious that there are more connections
among ROIs in the DNR group. The high-order FC network is
used to measure the correlation between elements in the low-
order FC network. However, the matrix generated by directly
calculating the correlation between all elements in the low-order
FC network not only contains a lot of redundant information but
also increases the calculation amount of the subsequent analysis
model. Therefore, based on the clustering method, we first cluster
the elements in the low-order FC network according to the time
series in all sliding windows of the elements and then calculate the
correlation between the various types to build the final high-order
FC network. The averaged high-order FC networks of the DNR
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FIGURE 3 | Averaged low\high-order FC networks for all patients. Panels (A–D) are the low-order FC network of DNR, the low-order FC network of No-DNR, the
high-order FC network of DNR, and the high-order FC network of No-DNR, respectively. For panels (A,B), each element in the matrix is the correlation between two
brain regions. For panels (C,D), each element in the matrix is the correlation between two clusters. Element with light color indicates positive correlation, while the
dark color shows a competitive or anti-correlation.

and no-DNR patients are compared in Figures 3C,D. Consistent
with the comparison results in Figures 3A,B, the DNR group
exhibits more clusters with positive correlations. The latent and
discriminative features in low/high FC networks are quantified in
the following part.

A total of 390 local clustering coefficient features were finally
extracted for each patient, where 90 features were extracted
from the low-order FC network and 300 features were extracted
from the high-order FC network. The low-order FC network
features correspond to the 90 brain regions one to one.
Independent-sample t-test results between these features and the
categories show that 15 features are statistical differences in DNR
identification (P < 0.05) and 3 features are significant statistical
differences (P < 0.01). After sparse representation-based feature
selection (the detailed feature selection process is provided in
section “Machine Learning Modeling”), 40 features are selected
for the final machine learning modeling, of which 10 features

are from the low-order FC network and 30 features are from
the high-order FC network. The results of the unsupervised
clustering heat map (Liu et al., 2019) of the 40 features are
shown in Figure 4. In the first two rows, blue and yellow
represent the results of automatic clustering of samples and
red and green represent the true categories of samples. After
automatic clustering, 56 out of 74 cases obtain the correct
category label, which shows the effectiveness of these features.
In addition, we choose three features that had the minimum
p-value from both low-order and high-order sets to depict their
boxplots in Figure 5. For the selected 10 low-order FC network
features, we select the 10 brain regions corresponding to them
and visualized them in Figure 6. Figure 7 shows the importance
visualization of the 30 high-order FC networks obtained by
feature selection. These 30 high-order FC networks actually
correspond to 30 low-order FC network clusters. In the feature
selection step, the feature selection model in section “Machine
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FIGURE 4 | Unsupervised clustering heat map of the selected 40 features. Rows represent features, columns represent samples. In the first two rows, blue and
yellow represent the results of automatic clustering of samples, and red and green represent the true categories of samples.

FIGURE 5 | Boxplot of some features from both low-order (A) and high-order (B) networks. The green color corresponds to DNR group while the blue color
corresponds to no-DNR group.

Learning Modeling” calculates the importance values of these
high-order FC networks, which are the absolute values of ϕ̂.
We assign these 30 importance values to the corresponding 30
low-order FC network clusters to obtain the result in Figure 7.
Therefore, the brighter area corresponds to the cluster with a

larger importance value obtained by feature selection; that is, the
cluster is more important.

After feature selection, the sparse representation-based
classification model was trained on 49 training data in advance,
and then the trained model was tested on the rest of 25 testing
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FIGURE 6 | Visualized ROIs selected from low-order FC networks.

data. The final DNR recognition results are reported in Table 2,
“Low-order feature,” “High-order feature,” and “Combined,”
respectively, indicate that the features for model training are only
low-order features, only high-order features, and a combination
of the two features. The combined method achieves the best
performance with AUC, ACC, SEN, and SPE of 0.9561, 0.9200,

TABLE 2 | Comparison of recognition results on the independent test set.

Method AUC ACC SEN SPE

Low-order feature 0.7368 0.7600 0.5000 0.8421

High-order feature 0.8684 0.8800 0.5000 1.0000

Combined 0.9561 0.9200 0.6667 1.0000

0.6667, and 1.000%, respectively. Figure 8 shows the ROC curve
comparison of the three methods.

DISCUSSION

The results of this study show that the preoperative brain
FC network features can be used to predict post-operative
DNR by establishing an effective machine learning model.
The key findings include the following: (1) The correlation
between the activities of different brain regions in DNR patients
before surgery is stronger than that in non-DNR patients.
(2) The activity of 10 brain areas, namely, Frontal_Sup_L,
Frontal_Inf_Oper_R, Frontal_Inf_Tri_L, Frontal_Inf_Orb_R,
Rolandic_Oper_R, Calcarine_L, Calcarine_R, Occipital_Mid_R,
Angular_L, and Thalamus_R, is highly correlated with whether
the patient suffers from DNR after surgery. (3) Based on the
multi-order brain FC network features, the established machine
learning DNR recognition model in this study has achieved
promising results and may provide some guidance for clinical
anesthesia surgery for the elderly.

Recently, an increasing number of clinical studies have
reported that whole-brain-based FC analysis plays a primary role

FIGURE 7 | Visualized ROIs selected from high-order FC networks, the brighter the color is, the more important a cluster is.
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FIGURE 8 | ROC curves corresponding to the three methods.

FIGURE 9 | Clusters of low-order FC network (1–8). (A–H) First to eighth clusters.

in predicting post-operative cognitive impairment. Jiang et al.
(2020) found that preoperative lower FC between the bilateral
MCC and left calcarine was more prone to have post-operative

DNR. The results of literature (Zhuang et al., 2019) showed
that patients with cognitive impairment had abnormal regional
activities and FC of calcarine. Literature (Moon and Jeong, 2017)
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FIGURE 10 | Clusters of low-order FC network (9–16). (A–H) Ninth to sixteenth clusters.

FIGURE 11 | Clusters of low-order FC network (17–24). (A–H) Seventeenth to twenty-fourth clusters.

further proves that lower spontaneous activities in the calcarine
were independently associated with cognitive impairment. In
addition, Zheng et al. (2017) confirmed that patients with
amnestic cognitive impairment, severe cognitive deficits, and
major depression disorder all exhibited abnormal FC.

Although these studies have examined the preoperative
alterations in the brain FC structure with post-operative cognitive

impairment and found some consistent findings, most of these
studies have the following shortcomings. Firstly, as far as the
research subjects are concerned, most of them only pay attention
to the relationship between certain brain region activities and
post-operative cognitive impairment, without considering the
entire brain network activity. Since most brain activities are
jointly participated by multiple brain regions, considering only
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FIGURE 12 | Clusters of low-order FC network (25–30). (A–F) Twenty-fifth to thirtieth cluster.

one or a few functional connections of brain regions may ignore
some key information that affects the judgment. Secondly, as far
as the research process is concerned, they only use some simple
statistical estimation methods to explore the factors that may
be related to post-operative DNR, and the synergistic effects of
multiple features are rarely considered. Finally, most of these
methods only reveal some features related to post-operative DNR
but do not establish a complete post-operative DNR prediction
model, which may provide guidance for the treatment of elderly
post-operative patients.

Compared with these existing studies, our study has the
following advantages. First, we explored the relationship between
the whole preoperative brain network activity and post-operative
cognitive impairment by establishing a feature extraction
method based on the combination of low-order and high-
order brain networks. It can be seen from the results in
Table 2 that high-order FC network features are the key
to the good results in the proposed method. A low-order
network feature is proficient in measuring the correlation
between the activities of any two brain regions in a time-
varying way, but it cannot describe the correlation between
multiple brain regions. Some existing studies (Lei et al.,
2020b) have shown that the correlation of changes in multiple
groups of brain regions plays a more important role in FC
network-based brain disease diagnosis. Therefore, we build

a clustering-based high-order FC network to quantify the
correlation between different pairs of brain regions, so as to
further explore deeper interaction relationships. Secondly, we
utilize sparse representation-based feature selection method
rather than traditional statistical estimation methods, such as
independent-sample T-test, to mine high-resolution features
related to post-operative DNR. This feature selection method
considers both the correlation between features and tags and
the redundancy between features during feature selection, so
that it can effectively select a feature subset that best expresses
the sample category. Finally, more importantly, we have built
a complete DNR prediction model and obtained encouraging
prediction results.

In our deep learning-based classification model, 30 high-
order FC networks are selected for the final DNR recognition.
Furthermore, these 30 networks correspond to 30 clusters of
low-order FC networks. According to the reviewer’s suggestions,
we first visualized the 30 clusters and then discussed these
network connections and brain regions. Figures 9–12 show the
30 clusters, where each brain network subgraph corresponds to
a cluster of low-order FC network. From these figures, we can
see that the activity of the symmetrical brain region has a high
correlation. For example, in Figures 9C,D, 10A,F, 11B,E, 12B,F,
many symmetrical brain connections are grouped into the same
cluster. We further count the number of occurrences of each
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brain region in all of these 30 clusters, among which the top 10
brain regions with the most occurrences are listed as follows in
turn: Insula_R, Hippocampus_L, ParaHippocampal_L, Insula_L,
Temporal_Pole_Sup_L, Temporal_Pole_Sup_R, Parietal_Inf_R,
Frontal_Sup_Orb_L, and Frontal_Inf_Tri_L. According to
previous reports, most of these brain regions are related to
patients’ cognition, learning, and memory. For example, the
human insula has been found to contribute to its crucial role in
goal-directed behaviors and emotional regulation, through rapid
processing of attentional, cognitive, interoceptive, emotional,
and autonomic signals (Craig, 2009). The effective connectivity
analyses studied in Diersch et al. (2021) revealed that the
age-related learning deficits were linked to an increase in
hippocampal excitability. Chen et al. (2013) also found that the
reduction in hippocampal volume before surgery is one of the
risk factors for post-operative cognitive dysfunction (POCD)
in elderly patients. The experimental results in Velia et al.
(2013) showed that the separation of cognitive and sensory
nerves has plasticity in the human superior temporal gyrus
cortex. As shown in Figure 9B, the second important cluster
of our model, Fusiform, is directly connected to Hippocampus
and ParaHippocampal. These connections have been proved to
directly affect the improvement of individual memory, so we
speculate that the features corresponding to these connections
may play an important role in DNR prediction. For the
explanation of some other high-order FC features, since there
is relatively little research in this research area, and our machine
learning model integrates all selected features for classification,
it is difficult for us to directly interpret the relationship between
the occurrence of DNR and a certain FC feature. This is also the
main work we need to complete in the future.

There are three limitations in our study. First, the
diagnosis results of all cases are based on the post-operative
neuropsychological tests performed at 7–14 days after surgery.
Due to the influence of other post-operative factors, such as
pain and inflammatory activity, the diagnosis of post-operative
cognitive impairment in this period of time may be too early.
Although the patients enrolled in our experiment do not
experience pain and other symptoms during neuropsychological
testing, the possibility of these effects cannot be completely
ruled out. Second, the amount of experimental data is limited.
A sufficient amount of data is the guarantee for the reliability
and stability of machine learning models. In our experiment,
74 cases of data were used for model training and testing.

Although we conducted strict training and testing data division,
the stability of the model results still needs to be verified
on more data sets, especially multi-center data. Therefore,
in future work, we will further collect a large amount of
multi-center data to verify the proposed model. Third, we
build a dynamic FC network by manually setting a fixed-
scale sliding window instead of in an adaptive way. Since
the signal itself has certain changing characteristics, setting
an adaptive sliding window will more effectively reflect
the essential characteristics of the signal. Therefore, some
engineering improvements will be made in the future to
address this problem.
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