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Most data-driven methods are very susceptible to data variability. This problem is

particularly apparent when applying Deep Learning (DL) to brain Magnetic Resonance

Imaging (MRI), where intensities and contrasts vary due to acquisition protocol,

scanner- and center-specific factors. Most publicly available brain MRI datasets originate

from the same center and are homogeneous in terms of scanner and used protocol.

As such, devising robust methods that generalize to multi-scanner and multi-center

data is crucial for transferring these techniques into clinical practice. We propose a

novel data augmentation approach based on Gaussian Mixture Models (GMM-DA)

with the goal of increasing the variability of a given dataset in terms of intensities and

contrasts. The approach allows to augment the training dataset such that the variability

in the training set compares to what is seen in real world clinical data, while preserving

anatomical information. We compare the performance of a state-of-the-art U-Net model

trained for segmenting brain structures with and without the addition of GMM-DA. The

models are trained and evaluated on single- and multi-scanner datasets. Additionally,

we verify the consistency of test-retest results on same-patient images (same and

different scanners). Finally, we investigate how the presence of bias field influences

the performance of a model trained with GMM-DA. We found that the addition of the

GMM-DA improves the generalization capability of the DL model to other scanners not

present in the training data, even when the train set is already multi-scanner. Besides,

the consistency between same-patient segmentation predictions is improved, both

for same-scanner and different-scanner repetitions. We conclude that GMM-DA could

increase the transferability of DL models into clinical scenarios.

Keywords: multi-scanner, magnetic resonance imaging, segmentation, data augmentation, gaussian

mixture models

1. INTRODUCTION

The segmentation of different brain structures from Magnetic Resonance Imaging (MRI) is an
important problem in the field of neuroimaging. Obtaining precise and consistent delineations is
crucial in the diagnosis, follow-up and treatment of neurological disorders. Important examples
are the monitoring of the progression of Multiple Sclerosis (MS) or dementia, both connected
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to accentuated neurodegeneration (Giorgio and De Stefano,
2013). In recent years, convolutional neural networks (CNN)
have become an increasingly popular segmentation approach,
but the fact that these models are extremely sensitive to data
variability has hindered their large scale adoption in clinical and
research settings. Specifically, these algorithms remain sensitive
to factors such as hardware and acquisition settings, which can
be especially problematic when integrating data from different
cohorts (Mårtensson et al., 2020). For these models to generalize
to data collected using new or unseen scanners, large multi-
center and multi-scanner datasets are necessary at the training
stage. Nevertheless, collecting such data is not trivial and most
available datasets are homogeneous in terms of scanner types and
acquisition protocols.

1.1. Related Work
The above mentioned problem is often termed as the scanner
bias problem. A popular way to deal with it in large clinical
trials is through approaches based on statistical harmonization.
In most cases the focus is on removing the scanner bias from
the volumetric measurements based on scanner- or center-
information (Fortin et al., 2018; Garcia-Dias et al., 2020). At
the image level, it is common to use the standardization of
the MRI intensity scale to reduce scanner sensitivity (Wang
et al., 1998; Nyúl and Udupa, 1999; Shinohara et al., 2014),
which has been previously shown to improve the outcome of
computer vision tasks like segmentation (Zhuge and Udupa,
2009) and registration (Bagci et al., 2010). Recently, some
works have attempted to use Deep Learning (DL) methods to
modify the analyzed images such that they appear to have been
acquired under similar settings (Dewey et al., 2019; Zhao et al.,
2019b). However, harmonization methods have the undesirable
property that the results will always be bound by the least
informative scanner in the dataset, as shown in Moyer and
Golland (2021), while standardization methods are not able to
remove residual across-subject variability (Shinohara et al., 2014;
Fortin et al., 2016; Wrobel et al., 2020). Additionally, many of
these approaches require retraining and updating of the models
when including new data from unseen scanners or centers.

In order to avoid these unwanted effects, it is interesting
to tackle the problem from a generalization perspective, by
improving the performance and reproducibility of the methods
of interest (often segmentation of brain tissues or lesions). When
considering DL methods in particular, a common approach is
to increase the variability in the data by applying well designed
data augmentation (DA). The idea behind DA is simple: by
applying transformations to the labeled data it is possible to
artificially increase the training set, which implicitly regularizes
the trained CNN. The most common DA strategies explore
transformations of the original data, mostly based on the
application of operations such as elastic distortions (Simard
et al., 2003), linear geometric transformations such as translations
and rotations, color transformations (mostly by altering the
intensities of the RGB channels in 2D images) (Krizhevsky et al.,
2012) or noise injection (Sietsma and Dow, 1991).

In the medical imaging field, DA is especially important
since annotated datasets are typically small. Although simple

transformations such as the ones described above can alleviate
overfitting and improve performance on the test sets in medical
applications (Milletari et al., 2016), they do not take into
account the high variability in terms of contrast found in
MRI. Some works have attempted to overcome this limitation
by generating completely synthetic images using generative
adversarial networks, as is the case in Shin et al. (2018).
Nonetheless, there is still a long way to go until these images
can be used effectively. Other more promising approaches start
from existing images and alter them in such a way that new
sequences or contrasts are simulated. One relevant example is
described in Jog et al. (2019), where a CNN-based algorithm
resilient to variations in the input acquisition is presented.
To achieve this, approximate forward models of different MRI
pulse sequences are built. This way, synthetic versions of the
training images are generated such that they appear to have
been acquired using different sequences. The method has the
disadvantage that it is complex, slow and it requires nuclear
magnetic resonance parameter maps of the training images,
which are often unavailable. Zhao et al. (2019a) proposed to
learn a model of transformations from an atlas to images in
a dataset and to use this model along with a single labeled
example to synthesize additional labeled examples with variable
appearance and spacial deformations. More recently, Billot et al.
(2020) presented a contrast-agnostic brain segmentationmethod,
again based on generating synthetic images. The method uses
only a segmentation map to generate new images with varying,
sometimes even unrealistic, contrasts. The generated images have
random appearance, deformation, noise, and bias field. With this
type of extreme augmentation, it is possible to obtain a final
model that is not biased toward any specific MRI contrast and
that achieves good performance on unpreprocessed brain scans
of any contrast. Although this method is very promising, by
design it is limited to segmentation applications and nuanced
variations in the individual images are lost.

1.2. Our Contribution
In the present work we propose a novel intensity-based DA
strategy with the main goal of reducing the scanner bias of
models trained on data with low protocol-, scanner- or center-
variability. Although scanner factors cause variations to other
image characteristics (e.g., noise, artifacts, geometric distortions),
we have previously found a clear relationship between tissue
contrast and volume measurements (Meyer et al., 2019). As such,
we hypothesize that augmenting the tissue intensity variability
will have a positive effect in the model generalization to new,
unseen scanners or center-specific acquisition configurations.
The method is based on the Gaussian Mixture Model (GMM)
framework: we estimate the individual tissue components of
an MRI image and randomly modify them, while preserving
structural information. As a result the contrast between different
tissues varies, in a similar way to what happens when different
scanners or sequences are used during acquisition. We validate
the approach in the task of brain structure segmentation. Unlike
currently existing methods, the proposed approach does not
depend on any existent segmentations or parameter maps; it is
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FIGURE 1 | Diagram of the main steps in the proposed DA method. This augmentation is performed only while training the segmentation network.

simple and fast; it can be used on-the-fly during training; and it
is not necessarily limited to segmentation applications.

This work extends the preliminary research presented in
Meyer et al. (2021). We previously compared the performance
of the same CNN-based model trained under three different
settings: (i) single-scanner data, (ii) single-scanner data with
the addition of our DA method, and (iii) multi-scanner data.
We now additionally investigate the effect of adding the DA
method to multi-scanner data and evaluate the reproducibility
and consistency of the models on a test-retest dataset containing
same-patient repetitions in the same and different scanners.
Finally, we investigate the effect of the presence of bias field on
the training images. Overall we observe a clear improvement
in generalization to unseen scanner types when adding the
proposed method to the training pipeline, not only when the
original training dataset is homogeneous, but also in the case
when a large, heterogeneous dataset is used as training set.

2. GAUSSIAN MIXTURE MODEL-BASED
INTENSITY TRANSFORMATION

The idea behind the proposed approach is to increase the
intensity and contrast variability of images in datasets with low
scanner and center acquisition diversity, such that it becomes
representative of what is found in large multi-scanner and multi-
center cohorts. This DA method is applied during the training
phase of a DL network of choice, and is not necessary at inference.
Figure 1 shows a depiction of the method. An implementation is
available at https://github.com/icometrix/gmm-augmentation.

2.1. The Gaussian Mixture Model
Framework
It is well documented that in a skull-stripped T1w brain MRI
without contrast injection, characteristic peaks in the histogram
correspond to different tissues, i.e., CSF has the lowest intensity,
followed by GM and WM. This has been explored by several
segmentation methods based on Gaussian Mixture Models
(GMM) (Van Leemput et al., 1999; Ashburner and Friston, 2005).
GMM is a type of probabilistic model that assumes that data
can be modeled as a superposition of K Gaussians. Within
this framework, if we have a set of observations {v1, . . . vN},
corresponding to the intensities v of each voxel n ∈ N in an image
I, we can model each observation in the data using a mixture of
Gaussians, such that:

p(vn) =
K∑

k=1

πkN (vn|µk, σ
2
k ). (1)

Each N (µk, σ
2
k
) is a component of the mixture, with its own

mean µk and variance σ 2
k
, and πk are the mixing coefficients. For

simplicity we hide the subscript n when referring to the intensity
of a given voxel: vn is represented as v from here on.

We start by selecting K = 3 Gaussian components for
the GMM, where each component roughly corresponds to
the CSF, GM, and WM classes. The parameters are initialized
and updated iteratively using the Expectation Maximization
(EM) (Dempster et al., 1977) algorithm implemented in the
scikit-learn package for Python (Pedregosa et al., 2011) with
default parameters.
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FIGURE 2 | Variation of the three considered GMM components in terms of mean µk (left) and variance σ 2
k (right). The components vary much more in a

multi-scanner dataset than in a single-scanner setting.

Once we estimate the parameters for each component k, we
can use Bayes’ rule to compute the probability of each class label
C, such that:

p(C = k|v) =
πkN (v|µk, σ

2
k
)

∑K
k′=1 πk′N (v|µk′ , σ

2
k′
)
. (2)

2.2. Altering the Components of the GMM
If we modify the individual components of a 3-component GMM
we can modify images in the training data by changing their
GMM probability distributions while preserving the inherent
image characteristics. We can create a new intensity distribution
for each of the tissues by generating new parameters µk → µ′

k

and σ 2
k
→ σ 2′

k
for each of the components in an individual skull

stripped image. To do this we:

a) sample individual variation terms qµk
and qσ 2

k
for each

component from a uniform distribution,
b) add these values to the original parameters, such that µ′

k
=

µk + qµk
and σ 2′

k
= σ 2

k
+ qσ 2

k
.

To define the range of the uniform distributions we use to sample
the variation terms qµk

and qσ 2
k
, we start by estimating the range

of typical variation for each component from a large multi-
scanner collection of patient data (dataset C in section 3). To do
this, all images are first skull stripped, intensities are clipped at
percentiles 1 and 99 to remove extreme values, and normalized to
the range [0, 1]. Then we fit a 3-component GMM to each image
in the dataset using the same procedure as described above. We
extract the mean µk and variance σ 2

k
values of each component.

We then use the standard deviation (s(·)) of the estimated
parameters to define the range of variability we allow. qµk

and qσ 2
k

are sampled for each component from the uniform distributions
U(−s(µk), s(µk)) and U(−s(σ 2

k
), s(σ 2

k
)), respectively.

The distribution of the estimated parameters µk and σ 2
k

is depicted in Figure 2. In this figure we illustrate how the
variability of the estimated parameters in a multi-scanner and

multi-center setting is larger than that of a homogeneous dataset
(same center, same scanner, same acquisition protocol) (dataset
A in section 3). Besides differences in hardware, acquisitions
in different centers tend to not be perfectly harmonized, which
causes variations in contrast of the images. This is one of the
many factors that contribute to the increased variability of the
estimated parameters, and can be addressed by the proposed
approach. For the multi-center data, mean and variance values
for the 3 components have approximate standard deviations of
s(µ) = {3, 6, 8}×10−2 and s(σ 2) = {1, 1, 3}×10−3, respectively.

The choice of a uniform distribution for sampling the
new variation terms implies that any random combination of
tissue intensities can be generated. We could restrict this to
more probable distributions by selecting a normal distribution.
However, since exposing networks to extreme but anatomically
plausible augmentation can be beneficial for learning (Billot et al.,
2020), we decided to allow the possibility for some unrealistic
combinations to arise.

2.3. Reconstruction
Once the new parameters have been defined, we could think
that a logical next step would be to generate a new histogram of
intensities by mixing the new Gaussian distributions and using
histogram matching (Wang et al., 1998) techniques to generate
a new image I′. However, doing this would not guarantee that
structural information is preserved (e.g., two components could
overlap or even shift order, and voxels from one tissue would be
wrongly assigned to another class). To avoid this we describe the
intensity v of some voxel n ∈ N in terms of the distance from the
mean of the component measured with theMahalanobis distance
dvk = (v − µk)/σk. This implies that if we know the values of
µk and σ 2

k
we can find the updated value of v → v′ for each

component k by preserving the distance dvk:

v′k = µ′
k + dvkσ

′
k. (3)

Finally, we can compute the new intensity v′ for a voxel
n by leveraging each component by the initial probability

Frontiers in Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 708196

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Meyer et al. An Augmentation Strategy for MRI

that this voxel belonged to a certain class p(C = k|v),
such that

v′ =

N∑

k=1

p(C = k|v)v′k. (4)

This guarantees that the voxels that have a high probability
of belonging to a certain class will represent the same class,
while allowing for nuanced variations at the borders between
different tissues.

3. DATASETS AND EXPERIMENTAL SETUP

From here onwards, the method will be referred to as GMM-
DA, for simplicity. In order to validate the GMM-DA method,
we investigate the added value of the described method on the
task of brain structure segmentation using a well described type
of CNN architecture. We train the same network on two different
datasets: a collection of single-scanner data from healthy subjects,
and a multi-scanner and multi-center collection of patient data.
We compare the performance of the models trained with and
without the addition of the GMM-DA strategy. The different
models are evaluated onmanual segmentations and on test-retest
data. The available datasets and the different experiments are
described in the following sections.

3.1. Available Datasets
A) OASIS

Contains T1w MRI scans from 416 subjects (age: [18, 96]
years) (the OASIS-1 cohort) (Marcus et al., 2007). Only 280
of the 316 healthy subjects were considered (see dataset B).
The data was randomly split into train/validation/test sets
[n = 179(64%)/45(16%)/56(20%)]. Although the data is
heterogeneous from a population point of view, it is extremely
homogeneous in terms of protocol and scanner. All images
were acquired on a 1.5T Siemens Vision scanner, using the MP-
RAGE sequence with constant repetition time (TR) and echo
time (TE) (TR: 9.7 ms; TE: 4.0 ms). Slice thickness is also
constant (1.25 mm).

B) MICCAI 2012

Contains 35 T1w scans from healthy subjects. The original MRI
scans are from OASIS, but this dataset contains manual labels of
brain structures. These data were provided for use in theMICCAI
2012 Grand Challenge and Workshop on Multi-Atlas Labeling
(Landman and Warfield, 2012). All the images in this dataset
were removed from OASIS prior to splitting the data into the
different training and test sets, to avoid overlap. We exclude
5 scans from repeated subjects and use the remaining 30 for
evaluating the methods on the manual labels.

C) MS Dataset

This is a collection of multi-center T1w MRI scans from 421
individual Multiple Sclerosis (MS) patients. It contains a lot of
variability both at the population level and in terms of scanner-
and center- or acquisition-specific factors, i.e., age ([16, 81]
years), sex (M/F ∼ 33%/67%), slice thickness in T1 ([0.4, 1.5]

mm), magnetic field strength (1.5T/3T ∼ 43%/57%), scanner
manufacturer (Philips, GE, Siemens and Hitachi), scanner model
(29 devices) and acquisition sequence (TR: [4.9, 5000] ms; TE:
[1.9, 8.0] ms). This dataset, which we term heterogeneous, was
used to estimate the range of typical variation of the GMM
components for the different tissues, as described in section 2.2.
Additionally, we used this data to generate an independent test
set, containing 92 images from 10 different scanner models. For
an additional experiment we pooled a train/validation set of
251/44 images, ensuring that any scanner models present in the
pre-selected test set or in OASIS were not included.

D) Test-Retest Dataset

Contains T1w MRI scans from 10 MS patients. Each patient was
scanned twice (with re-positioning) on three different 3T scanner
types with different acquisition sequences: (i) Philips Achieva: 3D
T1-weighted FSPGR sequence (TR 4.93 ms); (ii) Siemens Skyra:
3D T1-weighted MP-RAGE sequence (TR 2300 ms, TE 2.29 ms);
(iii) GE Discovery MR450w: 3D T1-weighted FSPGR sequence
(TR 7.32 ms, TE 3.14 ms). Further details regarding this data can
be found in Jain et al. (2015). This dataset allows the models to be
tested for consistency, both in an intra-scanner setting as well as
in an inter-scanner setting.

3.2. Data Pre-processing
All images were normalized using a modified z-score function
robust against outliers, where the median of the distribution
was preferred over of the mean, and the standard deviation
of the distribution was computed within percentiles 10 and
90. Additionally, images were bias-field corrected using the
N4 inhomogeneity correction algorithm as implemented in the
Advanced Normalization Tools (ANTs) toolkit (Tustison et al.,
2010) and linearly registered to MNI space using the tools
implemented in NiftyReg (Ourselin et al., 2001).

3.3. Experimental Setup
We trained a CNN to segment White Matter (WM), Gray
Matter (GM), Cerebro-Spinal Fluid (CSF), Lateral Ventricles
(LV), Thalamus (Tha), Hippocampus (HC), Caudate Nucleus
(CdN), Putamen (Pu) and Globus Palidus (GP). Due to scarcity
of manual delineations, we train and evaluate the CNN models
using brain substructure delineations obtained with icobrain
(Jain et al., 2015; Struyfs et al., 2020), a clinically available and
FDA-approved Software.

3.4. Model Architecture
For the segmentation task we use a 3D UNet architecture (Çiçek
et al., 2016) with a few adaptations, namely:

• Weight normalization layers (Salimans and Kingma, 2016)
are added after each convolutional operation instead of batch
normalization;

• LeakyReLU (Maas et al., 2013) is used as the main activation
function;

• Strided convolutions are used instead of max pooling.

The models are trained using a combination of the soft-dice loss
(LDice) and the weighted categorical cross-entropy loss (LwCE), as
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TABLE 1 | Summary of the trained models.

Training/Testing datasets Testing datasets

Model types OASIS MS dataset MICCAI 2012 Test-retest

CNNOASIS T, E E E E

CNNOASIS-DA T, E E E E

CNNMS E T, E E E

CNNMS-DA E T, E E E

CNNMS-BF - T, E - -

CNNMS-BF-DA - T, E - -

T, trained; E, evaluated.

suggested in Isensee et al. (2021):

Ltotal = LwCE + LDice. (5)

Considering that yn ∈ {0, 1} is the one-hot-encoded label of the
nth voxel in the model’s input and ŷn ∈ [0, 1] is the prediction
output of the model for the same voxel, the soft-Dice loss is
an extension to K classes of the popular Dice loss presented, as
presented in Sudre et al. (2017):

LDice = 1− 2

∑K
k=1

∑
n ŷnkynk∑K

k=1

∑
n ŷnk + ynk

. (6)

To deal with the accentuated class imbalance of this problem we
use the weighted categorical cross-entropy loss similarly to what
was described in Ronneberger et al. (2015). This loss function can
be expressed as:

LwCE = −
1

N

N∑

n=1

K∑

k=1

wnkynk log ŷnk, (7)

where wnk is the weighting factor for the n-th voxel belonging to
the k-class in the training set. These weights allow to compensate
the scarcity of voxels from some of the classes.

The network takes as input patches of size 128 × 128 × 128
and outputs probability maps of size 88× 88× 88. Kernel size is
3 × 3 × 3 and initial number of filters 16 (raised to the power of
2 at each layer in the encoder path). The model is implemented
using Tensorflow 2.0 and trained until convergence using mini-
batch stochastic gradient descent (Adam optimizer) with initial
learning rate λ = 0.001 on a machine equipped with a Tesla K80
Nvidia GPU (12 GB dedicated).

3.5. Experiments
To validate the approach we compare the performance of models
trained with and without the addition of the GMM-DA strategy.
First, we evaluate how a model trained on single scanner data
generalizes to an unseen multi-scanner dataset (train on the
OASIS training set, and evaluate on the OASIS test set and the
MS dataset test set). This is the key experiment in the results,
since we are particularly interested in evaluating the increase
in generalizability of the CNN to multi-scanner and multi-
center data after adding the augmentation step. Although we

acknowledge the presence of white matter lesions in the images
from the MS dataset, we decide not to deal with them explicitly
in this context. Secondly, in order to evaluate how the same
network performs on unseen scanners and centers when trained
on heterogeneous data, we train the same models on the MS
dataset described in section 3. We additionally investigate if the
addition of GMM-DA in this setting is still beneficial.We proceed
to compare these four approaches on manual labels and on the
test-retest dataset. Finally, we evaluate how the presence of bias
field (BF) on the training images impacts the performance of the
GMM-DA. To this end, we train the same models on the MS
dataset images, this time without the bias field correction step.

We train and evaluate a total of six models. The models
are named according to the architecture (CNN), training data
(OASIS or MS), presence of bias field (BF) on the training images
and addition of the data augmentation (DA) step. As such, a
model trained on the MS dataset, on data with bias field and
to which GMM-DA was applied is termed CNNMS-BF-DA. The
investigatedmodels and a description of the data where they were
trained (T) or evaluated (E) are summarized in Table 1.

3.6. Performance Metrics
Dice scores (DC), sensitivity (Se) and precision (Pr) are
reported (complete Se and Pr results are given in the
Supplementary Material). DC values are compared using
Wilcoxon paired rank-sum and Levene tests to evaluate the
null hypotheses H0 that the results from the different models
have equal median and variance values, respectively. These tests
were selected given the presence of outliers and deviations from
normality in the distributions (see Figure 3). When evaluating
the reproducibility of the methods, absolute volume differences
between acquisitions from the same patient are reported. Results
are summarized in terms of median (P50) and percentile 10 (P10)
or 90 (P90), where relevant.

4. EXPERIMENTS AND RESULTS

4.1. GMM Augmentation of a
Homogeneous Dataset
To evaluate the influence of the addition of GMM augmentation
when training on a homogeneous dataset (OASIS), we test
CNNOASIS and CNNOASIS-DA on the two cross sectional datasets
with automated delineations (test sets of OASIS and MS dataset).

Frontiers in Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 708196

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Meyer et al. An Augmentation Strategy for MRI

FIGURE 3 | Dice scores for the CNNOASIS and CNNOASIS-DA models on the OASIS (left) and MS dataset (right) test sets. Marks indicate that there is a significant

difference between the two models (Wilcoxon, ◦p < 0.05, ⋆p < 5×10−4).

TABLE 2 | Summary of the Dice score (DC) performance of models trained on the OASIS data (CNNOASIS and CNNOASIS-DA ) and tested on the OASIS and MS dataset

test sets.

OASIS-test set MS dataset-test set

Tissues CNNOASIS CNNOASIS-DA CNNOASIS CNNOASIS-DA

WM 0.945 0.939 0.897 0.909

GM 0.907 0.900 0.864 0.876

LV 0.964 0.959 0.931 0.948

Tha 0.953 0.951 0.930 0.939

HC 0.909 0.907 0.884 0.893

CdN 0.932 0.930 0.907 0.921

Pu 0.934 0.931 0.906 0.918

GP 0.914 0.911 0.874 0.905

ALL 0.932 0.929 0.899 0.914

Highlighted results indicate that median values are larger (P50: Wilcoxon, p < 0.05).

This will allow us to determine: (i) if applying GMM-DA
decreases the performance on data similar to the training set in
comparison to the base model, and (ii) how the models perform
in a multi-scanner setting. The results in terms of Dice scores are
summarized in Figure 3 and Table 2. The corresponding Se and
Pr results can be found in the Supplementary Table 1.

4.1.1. OASIS

The models achieve high Dice scores and low variability. Se
and Pr are very similar for CNNOASIS and CNNOASIS-DA (min:
SeGM = 0.87, PrGM = 0.87; mean: Se = 0.94, Pr = 0.94).
There is no statistical difference between the Dice score results
(Wilcoxon: p > 0.05, Levene: p > 0.05), except for WM and
GM, where CNNOASIS tends to perform better (Wilcoxon, p <

0.05). Although statistically different, the difference is marginal,
especially when considering the lower limits of the distributions,
as can be appreciated on the left hand side panel of Figure 3.

4.1.2. MS Dataset

CNNOASIS-DA outperforms CNNOASIS for all structures
(Wilcoxon: p ≪ 0.05). Se values are also lower in the CNNOASIS

model (min: SeGP = 0.81, mean: Se = 0.88), while Pr values
are overall comparable between the two models, with local
differences for specific tissues (refer to Supplementary Table 1

for details). Additionally, we can observe in the right hand side
panel of Figure 3 that the variability and incidence of outliers
is reduced for CNNOASIS-DA. All these observations imply that
the addition of GMM-DA greatly improves the performance of
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FIGURE 4 | Dice scores for the CNNMS and CNNMS-DA models on the OASIS (left) and MS dataset (right) test sets. Marks indicate that there is a significant difference

between the two models (Wilcoxon, ◦p < 0.05, ⋆p < 5×10−4).

TABLE 3 | Summary of the Dice score (DC) performance of models trained on the MS dataset (CNNMS and CNNMS-DA ) and tested on the OASIS and MS dataset test sets.

OASIS-test set MS dataset-test set

Tissues CNNMS CNNMS-DA CNNMS CNNMS-DA

WM 0.938 0.950 0.934 0.942

GM 0.851 0.878 0.877 0.896

LV 0.947 0.954 0.957 0.957

Tha 0.949 0.949 0.945 0.952

HC 0.905 0.910 0.900 0.906

CdN 0.922 0.923 0.919 0.933

Pu 0.920 0.924 0.928 0.932

GP 0.894 0.899 0.888 0.907

ALL 0.916 0.923 0.919 0.928

Highlighted results indicate that median values are larger (P50: Wilcoxon, p < 0.05).

the model to new data containing unseen scanner types from
different centers.

4.2. GMM Augmentation of a
Heterogeneous Dataset
Now that we have established that the addition of GMM-DA
is beneficial for the generalization of a model trained on a
homogeneous dataset to multi-scanner settings, we evaluate the
performance of a model trained on the MS dataset, which is very
heterogeneous. We additionally investigate the effect of adding
GMM-DA when training on a dataset with these characteristics.
The CNNMS and CNNMS-DA models are evaluated in the same
way as the above, and results are summarized in Figure 4 and
Table 3. The corresponding Se and Pr results can be found in the
Supplementary Table 2.

4.2.1. OASIS

The MS dataset does not contain images with the same
characteristics as OASIS. This explains a drop in performance in
terms of DC for CNNMS on the OASIS test set. From Table 3 we
can observe that after the addition of GMM-DA the performance
increases: CNNMS-DA performs better for all the structures, with
the exception of Tha and CdN, where there is no statistical
difference in terms of performance (see the left hand side panel
of Figure 4).

4.2.2. MS Dataset

As mentioned in section 3, the MS test set contains scanner
types which were not present in the training set. CNNMS-DA

outperforms CNNMS for all structures (Wilcoxon: p ≪ 0.05)
except LV (Wilcoxon: p > 0.05) in terms of DC (see Table 3

and the right hand side panel of Figure 4). Se and Pr values are
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FIGURE 5 | Dice scores for the CNNOASIS-DA and CNNMS models on the OASIS (left) and MS dataset (right) test sets. Marks indicate that there is a significant

difference between the two models (Wilcoxon, ◦p < 0.05, ⋆p < 5×10−4).

also generally lower in the CNNMS model, with local differences
for specific tissues (see Supplementary Table 2 for details). This
indicates that adding GMM-DA to an already heterogeneous
dataset can further increase the generalizability of the network.

4.3. Comparison Between the Different
Models
Given that large multi-scanner and multi-center datasets are not
commonly available to researchers, we are particularly interested
in the comparison between the model trained on OASIS with
augmentation (CNNOASIS-DA) against the model trained on the
MS dataset without augmentation (CNNMS). To facilitate the
comparison, the performance of both models is displayed in
Figure 5.

4.3.1. OASIS

For most of the evaluated structures, CNNMS shows a significant
decrease in performance in comparison to CNNOASIS-DA. It is
expected that themodels trained on theMS dataset have generally
lower performance than the models trained on OASIS, since the
images in the MS dataset training set do not share the same
characteristics as the ones in OASIS (as previously illustrated in
Figure 2). The addition of GMM-DA to CNNMS can help reduce
this performance gap, as seen in the previous section.

4.3.2. MS Dataset

Analyzing the right hand side panel of Figure 5, it is interesting
to verify that CNNOASIS-DA approximates the variability of
the CNNMS for all the structures. In terms of median DC
values it sometimes equals or even surpasses its performance
(GM, GP and CdN). It is important to keep in mind that
the MS dataset contains pathological images which are not
present in OASIS. CNNMS has been exposed to many more
types of images, with some patients possibly presenting a small

number of lesions. However, the contrary is not true, given that
OASIS only contains images from healthy subjects. At best, the
networks trained on this data were exposed to a few lesions
present in the older subjects’ scans. It is thus not possible to
guarantee that the differences in performance between CNNMS

and CNNOASIS-DA on a pathological dataset are caused only
by scanner or acquisition variability. Nevertheless, these results
show that with a simple data augmentation strategy it is possible
to achieve competitive results on unseen data from various
scanners and centers.

In order to visualize the different results, Figure 6 illustrates
the results obtained on three different images from the MS
dataset using the four different models described so far. For
simplicity, WM and GM are not shown. Looking at this figure
it is very clear that when the image contrast is not good,
the CNNOASIS model can produce segmentation results which
infiltrate WM and CGM regions in unexpected ways. The
addition of GMM-DA brings the results much closer to the
ground truth results.

4.4. Evaluation on Manual Labels
To validate the performance of the models on manual
segmentations we evaluate them on the MICCAI 2012 dataset.
It is interesting to compare their performance against the
performance of the method used to get the automated labels the
models were trained on (icobrain). The results are summarized
in Figure 7, where results which are statistically different to
icobrain are indicated (Wilcoxon: p < 0.05).

For most structures the models reach comparable
performance. CNNMS−DA is the model with overall best
performance, but still does not surpass icobrain. For GM,
CNNMS and CNNMS−DA achieve much lower performance than
the other models. This is in line with the results observed for
the OASIS dataset. Recalling that this dataset is derived from a

Frontiers in Neuroscience | www.frontiersin.org 9 August 2021 | Volume 15 | Article 708196

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Meyer et al. An Augmentation Strategy for MRI

FIGURE 6 | Segmentation results for the different models on three test examples from the MS dataset. The automated ground truth is computed by icobrain. Results

from CNNOASIS are very variable depending on image intensity. The addition of GMM-DA improves the segmentation prediction.

subset of OASIS, CNNOASIS and CNNOASIS-DA were exposed to
images with these characteristics during training, while CNNMS

and CNNMS−DA were not. Variances are not statistically different
for any tissue type. Se and Pr values are also comparable for all
models, with mean Se ≈ 0.84, Pr ≈ 0.85.

4.5. Consistency on Test-Retest Data
By evaluating the models on the test-retest dataset described
in section 3 it is possible to evaluate how each model deals
with differences in scanner type. As previously mentioned, the
dataset contains two repetitions per scanner in two or three
different scanners. We compute the difference in predicted
volume for each of the evaluated structures between same
scanner repetitions (intra-scanner differences) and between
the repetitions in different scanners (inter-scanner differences).
We consider all possible scanner combinations, which means
that we end up with 26 intra-scanner and 88 inter-scanner
repetitions. We compare the performance of our methods
against icobrain. As already mentioned, this method is clinically
available. However, when performing longitudinal evaluations,
this method has a key limitation: the results are considered
reliable only if the two images being analyzed were acquired
in the same, or compatible, scanner. As such, we are interested
in achieving better inter-scanner volume estimation differences,
and we consider inter-scanner results to be consistent if the

volume differences are in a comparable range to the intra-scanner
differences obtained by icobrain.

For a simplified overview of the results, we plot the
distribution of volume differences for all the considered brain
structures in Figure 8. Additionally, in Table 4 we showcase
the results in terms of median and P90, which translates the
variability in the distributions. We exclude the CNNOASIS model
from the table, since it is clear from Figure 8 and Table 2 that the
performance of this method is low for multi-scanner datasets.

Globally we observe that intra-scanner differences are much
lower than inter-scanner differences for all the models. In the
intra-scanner case, CNNOASIS produces a higher error than
the other models for all structures. Interestingly, CNNOASIS-DA

produces very stable results, comparable to or even better than
icobrain for several structure types (Tha, HC, CdN). CNNMS-DA

produces the most consistent results for most of the structures,
especially when considering P90.

Regarding inter-scanner differences, we observe that the
CNNOASIS model produces extremely large variability. The other
models either compare to icobrain or produce more consistent
results. The exception is WM and GM, where icobrain still
outperforms the other methods in terms of consistency. This is
in line with the previous observations that performance (in terms
of Dice) was lower in these two tissues. The most important
observation is that CNNMS-DA produces the most consistent
results for all the substructures. The results for this model are
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FIGURE 7 | Dice scores on the MICCAI2012 test set for icobrain, CNNOASIS, CNNOASIS-DA, CNNMS and CNNMS−DA models. Asterisks indicate that there is a

significant difference between the result and icobrain (Wilcoxon, ◦p < 0.05, ⋆p < 5×10−4).

FIGURE 8 | Volume difference between intra-scanner and inter-scanner repetitions from the same patient. To be able to keep the same scale for intra-scanner and

inter-scanner the CNNOASIS results are sometimes not fully shown.

sometimes comparable to the values obtained by icobrain in
the intra-scanner case (noticeably for HC and GP). Overall, the
addition of GMM-DA results in a very significant improvement,
both in comparison to icobrain and to the CNNMS method.
Additionally, a very interesting observation is that CNNOASIS-DA

achieves a performance which is comparable to that of CNNMS,
sometimes even surpassing it (Tha, HC, CdN).

4.6. Influence of Bias Field
A bias field is an undesirable spatially smoothly varying low
frequency signal that often corrupts MRI images (Juntu et al.,
2005). A number of methods have been proposed to remove this
signal from the images, and bias-field correction is often used
as a pre-processing step. Given that this is a slow procedure
which can sometimes produce underlying errors, it has become
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TABLE 4 | Volume differences (mL) between intra- and inter-scanner repetitions from the same patient.

Intra-scanner differences

WM GM LV Tha HC CdN Pu GP

P50 5.00 5.22 0.44 0.23 0.11 0.17 0.17 0.07
icobrain

P90 12.94 12.38 1.04 0.47 0.56 0.43 0.48 0.19

P50 8.08 4.06 0.35 0.08 0.12 0.08 0.16 0.06
CNNOASIS-DA

P90 19.72 13.54 1.17 0.43 0.31 0.34 0.44 0.16

P50 4.86 3.48 0.38 0.22 0.07 0.09 0.08 0.07
CNNMS

P90 15.82 14.73 1.02 0.46 0.28 0.36 0.28 0.19

P50 4.94 3.51 0.33 0.11 0.06 0.08 0.12 0.05
CNNMS-DA

P90 14.11 12.12 0.82 0.33 0.16 0.26 0.34 0.13

Inter-scanner differences

WM GM LV Tha HC CdN Pu GP

P50 40.26 7.68 1.08 0.67 0.41 0.62 0.44 0.37
icobrain

P90 76.52 23.77 2.73 1.38 1.15 1.16 1.04 0.67

P50 71.28 31.07 1.15 0.29 0.15 0.27 0.46 0.14
CNNOASIS-DA

P90 117.65 65.34 3.15 1.21 0.56 0.82 1.11 0.30

P50 49.43 31.58 1.07 0.47 0.26 0.33 0.29 0.10
CNNMS

P90 94.36 55.98 2.56 1.46 0.65 0.91 1.13 0.73

P50 57.45 19.71 0.84 0.37 0.13 0.24 0.23 0.09
CNNMS-DA

P90 93.47 35.75 2.85 0.88 0.29 0.57 0.87 0.27

Best results are highlighted.

FIGURE 9 | Influence of bias field on the GMM. Images and corresponding histograms with GMM prediction overlaid in red. Left: original image with bias field; right:

bias field corrected image.

popular to skip bias field correction when using deep learning
approaches, and instead allow the networks to learn the bias-field
mechanisms, with good results (Kamnitsas et al., 2017).

However, bias field correction is extremely important for
GMM-based methods, since it changes the intensity profiles of
the different tissues. This effect is illustrated in Figure 9, where
the histogram of a bias field corrected image is compared to that
of an image with bias field. It is very likely that when applying
GMM-DA some of the voxels corresponding to WM will be
treated as GM, or vice-versa. This implies that the structural
information can be lost, which will very likely result in drop in

the performance of a model trained on images with bias field and
the addition of GMM-DA.

To test our hypothesis we trained two models, following
the same scheme as in the previous experiments, on images
with bias field. More specifically, we repeated the experiment
from the previous section training on the MS dataset without
the bias field correction at pre-processing. The results of this
experiment are detailed in Table 5. As expected, applying GMM-
DA on this type of data either decreases the performance
of the method (WM, GM and LV), or has no effect on the
segmentation performance. This is in line with our hypothesis
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TABLE 5 | Summary of the performance of models trained and evaluated on data with bias field on MS dataset.

MS dataset-test set (with bias field)

CNNMS-BF CNNMS-BF-DA

Tissue DC(P50) DC(P10) DC(P50) DC(P10)

WM 0.950 0.920 0.945 0.914

GM 0.914 0.877 0.903 0.859

LV 0.941 0.854 0.845 0.554

Tha 0.937 0.911 0.937 0.896

HC 0.865 0.842 0.858 0.827

CdN 0.915 0.880 0.910 0.865

Pu 0.903 0.885 0.911 0.891

GP 0.855 0.803 0.854 0.807

ALL 0.910 0.872 0.895 0.827

DC, Dice scores. Highlighted results indicate that median values are larger (P50: Wilcoxon, p < 0.05) or variances are lower (P10: Levene, p < 0.05).

and indicates that the GMM-DA should be applied on bias-field
corrected images.

5. CONCLUSIONS AND FUTURE WORK

In this work we present a novel intensity-based data
augmentation strategy. The main goal of this approach is
to aid models trained on scanner- and center-homogeneous
datasets generalizing to multi-scanner, multi-center data. The
proposed method is fast, simple and can be added to any MRI
training pipeline to generate images on-the-fly. We observed that
applying the augmentation step while training on homogeneous
data leads to a pronounced improvement in performance
when the trained model is tested in multi-scanner data from
difference centers. This is the case in terms of segmentation
quality (as measured by Dice score), but also in the consistency
of the produced prediction (as measured in terms of volume
differences). When applied to the test-retest dataset there is a
remarkable improvement, especially for repetitions in different
scanners. The baseline model trained on homogeneous data
produces extremely inconsistent results, while the same model
with addition of GMM-DA compares to a model trained on
multi-scanner, multi-center data. We additionally verify that
applying GMM-DA when training a model on multi-center data
results in an increase in performance, again both in terms of
accuracy and consistency of the predictions. These observations
are particularly interesting because large multi-scanner, multi-
center datasets are not commonly available to researchers in the
field. Nevertheless, even when such a dataset is available, it is
possible to obtain even more generalization by adding a simple
augmentation strategy.

It should be noted that the heterogeneous dataset contains
several sources of variability, including acquisition sequence
parameters. The resulting contrast variability is also addressed by
the GMM-DA. Therefore, we can attribute the improvement in
the generalization capabilities of the CNN not only to scanner,
but also to generalization to unseen acquisition parameters, or
other center-specific factors.

It is possible that combining this method with other DA
procedures would result in an even more robust model.
Nevertheless, we opted to restrict the augmentation procedures
such that we could observe the added value of our method alone.
Additionally, since the images were registered to MNI space
adding geometric transformations such as rotations and flips is
not necessary. Nonetheless, it is expected that the DA algorithm
still works well if the images are in native space. Registration was
performed as a way to simplify the learning of the network, since
we were interested in comparing the effect of the augmentation
step in a simplified setting.

There are a few limitations to the present work. Namely,
the images need to be bias-field corrected as a pre-processing
step to successfully apply the GMM-DA. We don’t see this as a
disadvantage, since GMM-DA is only needed at training time.
We argue that it would be possible to add back the bias-field to the
augmented image, which would allow the model to be effectively
trained with bias field. This step would allow the final trained
model to generalize to images with bias-field, thus eliminating
the need for bias-field correction at inference time. Experimental
validation of this claim remains out of the scope of the present
work, given that it is related to improving the overall model
performance, and is not connected to the effectiveness of the
proposed approach.

Additionally, the presence of pathology in the MS dataset
introduces an extra source of variability. In images with WM
lesions, as is the case for MS, it is tempting to assume that a
fourth component to the GMM would be a good way to capture
the lesion class. However, lesions in T1w images overlap with
the GM class in terms of intensity, for which reason it would
be impossible to perfectly disentangle the two classes with the
current framework. A more sophisticated approach would be
necessary for this, likely at the cost of the possibility to generate
images on-the-fly, unless lesion masks are available.

Finally, due to scarcity of manual delineations, the models
were trained on automated segmentations. This is not ideal,
because our model is likely to inherit any bias or known problems
that might exist in the ground truth. However, given that we are
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especially interested in the effect of the augmentation we can still
make a fair comparison between the approaches.

Although we focused on the task of brain structure
segmentation in T1wMRI images, we believe this simple method
has the potential to be used for other tasks in medical imaging
that make use of MR images. As long as there are discernible,
anatomically-related peaks in the intensity histograms, the
method is transferable to other MR protocols and sequences. It
is an open question whether the method is helpful for different
tasks without further adaptations. For tasks such as lesion
segmentation we hypothesize that if lesion masks are available
it would be simple to adapt the method such that contrasts and
intensities are locally modified within the abnormal area. We
further see potential in this method to be adapted such that it
offers a fast way to replace missing modalities in tasks requiring
two or more MRI modalities (e.g., as often performed for brain
tumor segmentation). This would expectably come at the expense
of some performance power, but could allow existing pipelines to
be used on incomplete data.

Given these considerations, an immediate next step would be
to apply the current method to different applications (e.g., brain
age or disability scores prediction from MR images) and verify
our claim. A second step would be to extend the method to
different types of brain lesions when such masks are available, to
model the intensity of the tissues of interest individually, and test
the added value of the extended method to applications such as
detection, classification and segmentation of MS lesions, stroke,
or brain tumors. Additional future directions include extending
the augmentationmethod by introducing changes to the different
components of the mixture such that they are not necessarily
represented by Gaussian distributions. Moreover, it would be
interesting to investigate how the addition of (preferably Rician)
noise to the images would impact performance on unseen
scanner types. Typical geometric distortions and bias fields
can also be modeled and included in a more complex data
augmentation scheme.
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