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One of the main goals of neuromorphic computing is the implementation and design of

systems capable of dynamic evolution with respect to their own experience. In biology,

synaptic scaling is the homeostatic mechanism which controls the frequency of neural

spikes within stable boundaries for improved learning activity. To introduce such control

mechanism in a hardware spiking neural network (SNN), we present here a novel artificial

neuron based on phase change memory (PCM) devices capable of internal regulation

via homeostatic and plastic phenomena. We experimentally show that this mechanism

increases the robustness of the system thus optimizing the multi-pattern learning

under spike-timing-dependent plasticity (STDP). It also improves the continual learning

capability of hybrid supervised-unsupervised convolutional neural networks (CNNs), in

terms of both resilience and accuracy. Furthermore, the use of neurons capable of

self-regulating their fire responsivity as a function of the PCM internal state enables the

design of dynamic networks. In this scenario, we propose to use the PCM-based neurons

to design bio-inspired recurrent networks for autonomous decision making in navigation

tasks. The agent relies on neuronal spike-frequency adaptation (SFA) to explore the

environment via penalties and rewards. Finally, we show that the conductance drift of the

PCM devices, contrarily to the applications in neural network accelerators, can improve

the overall energy efficiency of neuromorphic computing by implementing bio-plausible

active forgetting.

Keywords: brain-inspired computing, unsupervised learning, reinforcement learning, spike-timing-dependent

plasticity, hardware resilience, homeostatic scaling, synaptic scaling, phase change memory

1. INTRODUCTION

The field of artificial intelligence (AI) has recently seen significant breakthroughs in the research,
showing high performance in several tasks such as image recognition, natural language processing
and playing games (Collobert et al., 2011; Krizhevsky et al., 2012; Mikolov et al., 2012; Silver et al.,
2016). The most widespread approach to AI has focused on deep learning, where the intelligent
systems are trained via specific algorithms such as backpropagation (LeCun et al., 2015). However,
the pre-tuning of the training parameters, which requires time and power intensive procedures,
deprives the systems of the plastic adaptation to the environment which, on the other hand, is one
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of the fundamental properties of the biological organisms.
This lack of resilience with respect to a constantly changing
environment is what actually hinders the current AI to achieve
human-like accuracy in daily-life tasks (Parisi et al., 2019).

Biological organisms collect, settle and modulate the
information relying on specific mechanisms of synaptic plasticity
and neural activity (Turrigiano, 1999). In particular, the learning
procedure is usually explained in terms of Hebbian-type
plasticity, where the time correlation between the pre-synaptic
and post-synaptic spikes induces variations of the synaptic
weights (Fox and Stryker, 2017; Lisman, 2017), as in spike-
timing-dependent plasticity (STDP) (Masquelier and Thorpe,
2007). On the other hand, Hebbian learning cannot completely
describe the learning procedure of the brain, since the only STDP
theory foresees a continual synaptic potentiation and depression
as a consequence of the correlation between the neuronal
responses and the corresponding inputs (Miller and MacKay,
2008). In fact, biological systems adopt homeostatic regulation
to keep the overall neuronal and synaptic activities within safe
boundaries, which also helps to counteract unwanted changes
of the firing rate due to external perturbations (Turrigiano,
1999). In this framework, the synaptic scaling, or homeostatic
scaling (Turrigiano, 2008), refers to the biological mechanism
able to counteract a chronically high firing rate of a population
of neurons. Thus, Hebbian learning and homeostatic regulation
sustain each other for the optimization of experience-based
knowledge toward continual adaptation of real-life information
(Abraham and Robins, 2005; Zenke et al., 2017).

Experience-based knowledge, where agents learn a behavioral
policy by interacting with the world and consequently receiving
penalties and rewards, is a scientific field shared between
neuroscience and computer science known as “reinforcement
learning” (Kaelbling et al., 1996). One of the leading
reinforcement mechanism is associated with dopamine, a
pleasure-related neurotransmitter, which is released in the
brain when a person succeeds in solving a problem (Schultz
et al., 1997). In the literature, several approaches have been
proposed to facilitate reinforcement learning. For instance,
reinforcement techniques have been shown to enable the
learning of optimized behavioral policy for a given model of the
space, where the agent continually looks for the maximization
of the reward thus acquiring an accurate mapping of the
environment (Sutton, 1988). However, in real life, an agent
must build its own model by incremental experience of positive
and negative events, as studied by model-free methods such
as (i) Q-learning (Watkins and Dayan, 1992) and (ii) temporal
difference learning, TD(λ) (Doya, 2000). In particular, in
the last few years, such cognitive functions have been widely
discussed in the framework of attractor neural networks for
the key role of cognitive functions, such as context dependent
decision making (Doya, 2000; Kuzum et al., 2012), thus gaining
momentum as viable networks to replicate human-like behaviors
(Chicca et al., 2014).

The combination of the benefits introduced by homeostatic
mechanism and reinforcement learning would thus improve the
artificial intelligence systems toward the ability to autonomously
interact with the environment in real life situations.

In this framework, several neuromorphic spiking neural
networks (SNNs) based on CMOS technology have been
proposed, demonstrating VLSI synaptic circuits with
homeostatic neurons (Bartolozzi and Indiveri, 2006; Chicca
et al., 2014; Qiao et al., 2017) and reward-based decision-making
circuits (Wunderlich et al., 2019; Yan et al., 2019). At the
same time, non-volatile memory devices, such as phase change
memory (PCM), have raised considerable interest as promising
synaptic connections for neuromorphic computation, thanks to
the 3D stacking capability, the low-voltage operation and the
ability to serve as embedded non-volatile memory in computing
systems (Suri et al., 2012; Xu et al., 2020; Ren et al., 2021).
In particular, PCMs have recently demonstrated outstanding
multi-level capability (Kuzum et al., 2013; Ren et al., 2021),
which enables continual learning in neural networks (Bianchi
et al., 2019; Muñoz-Martín et al., 2019) and decision making in
brain-inspired cognitive systems (Eryilmaz et al., 2014).

In this work, we present a novel artificial integrate-and-fire
(I&F) neuron based on PCM devices implementing homeostatic
mechanisms. In particular, the gradual crystallization of a PCM
device enables the continual tuning of the internal threshold of
the neuron as a function of the level of firing excitation. This
adaptation process improves the learning capability and directly
translates in hardware the homeostatic control mechanism that
manages the synaptic weight update during STDP. We show that
the homeostatic neuron can optimize the pattern specialization of
large images, e.g., those taken from the Fashion-MNIST dataset,
while enabling high robustness against errors and external
perturbations (Muñoz-Martín et al., 2020). In this framework,
we propose the use of PCM-based homeostatic neurons for
achieving continual learning in standard convolutional neural
network. We also analyze the impact of device programming
failure in relation to the multilevel capability of the PCM devices.
The impact of PCM conductance drift is also studied (Suri et al.,
2012; Xu et al., 2020; Ren et al., 2021), demonstrating that
this device non-ideality could implement bio-inspired features,
such as active forgetting. Finally, we propose a novel bio-
inspired recurrent neural network (RNN) capable of solving
reinforcement learning tasks. The internal state of each neuron of
the RNN is mapped by the self-adaptive threshold using a PCM
device, which modulates, as before, the firing excitability. The
more the neuron fires, the more the control PCM conductance
increases, thus mapping the dynamic behavior of the network
in real time (Bianchi et al., 2020b). In this work, the recurrent
PCM device enables the study of several reinforcement learning
tasks such as decision making during autonomous navigation,
with particular attention in terms of power-efficiency. This work
highlights the importance of PCM devices as key elements
to achieve adaptation, learning and autonomous navigation
exploiting the benefits of local edge computing.

2. BIO-INSPIRED LEARNING IN
ARTIFICIAL NEURAL NETWORKS

Figure 1A shows a schematic illustration of spike-frequency
adaptation (SFA) in a neuronal cell. When a signal excites a

Frontiers in Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 709053

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Muñoz-Martin et al. A Brain-Inspired Homeostatic Neuron

FIGURE 1 | (A) Biological neurons are stimulated by spikes coming from the synaptic connections and modulate their response in frequency as a function of the

spiking activity. (B) By implementing the spike frequency adaptation in hardware, it is possible to introduce a boundary for the learning activity of large images, e.g.,

from the Fashion-MNIST dataset, thus boosting the overall specialization accuracy. (C) Furthermore, the specialization of the output neuron results in a decrease the

firing activity of the neuron, thus optimizing the energy consumption.

neuron, the output firing rate is balanced between an increase
due to the synaptic potentiation and a decrease due to the
homeostatic mechanism (Indiveri et al., 2011). In synaptic
learning processes, this threshold regulation aims at stabilizing
the learning activity and limiting the growth of the synaptic
weights, thus enabling low energy consumption and better
accuracy of classification.

The homeostatic adaptation has been studied in the case
of a winner-take-all (WTA) network for the classification of
large images. The output homeostatic neurons (POSTs) must
specialize on different classes of images presented at the input
of the WTA, Figure 1B, thus enabling the spike-frequency
adaptive mechanism that limits the power consumption and
enables efficient classification (Figure 1C; Pedretti et al., 2018).
Classification is achieved by using both excitatory synapses,
which evolve by increasing or decreasing the conductance
accordingly to STDP, and inhibitory synapses, which prevent
the same specialization on different patterns by discharging
the integration at each POST firing activity (Bianchi et al.,
2020a). Synaptic excitatory dynamics are reproduced by using
PCM devices switching from low resistive state (LRS) to high
resistive state (HRS), and vice versa. Potentiation is achieved
when the POST fires after the pre-neurons (PREs), while
depression is achieved when the POST fires before the PRE
(Bianchi et al., 2020c).

2.1. Hardware Realization of the
Homeostatic Neuron
Figure 2 illustrates the artificial neuron circuit, where the
threshold is managed by a control PCM directly connected to
the comparator which compares the membrane potential with
the threshold. PCM devices typically show multilevel storage
with a large number of analog conductance states (Kim et al.,
2019). In Figure 2, the multilevel behavior is obtained by the
applications of repeated set pulses to the top electrode for gradual
crystallization or amorphization, thus causing a modulation of
the neuronal threshold (Suri et al., 2011; Wright et al., 2013;
Tuma et al., 2016).

The incoming PRE spikes are weighted by PCM synapses
which induce a synaptic current collected by the “integration”
block in Figure 2. The synaptic current spikes are integrated
until the internal potential hits the threshold of the neuron.
This event causes the generation of two spikes, namely (i) a
POST spike which is applied to the next layer of neurons, and
(ii) a second spike which is applied to the top electrode of the
internal PCM device to induce partial crystallization, which is
responsible for a self-threshold regulation. Each crystallization
pulse leads to an incremental set transition of the PCM device
to higher conductive values GPCM . The PCM conductance is the
leading element setting the responsivity of the neurons since it
maps the fire threshold VTH of the neuron. In particular, VTH is
obtained as the read current of the PCM biased at negative values
(Vread < 0) after conversion by the trans-impedance amplifier
of Figure 2, namely VTH = −RLGPCMVread, where RL is the
feedback resistance and GPCM also includes the conductance of
the series transistor M1. Initially, the PCM device is prepared
in the HRS, thus resulting in low current IC and low threshold
voltage VTH . As the POST fires, the incremental crystallization of
the PCM causes the increase of the threshold with respect to the
first reference firing value. The gradual crystallization procedure
is thus iterated at every POST fire, causing a continuous increase
of VTH . As a result, more input spikes are needed to induce the
fire of the neuron or, equivalently, the spiking frequency of the
POST decreases at increasing crystallization of the control PCM.

2.2. Characteristics of the PCM Devices
The PCM is programmed by set (with current ISET) and reset
signal pulses as shown in Figure 3A. Figure 3B shows the
cumulative distribution of the LRS and HRS resistances after
the application of the programming signals, with two orders
of magnitude of resistive window. On the other hand, note
that the PCM shows a gradual increase of conductance which
suitably reproduces the adaptive threshold regulation of VTH . In
particular, the variation of LRS distributions can be modulated
by proper choice of IPULSE, thus enabling multilevel states. The
multilevel behavior of the PCMs can be obtained by both starting
from a full LRS and applying incremental amorphizing pulses,
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FIGURE 2 | Scheme of the homeostatic neuron with the control PCM device which regulates the internal threshold. The spike signals coming from other neurons

(e.g., pre-synaptic neurons) are integrated (“Integration” block) using an Arduino microcontroller (2 or Mega2560 in the measurements we performed). Arduino also

manages the fire activity when the threshold of the neuron is overcome. When this happens, two signals are generated: (i) the “Out” response of the neuron and (ii) the

crystallization pulse for the gradual increase of the PCM conductance. In this way the internal threshold VTH of the neuron increases.

as indicated in Figure 3A, or from a partial HRS and applying
crystallizing pulses. Note that the crystallization depends on both
the amplitude and duration of the pulses. In general, GPCM is
more easily modulated by using shorter pulses and intermediate
set voltages. In this way, the conductive multilevel states can be
spread over one order of magnitude, thus enabling the possibility
of effective modulation of the threshold (Wong et al., 2010).

Note that the PCM resistance suffers from the conductance
drift in time, which is due to the structural relaxation of the
device (Kim et al., 2019). Figures 3C–E illustrate the time
evolution of three different resistance distributions. Experimental
data show that the conductance drift is higher for higher
initial resistances, thus obtaining a non-linear increase in time

of the initial programmed conductive value if the device is
not continuously re-programmed. Such variation in time of
the synaptic weights implemented with PCM devices is a key
limitation for the design of neural accelerators (Kim et al., 2019;
Joshi et al., 2020). The progressive decrease of the conductance
also affects the homeostatic mechanism. However, the drift can
also have a beneficial effect in our bio-inspired neuron, since
it gives the possibility of spontaneous forgetting. In fact, the
threshold of the neuron naturally decreases during drift, thus
increasing the neuronal firing excitability and enabling an active
forgetting mechanism.

Note that the PCM devices can be also programmed in
multilevel states by applying repetitive voltage rectangular pulses,
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FIGURE 3 | (A) Typical current programming signals used to set and reset the PCM device to low resistive state (LRS) and high resistive state (HRS), respectively.

(B) LRS and HRS experimental distributions of the PCM devices. (C–E) Distributions of three different programmed multilevel resistive states to highlight the effect of

the conductance drift in time. Note that the conductance drift is more evident at higher initial values of resistances. (F) Voltage-based rectangular programming pulses

for achieving multilevel resistive states starting from a partial HRS. (G) Multilevel characteristics at different set voltages as a function of the number of rectangular

pulses for a pulse duration TSET = 75 ns. (H) Experimental color maps varying the number of pulses for achieving multilevel states as a function of the rectangular

pulse amplitude and duration.

as highlighted in Figure 3F starting from a partial HRS. In
particular, it is possible to modulate the number of multilevel
states by proper choice of the voltage amplitude VSET at fixed
pulse duration TSET , as highlighted in Figure 3G for TSET =

75 ns. Note also that it is possible to have a modulation of the
resistive states at various combination of duration and amplitude
of the repetitive programming pulses, as depicted in Figure 3H,
thus giving rise to an extensive resistive modulation as a function
of the target programming condition. This is very important
for the development of neuromorphic and neural networks with
PCM-based homeostatic neurons, as it is going to be analyzed in
the following.

3. UNSUPERVISED STDP WITH
HOMEOSTATIC MECHANISM

To study the properties of the homeostatic neuron with respect
to the classification accuracy of input images, we designed a
spiking neural network capable of unsupervised learning by
STDP. The input patterns are submitted asynchronously, which
means that not all the patterns are presented with fixed density
and shape to the network. Note also that the input signal consists
of an alternation of the asynchronous pattern and random noise
spikes, where noise, used for background depression, has lower
density and input appearance probability in order to assure
circuital and learning stability during operation (Bianchi et al.,
2020c). Figure 4A illustrates the SNN, where PCM synapses
have 1-transistor/1-resistor (1T1R) structure with the gates of

the transistors connected by wordlines (WLs) and the PCM top
electrodes connected by bitlines (BLs). The bitlines are directly
linked to the neurons, since the feedback neuronal signal is used
to adjust the synaptic weights involved in the STDP protocol
(Ambrogio et al., 2016a). Thus, with respect to Figure 2, which
represents the main structure of the homeostatic neuron, a
further signal line is needed for the unsupervised learning with
STDP. Input spikes are applied to the WLs to induce synaptic
currents that are summed at each column to feed the I&F
POSTs with self-adaptive threshold, according to the scheme of
Figure 2. The feedback spike consists of a set pulse of voltage
VTE, followed by a pulse of reset voltage. The overlap between
the PRE spike and the POST spike induces potentiation (set
transition) or depression (reset transition) for positive or negative
delay between the two spikes (Bianchi et al., 2020c). During
potentiation the synaptic element switches to LRS, while during
depression the synaptic element switches to HRS. Thus, the
STDP is mapped in a binary framework, which enables simpler
hardware computation with respect to bio-inspired analog STDP
(Bianchi et al., 2020c). Note that an extra column of PCM
synapses programmed in the HRS is used to discriminate pattern
and noise, i.e., in particular, spike integration is enabled only for
the presentation of an input pattern, to prevent a decay of the
overall accuracy due to noise (Ambrogio et al., 2016b).

Figure 4B shows the measured weights of the 16 PCM
synapses, divided in pattern synapses and background
synapses which were not stimulated by input pattern spikes.
Once the internal potential overcomes the threshold VTH ,
the POST generates a spike, thus enabling the synaptic
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FIGURE 4 | (A) Experimental setup for the asynchronous STDP, where the inputs are submitted at the wordlines (WLs). Every column connects the WLs to a specific

POST by using 1T1R PCM excitatory synapses, while the inhibitory synapses are implemented via discharge signals of the integrators. A further column of HRS

devices is used for pattern/noise detection. The integration activity of each neuron is enabled only for IDET > IREF . (B) Experimental evolution of the pattern and

background synapses under STDP. Note that the inputs are presented to the network asynchronously, since the potentiation and depression are gradual. (C) At every

firing activity, the internal PCM device of the neuron is incrementally set thus obtaining an overall reduction of the spiking frequency due to the increase of the internal

threshold of the neuron. This spike frequency adaptation enables optimized pattern specialization and reduced energy consumption. (D) Schematic representation of

the experimental setup with several POST-synaptic neurons in order to implement a WTA network. Note that the microcontroller (we used both Arduino 2 and Arduino

Mega2560) acts as master of the system.

potentiation/depression (depending on the PRE/POST spike
delay) and the increase of the homeostatic PCM conductance. In
turn, the PCM conductance increase causes the increase of VTH ,
hence the homeostatic control mechanism. This is evidenced
by the decreased POST spiking frequency in Figure 4C,
which ensures an improved energy efficiency of the SNN. The
integration is disabled when the POST fires in order to avoid the
integration of set/reset pulses to prevent excessive charge storage
in the integrator block of Figure 2.

Figure 4D shows a simplified schematic to explain the
management of the homeostatic neuron for the STDP
measurements in a WTA network. An Arduino 2 (or Mega2560)
microcontroller acts as master of the whole setup, managing
both the gate voltages and the proper top electrode biases of the
synaptic elements implemented with PCMs. The microcontroller

also manages the results of the integration signal with respect
to the adaptive internal thresholds of the homeostatic neurons.
Note also that, at fire, the multiplexers enable the passage of the
top electrode voltage of the synapses in order to implement the
STDP learning paradigm.

3.1. Fashion-MNIST Accuracy and
Robustness
To study the effect of homeostatic scaling on multi-pattern
unsupervised learning, we simulated our SNN for the average
classification of images from the Fashion-MNIST dataset,
characterized by 10 different classes of clothes. Figure 5 shows
the confusion matrices from Monte Carlo simulations for
the learning accuracies without homeostasis (Figure 5A) and
with homeostasis (Figure 5B). The study is carried out by
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FIGURE 5 | Confusion matrices for the study of the average accuracy of the learning activities for the 10 classes of the Fashion-MNIST training dataset without

(A) and with (B) homeostasis. The learning accuracy highlights a high and stable tendency only when homeostatic neurons are used as post-synaptic neurons in the

WTA network, reaching a value of 97%. (C) Fire activities of 5 homeostatic and non-homeostatic (D) neurons in 500 epochs of pattern and noise presentations. The

homeostatic neurons are robust against “false” patterns presentations from another dataset, e.g., MNIST (here submitted after the 250th epoch).

considering one image for each of the 10 classes of the
training dataset, replicating the study for the available 60,000
images and implementing the WTA protocol with a single-
layer perceptron of 784 input neurons and 10 output neurons
for each case (Ambrogio et al., 2016a). The learning accuracies
are then averaged for each class to assess the overall efficiency.
Homeostatic scaling allows for an accuracy increase by about
20% on average for the pattern specialization during learning
of ten different images from the Fashion-MNIST dataset, which
highlights the importance for unsupervised learning of PCM-
based adaptive threshold. Such adaptive mechanism is also
fundamental for achieving better accuracy in deep neural
networks, where the homeostatic scaling improves the neuronal
specialization for a pattern of a specific class of the dataset
(Martin et al., 2020). The improvement of the accuracy can
be directly referred to the better specialization achieved by
the control PCM device which assures an optimized threshold
level for each specific neuronal spiking activity. In fact, the
homeostatic mechanism allows to exceed the threshold only
when the learnt pattern appears at the input. Note that, thanks
to the additional bitline of Figure 4A used for pattern/noise
detection, the low-density inputs are neglected, thus avoiding
spurious firing activity.

Homeostatic scaling also improves the robustness of the
network for the classification when external perturbations, such
as disturbs, errors or false patterns from other datasets, are
presented at the input. To test the classification robustness of
the network, Figure 5 show the output neuronal spikes during
the classification of five images from Fashion-MNIST with
homeostasis (Figure 5C) and without homeostasis (Figure 5D).
In the first phase of the experiment, five images from
Fashion-MNIST are presented and classified. In this phase,
the non-homeostatic neurons show some errors due to the
lack of a dedicated “specialization,” while no significant errors
are evident among the homeostatic neurons. In the second
phase of the experiment, handwritten digit patterns from the
MNIST dataset are presented along with the Fashion-MNIST
patterns. The homeostatic neurons do not show erroneous

spikes since they have been specialized on the Fashion-MNIST
patterns during the previous learning procedure. On the other
hand, the non-homeostatic neurons show spurious spikes in
correspondence of the presentations of the false patterns, due
to the fact that the similarity between the patterns of the two
datasets is sufficient to induce a false fire. Such behavior is
avoided using the thresholdmodulationmechanismwhich allows
to set a specific threshold for a specific learnt pattern, thus
highlighting the higher classification robustness thanks to the
homeostatic scaling procedure.

3.2. Active Forgetting by Conductance Drift
The PCM device is programmed by set pulses (with current ISET)
and reset transitions. The variation of the resistive distributions
can be modulated by incremental application of pulsed signals at
the top electrode of the device, thus enabling multilevel states.
These states are affected by conductance drift if the device is
not constantly re-programmed in time. During standard STDP
procedures, the conductance drift does not affect the overall
behavior of the network, since the devices are continually set
and reset in the pattern and background positions. Similarly, the
internal state used to calibrate the threshold does not suffer too,
since the drift effect is not appreciable in the reference timescale,
as already seen in Figure 4C.

STDP has been recently used in the final classification layer
of deep convolutional networks for achieving continual learning
(Muñoz-Martín et al., 2019). In this kind of neural networks, the
convolutional filters generate responses which constitute artificial
patterns that are learnt and classified afterwards via unsupervised
WTA STDP. This procedure enables the incremental learning
of new patterns during inference, since the convolutional filters
give (for the new classes) a combination of responses which is
original with respect to the others. However, since the variability
among the new artificial patterns is high there is the possibility
of having neurons which commit errors, specializing on input
patterns that are unlikely to appear again at the input of
the WTA STDP. In this situation, the internal PCM device
is not activated for a long time, thus causing a decrease of
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FIGURE 6 | (A) The conductive drift leads to a substantial decrease of the threshold whenever the neuron is not excited (and the device is not reprogrammed), red

line. This behavior well fits the bio-inspired forgetting and can lead to the recovery of a wrong spiking specialization toward improved classification. On the other hand,

blue line, if the neuron is regularly excited (even if not often in time), the drift effect does not lead to active forgetting. (B) The conductance drift of the PCM devices has

a positive effect for the recovery of neurons which committed error during the classification, such as neurons that have specialized on “wrong” patterns. At increasing

drift of the control PCM device, the internal threshold gets progressively smaller, and the neuron is induced to fire again to the presentation of another pattern

(eventually the “good” one). This favorable scenario is due to the fact the pattern information is correlated in time, while the errors are not. Thus, the drift effect can

recover the error and increase the probability of accurate spiking activity in time.

the threshold, as shown by the Monte Carlo simulations in
Figure 6A. Here, in particular, you can see that a regular spiking
activity continually adjusts the threshold of the device, thus
avoiding the lowering of the threshold. On the other hand,
once a spurious spike activity is taken into consideration (red
line), the internal threshold decreases considerably in time, since
the spurious firing activity is not correlated. Note that such
behavior can induce a neuron to change specialization, since
the reduction of the threshold is proportional to an increase of
neuronal excitability.

Furthermore, the conductance drift in time could be directly
referred to the bio-plausible active forgetting, which erases
previously stored information as a complementary procedure
with respect to the homeostatic scaling consolidation (Davis
and Zhong, 2017). Such active scaling forgetting gets rid of
the unwanted pattern specialization and allows for a further
specialization neuron able to be dedicated to more likely patterns
at the input. Figure 6B shows the Monte Carlo simulations of the
probability of recovering a past incorrect spiking event toward
a fair accurate specialization at decreasing threshold conditions.
In particular, it is evident that, increasing the conductance drift
in time, it is possible to increase the firing excitability too.
This is very relevant, since an incorrect specialization due to an
uncorrelated error can be recovered by the correct excitation of a
time-correlated input (i.e., a pattern), which is far more probable
to contribute to the firing activity. Note that the presented figure
is referred only to previously misunderstood firing activities, that
are the only cases for which the drift plays a positive role.

4. HOMEOSTATIC NEURON IN
RECURRENT NEURAL NETWORKS

The bio-inspired spike-frequency adaptation modulates the fire
excitability of a neuron inside a neural network. In other words,
the fire responsivity directly depends on the past specialization
history of the network. Such behavior along a temporal sequence
is the key element for the recurrent neural networks (RNN)
which can be thus re-designed taking advantage of the SFA
mechanism (Amit, 1989).

To support the spike-frequency adaptation of the neurons
for reinforcement learning tasks, we considered a free-model
decision-making test where an agent has to move in an
environment until it finds a global reward. In particular, we
considered the navigation problem of Figure 7A, where an
agent explores the maze via penalties and rewards until it is
successful in finding the escape path. In this case study, each
point of the environment is configured as a homeostatic neuron
which modulates its internal state as a function of the firing
history of that particular position inside the environment. In
particular, the reward is given when the agent reaches the
prize causing the decrease of the internal threshold of the
rewarded positions, while the punishment arises when the
agent touches a barrier causing the increase of the internal
threshold (Frémaux et al., 2013). Once the agent finds the
escape path, it starts to remember the successful way by
progressive rewards, i.e., the internal thresholds of successive
positions decrease. Thus, the network evolves relying only

Frontiers in Neuroscience | www.frontiersin.org 8 August 2021 | Volume 15 | Article 709053

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Muñoz-Martin et al. A Brain-Inspired Homeostatic Neuron

FIGURE 7 | (A) Case study maze for the investigation of the reinforcement learning capabilities of the bio-inspired RNN. (B) The synapses of the RNN link

symmetrically each neuron to and from the nearest neighbors. At every position P, the neuron sends a signal to the synaptic gates of its neighbors. When one neuron

integrates enough current to overcome its internal threshold, it fires and inhibits all the network. Every firing activity maps the movement of the agent. The schematic of

the circuit also shows the connections among the nearest neighbors. (C) Experimental measurement for a single movement of the agent inside the case study maze.

The nearest neurons start to integrate current until one (North-East neuron) overcomes the threshold and fires. Note that the fire activity of the neuron causes an

increase of the PCM internal‘threshold.

on the self-adaptive threshold mechanism of reward and
penalty and on the synaptic plasticity, without any further
external aid.

We addressed the problem of a maze of size MxM (M = 30) by
a brain-inspired RNNwithM2 self-adaptive neurons, where each
neuron represents a position within the maze. Figure 7B shows a
section of the RNN limited to the current position P and the eight
nearest neighbors, which map the eight fundamental cardinal
directions. Note that the RNN is completely symmetrical, since
each connection between the current position and one of the
adjacent is configured by two symmetric synapses to and from
P. Each synapse has a 1T1R structure where the PCM device
is randomly initialized in HRS or LRS. Note that the further
synapses connecting the nearest neurons also contribute to the
definition of a symmetric matrix with respect to the diagonal of
the RNN. Synaptic weights along the diagonal are all zero because
a neuron, i.e., a position, is not self-connected. Note that an
inhibitory signal enables a WTA algorithm, as already described
in the first section of this manuscript.

4.1. The Movement of the Agent
The environmental boundaries are initially defined by
programming the thresholds of each position. The goal of
the network is to find the escape route across the maze via
reinforcement learning, thus supporting the relevance of the
PCM plastic properties for typical neuromorphic abilities
(Frémaux et al., 2013).

At any time, only the occupied neuron P is activated by
external spike stimulation. The firing activity of the neuron P
induces two types of event: first, the threshold VTH of neuron
P increases, due to the homeostatic mechanism; second, nearest
neighbor neurons are stimulated by the spiking activity of neuron
P. This dynamics was experimentally validated by the RNN with
PCM neurons and synapses of Figure 7B, where each neuron is
connected to the nearest neighbor positions, e.g., E is connected

to P, NE and SE. Figure 7C shows themeasured internal potential
VINT for the eight nearest neurons during stimulation of neuron
P with an external spiking signal of limited duration. Since all
synapses are initially programmed in random state (i.e., 50%
in LRS, 50% in HRS), only those neurons which are connected
by synapses with relatively high conductance show substantial
current integration. Once the first neuron reaches the threshold,
namely neuron North-East in the example of Figure 7C, the
agentmoves to the corresponding position and a new cycle can be
started by zeroing the internal potential VINT of all the neurons
(i.e., the typical inhibitory signal already discussed for the WTA
network). Note that, as the agent position changes, the synaptic
weights must be reinitialized to enable trial-to-trial variations
of the random walk, thus boosting the effect of penalties and
rewards. Note also that the self-adaptive threshold mechanism
induces partial crystallization of the control PCM of the firing
neuron, thus preventing the agent to come back to previously
occupied positions. In fact, as visible in Figure 7C, once a neuron
fires it increases its internal threshold, thus making less probable
the coming back to that position from the surrounding ones
during the next movements of the agent.

4.2. Penalty/Reward Mechanisms and
Optimization of the Solution
Figure 8A shows the randomwalks of the agent during successive
trials. Each experiment is limited in time, since the agent has to
find the reward by elaborating a strategy, rather than testing each
single position (Frémaux et al., 2013). If the agent cannot escape
within 400 spikes, (i.e., steps of the agent), a new trial starts by
reinitializing the agent position and the synaptic weights. The
reinforcement learning is instead retained from trial to trial and
only relies on (i) penalties, when the agent touches a wall, or
(ii) rewards, when the escape paths is found. Both penalties and
rewards are mapped by acting on the internal VTH of the neuron,
thus increasing or decreasing the neuronal responsivity. When
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FIGURE 8 | (A) Example of three random walks for successive trials of exploration of the agent. (B) Example of three successive trials after finding the escape path:

the agent progressively improves its policy for finding the reward, eventually not committing errors anymore. (C) Time to get to the escape path as a function of the

number of trials for 10 different experiments of 15 trials each.

the agent touches a wall, a penalty is assigned to that position by
increasing the corresponding VTH . On the other hand, when the
agent finds the escape path, a reward is given by lowering theVTH

of the last positions occupied by the agent.
As shown in Figure 8B, once the escape path has been

disclosed, the system tends to follow the preferential path toward
the objective. This happens because the reward policy introduces
a positive feedback, which reduces the VTH of the path thus
improving the preference of the agent to follow the escape path.
Figure 8C shows the time to find the reward as a function of
successive trials. Note that the reward has two main effects,
namely (i), the system self-optimizes its policy map by increasing
the time efficiency, and (ii) the spiking activities concentrate in
the positions close to the target, thus reducing any unwanted
energy consumption along ordinary positions which do not
give any reward. As a result, the experience-based evolution of
our RNN relies on PCM-based neurons and synaptic plasticity
and enables the optimization of reinforcement learning for
autonomous decision-making navigation.

4.3. Impact of Drift on Reinforcement
Learning
To study the impact of the drift, we studied the effect of the drift-
induced decrease of the internal neuronal threshold in Figure 9A.
The decrease of the internal threshold causes a decrease of the
necessary time to get to the final reward for each trial. On the
other hand, the drift also affects the threshold of the punished
neurons, but the drift does not drive such positions to a condition
comparable with the ordinary ones.

The difference between the reinforcement learning with and
without PCM drift decreases at increasing trial of specialization,
since the reward facilitate the identification of the successful
path by acting on the threshold of the corresponding positions
(less integration time per single step is needed to follow the

rewarded path). Figure 9B shows the accuracy (i.e., the ability
of finding the escape path considering a fixed number of
trials per experiment) over 1,000 Monte Carlo simulations. The
study indicates that the drift of the PCMs increases the error
probability, lowering the overall efficiency of the network. As
a result, drift does not introduce significant benefit in the case
of reinforcement learning, with respect to the STDP learning.
In more complex situations, where the surrounding boundaries
change continuously thus requiring a constant reconfiguration by
the agent, the drift-induced forgetting mechanism could become
favorable, since it would boost the quest toward other points of
the environment.

4.4. Energetic Efficiency
The energy efficiency of reinforcement learning can be improved
by operating the devices in burst-mode (Bianchi et al., 2019),
which consists of the application of fast pulsed signals at
the electrodes of the PCM devices, thus enabling a consistent
reduction of the required energy per single operation. In our
simulations, we stimulated the devices with pulsed signal with
duration of 100 ns separated by silent periods of 10 µs as shown
in Figure 10A.

Figure 10B shows the average energy per single exploration
trial of the agent, indicating that the energy consumption
decreases as the agent refines its strategy. During the initial trials,
the energy consumption due to integration needed to explore
the environment is larger than the other contributions, since the
agent requires many steps to explore the surroundings. Once the
final reward is achieved, the integration procedure requires less
energy, thanks to the threshold decrease in the path positions
close to the objective. Note also that the simulation without
drift indicates a higher integration energy, which is due to the
fact that the internal states undergo a decrease of the respective
threshold due to conductance drift, thus requiring less power per
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FIGURE 9 | (A) Monte Carlo simulations of the minimum time needed to successfully find the escape path with and without the drift effect of the PCM devices. The

larger the drift, the lower the time to get to the final reward. (B) Impact of the drift on the accuracy for finding the escape path over 1,000 trials of the same experiment.

Note that the drift is not a benefit since the decreasing VTH (with respect to the nominal VTH0) can lead to misunderstanding in the policy map definition.

FIGURE 10 | (A) Burst-mode operation for power-saving during PCM-based working procedure of the RNN. (B) Note that the required energy for the operations

carried out by the RNN is dependent on the grade of specialization of the network and on the final achievement with respect to the disclosure of the escape path. In

fact, once the final reward is found, the network progressively decreases the total need of integration energy. Note that the simulated energy consumption reduction

also comes with a decrease in the overall accuracy for finding the escape path when conductance drift is considered. (C) Monte Carlo simulations of the global

accuracy for the case study maze considering increasing trial and error procedures for the programming of the internal state and of the inter-neuronal synaptic devices.

single trial. The energy consumption decrease, as well as the time
decrease to get to the solution, depends on the timescale of the
reinforcement learning execution in hardware, since longer times
means larger conductance drift.

Figure 10C shows the accuracy for finding the reward
as a function of the number of memory access per single

device (e.g., the PCM internal state of the neurons) in
order to assure the theoretical conductance value assessed
during the simulations. However, a 30 times higher
energy consumption for best programming condition
only improves the accuracy by 1.5%, on average. This
result indicates the substantial robustness and efficiency of
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bio-inspired neuromorphic computing for reinforcement
learning tasks.

5. CONTINUAL LEARNING IN ARTIFICIAL
NEURAL NETWORKS

STDP-based unsupervised learning with homeostatic neurons is
a robust approach for achieving continual learning in artificial
neural networks. In particular, STDP has been already introduced
in the last layer of convolutional neural networks (CNNs)
in order to get resilience in neural systems trained with the
backpropagation algorithm (Muñoz-Martín et al., 2019). These
kinds of hybrid supervised/unsupervised neural networks rely

on custom training algorithms to extract, after convolution,
single-bit responses per each filter relative to a found/not found

trained feature, as illustrated in Figure 11. After convolution, a

novel feature map arises, which is then classified by means of
post-synaptic neurons under the STDP learning paradigm. In

order to study the effect of the introduction of PCM-based SFA

neurons in this neural system, we built a WTA network with
ten POSTs capable of spike frequency adaptation, as in Figure 2,

and inhibitory signals. The inhibition, in particular, enables the

drop of the internal potential of all the neurons when a fire event
occurs (Pedretti et al., 2017; Bianchi et al., 2020c).

The use of neurons with SFA control mechanism in the
last layer of the network of Figure 11 introduces robustness

FIGURE 11 | Schematic architecture of the hybrid supervised-unsupervised neural network. The input patterns coming from the dataset are convolved with

pre-trained convolutional filters. Each filter, which can recognize a generic feature, “feature-filter,” or a specific class, “class filter,” gives a single-bit response (found/not

found response). The responses of the convolutional filters give thus rise to a binary feature map, which is then classified by homeostatic neurons using the STDP

paradigm in the WTA architecture.

FIGURE 12 | Comparison of the accuracies of previous works (Muñoz-Martín et al., 2019) (A) with the accuracies obtainable after using homeostatic neurons in the

last layer of the network (B). Note that the accuracy results increase in the second case, which is mainly due to the improved specialization capability and to the active

forgetting mechanism introduced by the SFA homeostatic neurons.
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and improved accuracy with respect to previous works, as
reported in Figure 12 for the inference of the MNIST dataset
(10,000 patterns of handwritten digits). This is due to two
main contributions, namely: (i) the improved specialization
capability of the neurons to get specialized on specific input
patterns (each neuron modulates its internal threshold on a
specific feature map arising from the patterns joining the same
class, as also studied in Figure 5); (ii) errors in the WTA
classification are prone to be corrected thanks to the spontaneous
forgetting mechanism studied in Figure 6. This latter point, in
particular, is due to the fact the classification errors are not
correlated in time, thus driving a wrong fire event to be forgotten
in time.

Thus, the homeostatic neurons appear as key elements
to introduce both resilience and accuracy in artificial neural
networks, paving the way for the next technological steps of
artificial intelligent computation.

6. CONCLUSIONS

In this work we introduced a novel artificial neuron based
on phase change memory (PCM) devices capable of internal
regulation via homeostatic and plastic procedures. The neuron
relies on the definition of the internal threshold by multilevel
programming of the control PCM devices, thus enabling the
specialization of large patterns and the continual learning
capability of CNNs by introducing the STDP procedure in
a supervised framework. The novel neuron is also used
to introduce a bio-inspired recurrent neural network which
directly creates a directed experienced-graph in time by
keeping trace of the fire history of each neuron of the

network. Such recurrent connections based on neurons capable
of spike frequency adaptation demonstrate decision-making
capabilities for navigation tasks. Furthermore, we show that
conductance drift of the PCM devices can be used to emulate
active forgetting in neural networks. This work supports the
suitability of PCM devices for the optimization of synaptic
dynamics and the implementation of brain-inspired computing
in artificial intelligence.
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