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Attention-deficit/hyperactivity disorder (ADHD) is one of themost common brain diseases

among children. The current criteria of ADHD diagnosis mainly depend on behavior

analysis, which is subjective and inconsistent, especially for children. The development

of neuroimaging technologies, such as magnetic resonance imaging (MRI), drives the

discovery of brain abnormalities in structure and function by analyzing multimodal

neuroimages for computer-aided diagnosis of brain diseases. This paper proposes

a multimodal machine learning framework that combines the Boruta based feature

selection and Multiple Kernel Learning (MKL) to integrate the multimodal features of

structural and functional MRIs and Diffusion Tensor Images (DTI) for the diagnosis of

early adolescent ADHD. The rich and complementary information of the macrostructural

features, microstructural properties, and functional connectivities are integrated at

the kernel level, followed by a support vector machine classifier for discriminating

ADHD from healthy children. Our experiments were conducted on the comorbidity-free

ADHD subjects and covariable-matched healthy children aged 9–10 chosen from the

Adolescent Brain and Cognitive Development (ABCD) study. This paper is the first work

to combine structural and functional MRIs with DTI for early adolescents of the ABCD

study. The results indicate that the kernel-level fusion of multimodal features achieves

0.698 of AUC (area under the receiver operating characteristic curves) and 64.3% of

classification accuracy for ADHD diagnosis, showing a significant improvement over

the early feature fusion and unimodal features. The abnormal functional connectivity

predictors, involving default mode network, attention network, auditory network, and
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sensorimotor mouth network, thalamus, and cerebellum, as well as the anatomical

regions in basal ganglia, are found to encode the most discriminative information, which

collaborates with macrostructure and diffusion alterations to boost the performances of

disorder diagnosis.

Keywords: early adolescent, attention-deficit/hyperactivity disorder, multimodal MR images, disorder diagnosis,

multiple kernel learning, structural MRI, DTI, resting-state functional MRI

1. INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) has become
one of the most common neurobehavioral disorders among
children (Polanczyk et al., 2015). In 2016, 9.4% of children
and adolescents aging 2–17 in the United States had ever
been diagnosed with ADHD, 89.4% of which still kept the
diagnosis at present (Danielson et al., 2018). Untreated ADHD
can cause substance abuse and tremendous academic, social,
and financial/employment burdens on the individual and family
(Hamed et al., 2015), reflecting the importance of diagnosing and
treating the disorder. Medication and behavioral intervention

have been demonstrated to ameliorate the conditions of ADHD
patients (Hoogman et al., 2019). To afford the affected ability

to achieve their full potential in school or at home, ADHD is
screened for and diagnosed as early as possible (Hamed et al.,
2015). However, the most advanced standard of ADHD diagnosis
is symptom-based, according to the Diagnostic and Statistical
Manual of Mental Disorders, the 5th edition (Wolraich et al.,
2019) (DSM-5), relying on the questionnaires collected from

the parents or caregivers for young children. The multi-source
reports, however, are subjective and usually cause inconsistency

and bias. Therefore, the diagnosis of ADHD requires objective
and quantizable evidence.

The advancement of high-resolution brain imaging
technologies and high-throughput computing makes it possible
to build a computer-aided diagnostic system for mental health
disorders based on the quantitative features extracted from
the images. The brain imaging technologies, such as magnetic
resonance and computed tomography, have shown brightening
perspectives to reveal the underlying pathophysiology of ADHD.
MRI becomes the ideal technology to study brain diseases for
its high-resolution inner tissue imaging capability. Structural
MRI (sMRI), diffusion MRI (dMRI), and functional MRI (fMRI)
have been widely applied in ADHD studies in recent years
to explore the quantizable features indicating various-level
brain alterations in cortical and subcortical measures, such
as morphometric traits, diffusion properties, and functional
connectivity (FC). However, these findings depend on the
hypothesis tests between the experiment and control groups
with small sample sizes, limiting the power for unveiling the
relationship between features and building usable automatic
diagnosis (Arbabshirani et al., 2017).

The growing minable image-based features motivated
radiomics (Gillies et al., 2016), an emerging efficient paradigm
aiming at quantitative image analytics and automatic
diagnosis through recognizing intricate patterns among the

high-dimensional traits from images (Hosny et al., 2018; Ibrahim
et al., 2020). In this medical image analysis framework, the
collected image data are segmented into regions of interest
(ROIs). The features of multiple levels, including the intensity
distribution, shape, and texture, are extracted from these ROIs
and qualified. Subsequently, the predictive models are built
on the features to support the decision-making for diagnostic
or prognostic. The state-of-art machine learning and deep
learning approaches have triggered vitality in the medical image
recognition community (Hosny et al., 2018). The radiomics
practices in automatic ADHD diagnosis have sprouted in
the past 10 years along with the release of the ADHD-200
consortium (Milham et al., 2012; Bellec et al., 2017), the hitherto
largest multimodal dataset concentrating on ADHD. ADHD-200
provides the sMRI and resting-state fMRI (rsfMRI) images
and the personal characteristic features of 362 patients and
585 healthy people aging 7–27 aggregated from 17 different
studies conducted across eight various sites. Based on the
dataset, researchers extracted features from MRI data within
clustered voxels or predefined ROIs and built machine learning
algorithms for classification task. Support vector machine (SVM)
has become the most popular classification model (Arbabshirani
et al., 2017; Sakai and Yamada, 2019; Biswas et al., 2020; Lohmann
et al., 2020) for its outperformance in multivariable data using
appropriate kernel functions. Ghiassian et al. combined the sMRI
or fMRI features with the characteristic features and applied
RBF-SVM as classifiers for predicting ADHD (Ghiassian et al.,
2016). However, most studies only use the sMRI or/and rsfMRI to
diagnose ADHD; rare practice considered dMRI features, which
is believed to reveal the critical microstructure abnormality in
ADHD’s brain (van Ewijk et al., 2012; Lei et al., 2014; Gehricke
et al., 2017), into the predictive model. Moreover, the current
multimodal studies directly concatenated all of the features to a
large vector and fed it to the classifiers (Sun et al., 2018; Luo et al.,
2020). Though the improved performance suggests that multiple
modalities have complementary information for classification,
the features encoding minor information and the curse of high
dimension might impair such a strategy.

The current study applies multiple kernel learning (MKL)
framework to fuse the sMRI, rsfMRI, and DTI features collected
from the Adolescent Brain and Cognitive Development (ABCD)
study and predict ADHD diagnosis. MKL, a commonly used
model-based fusion strategy in multimodal learning (Baltrusaitis
et al., 2019), has been verified to effectively integrate the
heterogenetic source information by assigning specified kernels
and weight to distinct modalities (Gönen and Alpaydın, 2011).
It has been widely implemented in visual object recognition
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(Bucak et al., 2014), remote sensing (Niazmardi et al., 2018),
hyperspectral image classification (Gu et al., 2017), and medical
image fusion and classification (Wen et al., 2017; Schrouff
et al., 2018; Wani and Raza, 2018). Our study focuses on
comorbidity-free early adolescent patients aging 9–10. To solve
the high-dimension problem, we apply Boruta, a random-
forest-based feature selection method, to choose all the relevant
features of ADHD. This technique is appropriate for the highly
correlated network of human brain structures. We hypothesize
that the MKL framework, the kernel-level multimodal fusion
strategy, would achieve higher performance in the task of ADHD
diagnosis based on multimodal imaging data, and the discovered
all relevant predictors from multimodal MRI would help unveil
the underlying mechanism of ADHD.

2. MATERIALS AND METHODS

2.1. Dataset Description and Participants
ABCD study is the most extensive long-term study of brain
development and child health in the United States, which
recruited 11,878 children ages 9–10 in 21 research sites across
the United States. This project sampled children through schools
based on US society’s demographic profile (Garavan et al.,
2018) and keeps following them up through their adolescence
to early adulthood for tracking their biological and behavioral
development. Various MR imaging data, genomics data, and
the scales and questionnaires of mental health, physical health,
demographics, and neurocognition are deposited (Barch et al.,
2018) and released yearly. The image data that children
underwent include T1- and T2-weighted MRI, DTI, rsfMRI, and
three task-based fMRI scans. After the image acquisition, these
multimodal MR images were uploaded to the Data Analysis,
Informatics, and Resource Center (DAIRC) of the ABCD Study.
Then there, the quality control, image preprocessing, measuring
based on multi-atlases, and tabulating were completed in a
standard pipeline. The published paper (Hagler et al., 2019) from
the ABCD team has stated the acquisition, scanning parameters,
and processing pipelines in detail. For the brevity of the main
text, we describe the images processing steps and acquisition
parameters concisely in Supplementary Material. The relatively
narrow and early age span, consistent diagnostic criteria across
all the sites, and multimodal data sources characterize the
ABCD study with the potential of studying the mental disorders’
development trajectory. This work concentrates on the tabulated
multiple-type image-based features, including the quantitative
brain properties extracted from sMRI (T1/2 weighted parts),
rsfMRI, and DTI, of the baseline year in release 2.0.1 (Jernigan
et al., 2019) for further analysis of ADHD.

To label the ADHD patients, we reviewed the ABCD Parent
Diagnostic Interview scale for DSM-5 Full of K-SADS of the
baseline year for ADHD diagnosis. The subjects under the
following conditions were excluded: with missing values in MRI
scanning and the covariables, the left-handed, ever-experienced
traumatic brain injury with loss of consciousness, the main
comorbidities of ADHD (Homer et al., 2000; Wolraich et al.,
2019), covering tic disorders, emotional disorders (phobia,
anxiety disorders, disruptive mood dysregulation disorders,

TABLE 1 | Demographic description.

Control Case P-value

Total 116 116 –

Sex
Female 45 45

–
Male 71 71

Race

White 80 80

–

Hispanic 13 13

Black 10 10

Asian 12 12

Other 1 1

Age (month) 118.9 (7.7) 118.4 (7.7) 0.59

The values are denoted as mean (standard deviation).

depression disorders, and bipolar disorders), autism spectrum,
psychotic disorders, post-traumatic stress disorder, oppositional
defiant disorders, and conduct disorders for reducing the
influence of covariables as much as possible. According to the
suggestion in the Fix Note of the ABCD study, we censored
the subjects that detected clinical referrals or did not pass the
quality control procedure of T1w, T2w, dMRI, and rsfMRI.
The subjects scanned on Phillips machines were excluded
due to incorrect post-processing of fMRI data noticed in the
officially released issue. Without any ADHD-related diagnosis
and symptoms or any other mental health diagnosis, the children
were chosen to match the race and sex with ADHD as the typical
controls (TC). The workflow in Supplementary Figure 2A shows
the number of subjects that are considered after applying
various exclusion criteria, and Supplementary Figures 2B,C

with Supplementary Tables 1, 2 list the percentage and count
of subjects filtered by each item within the groups. The
demographic information of the matched groups of ADHD and
TC is summarized inTable 1. There are no statistically significant
differences in the main covariates of age, gender, and race.

2.2. Imaging Measures
In our study, the cortical ROIs were labeled with structural-based
atlas (Desikan-Killiany atlas, Desikan et al., 2006 for sMRI and
DTI, major white matter tracts’ AtlasTrack Hagler et al., 2009
for DTI), genetic-based atlas [fuzzy-cluster parcels (Chen et al.,
2012) for sMRI], tract fiber atlas, and functional connectome atlas
[Gordon parcellations (Gordon et al., 2016) for fMRI], and the
subcortical regions were labeled with atlas-based segmentation
(Fischl et al., 2002) (for sMRI, DTI, and fMRI). These brain
atlases were frequently used in the corresponding modalities so
that the accumulated publications would offer direct evidence
supporting our findings.

In this work, the macrostructural property of the brain refers
to the morphometry and image intensity measures extracted
from sMRI. Morphometric measures consist of cortical volume,
thickness, area, and sulcal depth, and subcortical volume. Image
intensity measures include intensity properties of T1w, T2w, and
T1w and T2w cortical contrast. The alterations in morphometry
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and intensity indicate the abnormal development and changed
composition of brain tissue (Kotov, 2017; Bloem et al., 2018),
which are common features of many neurological diseases.
Cortical contrast has also been confirmed to serve as a sensitive
cortical marker of brain development and psychopathology
(Lewis et al., 2018; Norbom et al., 2019).

The major white fibers’ volume and four measures accessing
water diffusion in cortical and subcortical tissues, including
fractional anisotropy (FA) andmean, longitudinal, and transverse
diffusivity (MD, LD, and TD), were extracted from DTI
to indicate microstructural tissue properties. The FA reflects
directionality estimation in tissue characteristics like myelination
and fiber density, and MD, LD, and TD characterize the diffusion
magnitude in distinct directions (Alexander et al., 2007). These
measures have been applied in image-based brain diseases
analysis (van Ewijk et al., 2012; Lei et al., 2014; Gehricke et al.,
2017).

For rsfMRI, the candidate features are functional connectivity
of cortical function network and subcortical regions. The
average correlation values were calculated between paired cortical
function network ROIs and then transformed to z-score,
representing the strength of FC (Van Dijk et al., 2010). Similarly,
the FC between each network and each subcortical region was
collected as well. FC reflects a straightforward, observational
measure of functional relationships between the target networks,
which has been a universal tool to analyze ADHD (Lin and Roth,
2017; Samea et al., 2019; Sörös et al., 2019).

The study considered 2,704 candidate predictors collected
from the tree modalities (1,184 from sMRI, 1,182 from DTI, and
338 from rsfMRI) and modeled them to remove the scanners’
fixed bias of batch effect with Combat (Johnson et al., 2007),
the effectiveness of which has been confirmed in MRI-derived
features in the recent years (Fortin et al., 2017, 2018; Yu
et al., 2018). Details of the candidate predictors were listed in
Supplementary Table 3, and the model and formulas of Combat
were described in the Supplementary Materials.

2.3. Multimodal Feature Selection and
Assessment
Boruta (Kursa and Rudnicki, 2010) is an outperformed all-
relevant feature selection method based on the random forest
(RF). Boruta concatenates shuffled features, named shadow
features, with the original data and builds an RF classifier. The
Gini impurity’s decrease in each base decision tree indicates
the contribution of features to classification. RF summarizes
and normalizes the score for each feature. The original features
that achieve higher scores than the highest in the shadow
features are marked. The shuffling-scoring-marking procedures
are iteratively executed, and a series of features set is selected.
A binomial distribution is established to test if a given feature
significantly scores higher than any random one until all the
original features are confirmed relevant or rejected. P-value
correction for multiple testing is considered. Comparing with
the minimal optimal feature selection methods that try to
find a compact feature subset to minimize the error of a
classifier, all-relevant methods manage to pick up all features

coding information usable for classification, the property of
which is suitable for highly intercorrelated biomedical data
(Kursa, 2014). It has been applied in various contexts, including
ADHD image-based predictors finding (Sun et al., 2018), and
achieved outstanding performance in robustness, efficiency, and
effectiveness (Kursa, 2014; Speiser et al., 2019).

2.4. Multimodal Fusion and Disease
Classification
SVM is a general framework of classification or regression based
on the kernel method. Linear or non-linear kernel applied,
SVM has rendered itself outperformance with other models in
various domains. According to the dual problem of SVM, we
supposed the optimized objective of the multiple kernel SVM as
the following equation:

min
α,w

1

2

N∑

i=1

N∑

j=1

αiαjyiyj
∑

m∈M

wmkm(x
m
i , x

m
j )−

N∑

i=1

αi (1)

s.t.

N∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . ,N

where {({xmi }m∈M , yi}
N
i=1 are the samples with multiple feature

sets {xmi }m∈M and label yi of the training set with sample size
N, km(·, ·) represents a positive definite Gram matrix or kernel,
wm is the weight assigned to the corresponding kernel with
the constraint

∑
m∈M wm = 1, the {αi}

N
i=1 are the Lagrange

multipliers introduced by dual algorithm, and C is the penalty
assigned to misclassified samples. We solved the problem by
iteratively searching the wm and optimizing the {αi}

N
i=1. The

decision function is given as Equation (2):

f (x) = sign(

N∑

i=1

α
∗
i yi

∑

m∈M

w∗
mkm(x

m
i , x

m)+ b∗) (2)

where {xm}m∈M is the sample with M feature sets in the testing
set, and {α∗

i }
N
i=1, {w

∗
m}m∈M and b∗ are the optimized parameters,

b∗ = yj −
∑N

i α
∗
i yi

∑
m∈M w∗

mkm(x
m
i , x

m
j ).

Our study set the searching stride of wm to 0.1 for the
feature sets M, including DTI, rsfMRI, and sMRI. The kernel
functions include linear kernel and radial basis function (RBF)
kernel, the most popular kernel function for continuous features
for its infinite kernel feature space to exploit the non-linear
relationship. The kernel function implicitly projects the original
data to a higher-dimensional space and measure the distance
(or similarity) between two samples in that space. Classification
performance is promoted via choosing a kernel suitable for
specific data. The data from different modalities, however,
are probably ideal for distinct kernel functions or different
parameters. By linearly combining the kernels from different
feature spaces, the integration of heterogenetic sources can be
achieved at the kernel level. In the MKL framework, additional
restrictions, such as setting any wm = 0, can be given to tackle
with modality missing.
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FIGURE 1 | The pipeline of feature extraction and cross-validation Multiple Kernel Learning (MKL) classification. T1/2WI, T1 weighted imaging and T2 weighted

imaging; rsfMRI, resting-state fMRI; DTI, diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; LD, longitudinal diffusivity; TD, transverse diffusivity;

RF, random forest; SVM, support vector machine. The used atlases include Desikan–Killiany atlas, fuzzy-cluster parcels, subcortical regions, AtlasTrack, and Gordon

parcellations; the morphological features include subcortical region volume, cortical volume, thickness, area, and sulcal depth.

Single-kernel SVMs were applied to each modality as the
unimodal baseline and the directly concatenated multimodal
features as the early fusion baseline. As a commonly used
classifier in mental disorder studies, RF was implemented in both
settings as a baseline.

2.5. Classifier Training and
Cross-Validation
As shown in Figure 1, the 10-fold cross-validation was
manipulated on the three modalities using the same division
of subjects every fold, respectively. In an individual iteration,
we performed Boruta selection on the training set to pick up
all relevant features. The dataset of each modality shrunk to
a smaller dimension. We constructed the kernel matrix for
every modality and applied optimistic weight to fuse them

by grid-searching. In each iteration, as shown in Figure 2,
five-fold nested cross-validation was performed on the training
set to search the optimistic parameters (C, from 10−4 ∼

103), and the re-trained optimistic models were evaluated on

the holdout testing set. The entire cross-validation process

was repeated ten times. The all-relevant feature subsets from
the repeated cross-validations were collected to determine the
whole dataset’s significantly essential predictors. We posed that

the features were picked randomly as the null hypothesis.
The ten iterations’ expected frequency distributions were

estimated by a binomial distribution B(p,N), where p was

estimated as the mean fraction of selected features in the given
modality’s candidate features space, and N (=10) referred to
the times of iterations. The significant ones were reported
and discussed.
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FIGURE 2 | The CV and nested CV processes. CV, cross-validation. The

parameter optimization of model was implemented on the inner CV and

retrained optimized model was evaluated on the outer CV. The metrics of all

fold were summarized as the expected performance of the model.

2.6. Performance Metrics
The main classification performance metrics, including AUC
(area under the receiver operating characteristic curves),
accuracy, sensitivity, specificity, and F1-score, are considered
for evaluating the given diagnostic system. These metrics are
originated from a confusion matrix. In our study’s ambiance,
condition positive samples are referred to subjects with ADHD,
condition negative one’s typical healthy subjects, prediction
positive, and negative ones marked by the models. From the
view of the models with a specific decision threshold, true-
positive (TP) represents the count of subjects correctly labeled as
ADHD, true-negative (TN) the count of ones correctly marked as
TCs, and false-positive (FP) and false-negative (FN) the counts
of misdiagnosis and missed diagnosis, respectively. Based on
the definitions mentioned above, the metrics can be formulated
as follows:

accuracy =
TP + TN

TP + TN + FP + FN

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

F1score =
2× TP

2× TP + FP + FN

Considering continuous decision thresholds from the strictest
to the slackest, we can receive sequential pairs of sensitivity
and specificity and plot the curve on the coordinate of 1 −

specificity and sensitivity, the area under which is defined AUC.
Accuracy, sensitivity, specificity, and F1-score are computed
on the single probability cut-off = 0.5, while AUC, more
comprehensive, evaluates the discriminative power under all
thresholds. Therefore, we regarded AUC as the primary criterion
of the models.

3. RESULTS

This section will present the experimental results, including the
selected features relevant to the ADHD disorder, the results
of disorder diagnosis using the single modal and multimodal
features and different fusion methods of multimodal features,
and the effect of kernel weights for multiple kernel learning.

3.1. The Relevant Multimodal Features
The selected feature subset’s average size was 4.7 (0.397% of
all 1,184 features) for sMRI, 9.7 (0.821% of 1182) for DTI,
and 12.8 (3.79% of 338) for rsfMRI shown as Figure 3A. With
a p-value threshold of 0.05 (Holm–Bonferroni’s multiple tests
adjusted p-value, Holm, 1979), the features with significantly
higher selection frequency were summarized, and we finally
reported the intersection of significant features over ten
independent experiments.

We obtained four significant features from sMRI, six from
DTI, and ten from rsfMRI, listed in Table 2. Their distributions
in two groups were plotted in Supplementary Figure 2, with
the total selection frequencies and p-values between groups. The
ROIs related tomacrostructure andmicrostructure abnormalities
were mapped to virtual brains from different perspectives, as
shown in Figures 3A,B, respectively. The abnormal functional
connectivity is shown in Figure 3C.

3.2. Comparison of Unimodal and
Multimodal Classification
In unimodal contexts, we built SVMs and RF to classify ADHD
and TC. Resting-state MRI features achieved a significantly
higher AUC (0.655) than the other two modalities. DTI features
reached their own best AUC of 0.600, while sMRI features’ best
AUC was 0.564. We found the RBF kernel was suitable for FC,
while the classification of DTI properties performed better on
the linear kernel. Macrostructure features showed no significant
preference between the linear kernel and RBF kernel. The RF
classifiers did not perform better than any SVMs in unimodal
contexts. We concatenated all selected predictors and fed them
to the same SVMs and RF models as baseline fusion strategies,
early fusion, of multimodal features. The AUC of SVM arises up
to 0.668, but the RF classifier’s performance dropped. The results
are shown in Figure 4 and Table 3.

3.3. Comparison of Early Fusion and
Kernel-Level Fusion
In the MKL framework, we fused the RBF kernel of sMRI
features, a linear kernel of DTI features, and an RBF kernel of
rsfMRI features. The AUC of MKL rose to 0.698, significantly
higher than the early fusion strategies and any unimodal
classifications. Besides the AUC, the accuracy and F1-score
of MKL were 0.643 and 0.626, respectively, higher than any
other context. The MKL’s sensitivity and specificity were 0.609
and 0.676, which were better than most other classification
settings but had limited improvement. Table 3 averaged theMKL
frameworks’ cross-validation performances of ten independent
experiments. The statistically significant values were shown in
Supplementary Table 4.

Frontiers in Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 710133

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhou et al. Multimodal MRI ADHD Diagnosis

FIGURE 3 | The brain regions and connectivity associated with attention-deficit/hyperactivity disorder (ADHD). (A) Macrostructural abnormal regions,

(B) microstructural abnormal regions, and (C) abnormal functional connectivity The blue color represents a lessened measure in the ADHD group, while the red color

represents a strengthened one. The more frequently they are picked in the selection procedure, the wider their bonds are.

3.4. Effect of Kernel Weights for
MKL-Based Multimodal Fusion
The searched optimal weights assigned to the three modalities
are plotted in Figure 5A. The predictors from rsfMRI have
a significantly larger weight than sMRI and DTI predictors.
The heatmaps in Figures 5B–F showed the main metric
values of MKL concerning different weights combinations
assigned to sMRI, DTI, and rsfMRI features. The shape of
the heatmap is an upper triangle because of the constraint
ws + wrsf + wd = 1. The vertices present the unimodality-
based classification result in each triangle, the top left
rsfMRI, the top right sMRI, and the bottom left DTI.
Similarly, the triangle edges between any two vertices display
bimodal classifications with different weights. The results of
bimodal and trimodal MKL classification are tabulated in
Table 4. The trimodal setting achieved the best AUC, accuracy,
and specificity, suggesting that every modality contributes
to the classification indispensably. RsfMRI contributed the
most from bimodal to trimodal classification. The fusion
of sMRI + rsfMRI with DTI kernel significantly boosts
the five metrics as well. However, the best F1-score and
sensitivity reached their best on the bimodal fusion of
rsfMRI and DTI, meaning that sMRI features have no extra
contribution. The statistically significant values are shown in
Supplementary Table 5.

4. DISCUSSION

To the best of our knowledge, there is no other published
study focusing on adolescent ADHD diagnosis based on the
ABCD study. Our study proposed a kernel-level multimodal
fusion and classification method for discriminating ADHD from
the typical healthy controls. The kernel combination method
assigned proper kernel functions and weights to the predictors
from different modalities, including macrostructure properties,
microstructure characters, and FC. The combined kernel can be
naturally embedded into a typical SVM solver. The MKL shows
better classification performance than unimodal or early fusion
multimodal strategies on the ADHD image data from the ABCD
study baseline year. Moreover, in the MKL framework, it is easy
to quantify every modality’s contributions, which are told by the
optimal weights, propitious to explaining the result.

4.1. Support of Abnormality Findings
An RF-based all-relevant feature selection method, Boruta, was
introduced to shrink the original feature space to discover all
relevant brain image-based predictors for discriminating ADHD
and TC. The predictors summarized in Figure 5 include four
ROIs from macro-view, five ROIs from micro-view, and the
connectivity related to nine cortical function networks and
seven subcortical regions. The current literature can verify the
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TABLE 2 | Summarized predictors selected from multimodal MRI.

Modality Frequency (%) ROI1 Type Change

DTI

81 Right pars orbitalis FA −

81 Right isthmus cingulate LD +

74 Left post central FA −

69 Right isthmus cingulate MD +

60 Left amygdala MD +

58 Right thalamus proper LD +

rsfMRI

100 Ventral attention network and auditory network Corr +

100 Left pallidum and default network Corr +

91 Left thalamus proper and salience network Corr +

86 Right cerebellum cortex and default network Corr −

78 Left cerebellum cortex and dorsal attention network Corr +

69 Left cerebellum cortex and sensorimotor mouth network Corr −

67 Left putamen and “none” network Corr +

64 Dorsal attention network and auditory network Corr −

63 Right pallidum and cingulo parietal network Corr +

62 Right thalamus proper and fronto parietal network Corr −

sMRI

66 Left caudal middle frontal CA (mm2 ) −

62 Right caudal middle frontal CV (mm3 ) −

62 Left caudate T1w intensity −

52 Right inferior temporal CV (mm3 ) −

Corr, average correlation between two ROIs; CA, cortical area; CV, cortical volume.

FIGURE 4 | (A) The average number of selected features from each modality;

(B) AUC of unimodal and multimodal classification. LSVM, linear kernel SVM;

RBFSVM, radial basis function kernel SVM; RF, random forest; MKL, multiple

kernel learning. ***Means that the p-value are less than 0.001.

anatomical regions and function networks. In our study, rsfMRI
encodes the most information for distinguishing ADHD and
TC. It achieves the best performance in unimodal testing and
contributes to the most multimodal kernel for discriminating
cases and controls. In the current literature, default mode
network (DMN) (Cortese et al., 2012; Kucyi et al., 2015;
Castellanos and Aoki, 2016), dorsal/ventral attention network
(DAN and VAN) (Cortese et al., 2012; Kucyi et al., 2015;
Castellanos and Aoki, 2016), sensorimotor network (SMN)
(Cortese et al., 2012; Kucyi et al., 2015; Sörös et al., 2019),

salience network (Sal) (Kucyi et al., 2015; Castellanos and
Aoki, 2016), frontoparietal network (FP) (Cortese et al., 2012;
Castellanos and Aoki, 2016), and auditory network (Aud)
(Sörös et al., 2019) are the frequently reported abnormal FC
in ADHD. On the other hand, the subcortical findings in
connectivity, including pallidum (Castellanos and Aoki, 2016;
Samea et al., 2019), thalamus (Bailey and Joyce, 2015), putamen
(Cortese et al., 2012; Sörös et al., 2019), and cerebellum (Kucyi
et al., 2015; Castellanos and Aoki, 2016), are in line with
the existing literature, approved to play essential roles in the
undergoing of ADHD. The DMN is selected most frequently in
our study. As a network associated with task-irrelevant mental
processes and mind wandering, DMN is usually suppressed
when the subject is attending attention-needed external tasks.
The abnormal hyperactivation of DMN will intrude on other
task-related networks’ functions, like attention and execution,
and get the cognition distracted (Sonuga-Barke and Castellanos,
2007). Besides motor regulation, recent studies realized that
the cerebellum intensively interacts in the activity, cognition,
and emotion processes (Adamaszek et al., 2017; Sokolov et al.,
2017; Schmahmann, 2019). We found the correlation between
DMN and the cerebellum cortex gets decreased and diverging.
Kucyi et al. has emphasized that the coupling between them,
named CerDMN, plays an essential role in the cognition function
mediated by cerebro-cerebellar interaction in ADHD (Kucyi
et al., 2015). Moreover, the dysfunction within CerDMN can
spread to other networks, including salience, dorsal attention,
sensorimotor and frontoparietal networks (Kucyi et al., 2015).
When it comes to the microstructural aspect, we found lower
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FA, which usually reflects axonal degeneration, in the right pars
orbitalis parcellation. According to the prefrontal hypothesis of
ADHD (Lin and Roth, 2017), the cerebral orbital region lesions
associate with social disinhibition and impulse dyscontrol. We
found the LD and MD increased in ADHD’s right isthmus
cingulate, a part of DMN, indicating the enhanced structural
connectivity. The region associated with the left postcentral,
located within SMN/Aud, has diminished FA value in ADHD.
The MD was found to increase within ADHDs left amygdala,
which was reported to receive inhibitory signals from the
emotion control network (Dessel et al., 2020). As a transfer
station connecting the cortex, basal ganglia, and cerebellum, the
thalamus participates in modulating excitatory and inhibitory
signals from both the ascending and descending pathways, which
contributes to attention behaviors (Bailey and Joyce, 2015). We
found the thalamus proper abnormality was related to both
microstructure property (increased LD value) and FC with
cortical networks (salience network and frontoparietal network).
The area and volume decrease in the left caudal middle frontal
of ADHD. This area was reported as the primary center of the
frontal-striatum-thalamus circuit, responsible for cognitive and
executive functioning (Audenaert et al., 2002) and associated
with attention problems (Hoogman et al., 2019). The striatum,
involving caudate, putamen, and pallidum, is regarded as a
critical descending fiber bundle conducting the cerebral cortex
and thalamus, maintaining muscular tension regulating fine
motion. The recent study supported that striatum is involved in
the hyperactivity pathogenesis of ADHD (Sörös et al., 2019).

It is interesting to notice the limited overlap of the ROIs
summarized from the three modalities. For example, the
basal ganglia regions, including pallidum, putamen, caudate,
and thalamus, as well as the cerebellum, are frequently
reported abnormal in ADHD in both macro-/micro-structure
and function connection by existing literature (Greven et al.,
2015; Castellanos and Aoki, 2016; Gehricke et al., 2017;
Hoogman et al., 2017). However, we found that abnormal
ROIs are more widespread in FC than structure. A study
based on large-scale samples of ADHD reports that the
cortical and subcortical structure abnormalities of ADHD are
distinct across the lifespan (Hoogman et al., 2019). Given our
study’s relatively narrow age span, the misalignment might
imply the asynchronous advancement of the macrostructural,
microstructural, and brain functional abnormalities. Another
possible reason is that FC is multi-linked by distinct nerve fiber
tracts, which means there is no one-to-one relationship between
FC and structural connectivity. The structural dysfunction of
hub regions may lead to widespread functional connection
anomalies. In our study, the coupling of FC predictors
and structural, especially microstructural, predictors boost the
ADHD diagnosis, suggesting the complementary advantage
of multimodalities.

4.2. Effectiveness of MKL and Multimodal
Features
The MKL framework achieves better performance than the
single-kernel-based classifiers or RF classifiers that directly

concatenate the features of all modalities. The kernel-level
combination provides more flexibility to allocate distinct weights
and kernel functions for individual modality. For example, string
and categorical features cannot be concatenated with numeric
features directly. Proper kernel functions can convert these
heterogeneous features into comparable similarity scores (kernel
matrix), which support weighted average. Like sMRI, dMRI,
resting-state fMRI, task-based fMRI, CT, and electronic medical
records, multiple data sources have become easily accessed
these days in neuroscience. The kernel-based multimodal fusion
method shows potentials in ADHD diagnosis.

In our experiment, rsfMRI drove the high performance,
and the introduction of DTI brought significant classification
improvement. However, the macrostructural features from sMRI
did not show an impressive contribution, even though the
kernels of sMRI and DTI shared comparable weights, which
suggests FC coupled with microstructural property captures
ADHD’s profile in this age. The complicated relationship
between functional and structural connectivity should be
investigated further.

4.3. Comparison With Published Works
Up to now, most of the published works aiming at image-
based ADHD diagnosis are based on ADHD-200. We chose
several representative pieces of research for comparison. Their
performances are listed in Table 5. We used additional features
from DTI and outperformed the previous MKL method
proposed by Dai et al. (Dai et al., 2012). However, our
framework’s performance only reached an above-average level in
accuracy among the citations. These results could not illustrate
that ourMKL framework was inferior because we used a different
dataset. The dataset of ADHD-200 has imbalanced demographic
distribution between the cases and controls and the heterogeneity
of ADHD diagnostic criteria and imaging sources (Milham et al.,
2012). The winning team (Brown, 2012), from the University of
Alberta, built the classifier on the phenotypic data of age, sex,
handedness, and IQ and achieved the highest accuracy (62.5%) in
this competition, even higher than image-basedmodels or image-
phenotype-mixed models, which has triggered discussion in the
community about the usefulness of brain data in diagnosing
a brain disorder (Brown, 2012; Arbabshirani et al., 2017). The
brain’s profile reflects the demographic divergence involving race,
age, and gender. The underlying demographic/clinical differences
between patients and health groups are believed to provide
predictive power classification. However, the differences in
demographic factors cannot be included in the diagnostic criteria.
Meanwhile, the imbalance of the disease group’s demographic
distribution and control may cause false-positive findings that
indicate the demography rather than mental diseases. The
findings in these pieces of researches may originate from the
imbalanced distribution of covariables between ADHD and its
typical controls. Therefore, it is necessary to fix the covariables
of demographic/clinical differences and look for more significant
disease causes. In this study, we tried to cancel the covariable’s
intrinsic differences between groups to avoid false positives as
much as possible. The batch effect of scanners was modeled and
removed, which enabled the comparison among machines, and
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TABLE 3 | Performances of unimodal and multimodal classification.

Modality Classifier AUC ACC Sensitivity Specificity F1-score

sMRI

LSVM 0.562 0.556 0.515 0.596 0.532

RBFSVM 0.564 0.544 0.473 0.616 0.501

RF 0.537 0.533 0.497 0.570 0.511

dMRI

LSVM 0.600 0.577 0.446 0.710 0.503

RBFSVM 0.577 0.567 0.483 0.650 0.518

RF 0.568 0.552 0.528 0.575 0.534

rsfMRI

LSVM 0.622 0.603 0.531 0.675 0.567

RBFSVM 0.655 0.616 0.602 0.628 0.605

RF 0.653 0.617 0.595 0.639 0.603

Multimodal

LSVM 0.664 0.629 0.565 0.696 0.598

RBFSVM 0.668 0.611 0.599 0.623 0.602

RF 0.636 0.596 0.590 0.602 0.590

MKL 0.698 0.643 0.609 0.676 0.626

The bold values are the best AUC in all unimodal settings and the globally best metrics.

FIGURE 5 | (A) The optimal weights of three modalities; (B–F) AUC, accuracy, sensitivity, specificity, and F1-score of different weight combinations in MKL,

respectively. In each triangle, the vertices present the unimodality-based classification result, the top left rsfMRI, the top right sMRI, and the bottom left DTI. Similarly,

the triangle edges between any two vertices display bimodal classifications with different weights.

the main covariables were balanced between the groups, even
though it may increase the classification difficulty.

Recently, Owens et al. (2021) reported cross-validated elastic
net regression to predict a continuous measure of ADHD

symptomatology. Elastic net regression can simultaneously
implement feature selection and regression by adding weighted
L1/L2 regularized terms to the linear model’s loss, limiting
the scale of variable coefficients for avoiding overfitting. The
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TABLE 4 | Performances of bimodal and trimodal multiple kernel learning (MKL) classification.

Modality AUC ACC Sensitivity Specificity F1-score

sMRI + DTI 0.627 0.586 0.535 0.636 0.558

rsfMRI + sMRI 0.665 0.612 0.579 0.645 0.593

rsfMRI + DTI 0.690 0.639 0.630 0.648 0.632

rsfMRI + sMRI + DTI 0.698 0.643 0.609 0.676 0.626

TABLE 5 | Attention-deficit/hyperactivity disorder (ADHD) classification results from published studies.

Dataset Modality Classifier AUC ACC Sensitivity Specificity F1-score References

ABCD sMRI, rsfMRI, DTI MKL 0.698 0.643 0.609 0.676 0.626 Our work

ADHD200 sMRI Random Forest – 0.754 – – – (Wang et al., 2021)

ADHD200 sMRI, rsfMRI CNN – 0.692 – – – (Zou et al., 2017)

ADHD200 sMRI, rsfMRI linear kernel SVM 0.71 0.686 0.781 0.573 0.677 (Tan et al., 2017)

ADHD200 sMRI, rsfMRI CNN+SVM – 0.673 0.455 0.851 – (Sen et al., 2018)

ADHD200 sMRI, RBF kernel SVM – 0.661 – – – (Ghiassian et al.,

2016)

ADHD200 rsfMRI RBF kernel SVM – 0.597 – – – (Ghiassian et al.,

2016)

ADHD200 personal character linear kernel SVM – 0.625 – – – (Brown, 2012)

ADHD200 sMRI, rsfMRI MKL 0.629 0.615 0.777 0.413 0.488 (Dai et al., 2012)

ADHD200 sMRI, rsfMRI Kernel PCA – 0.614 – – – (Sidhu et al., 2012)

ADHD200 sMRI, rsfMRI Random Forest – 0.61 0.21 0.94 – (Eloyan et al., 2012)

ADHD200 sMRI, rsfMRI, personal character RBF kernel SVM – 0.59 0.24 0.85 – (Colby et al., 2012)

ADHD200 rsfMRI Logistic regression – 0.54 0.222 0.807 – (Sato et al., 2012)

models were built on morphometric profiles extracted from
sMRI and brain region activation properties measured during
three tasks of working memory, inhibitory control, and reward
processing separately. The demographic, personal characteristic,
and medical features were considered in the regression models
as covariables. They observed a robust effect (R2 = 2%) of the
working memory in predicting ADHD symptomatology and a
dissipated impact (R2 = 1%) of the morphometric profiles when
introducing covariables into the regression model. This group
reported that they did not get robust models when utilizing the
elastic net to predict the diagnosis from KSADS. It is worth
noting that our study used more features than the published
research and two modalities, DTI and resting-state fMRI, that
they did not explore. We canceled the covariable effects by
balancing the dataset and avoided overfitting by explicitly
selecting all relevant features before prediction. The RF-based
feature selection method shrinks the data dimension directly.
It supports discovering the non-linear relationship between the
features and target, but the linear regression model has no
such capacity. Our SVM and MKL models achieved modest
prediction performance of ADHD diagnosis, even though the
weak discriminative power of sMRI features is partially consistent
with this published work.

5. LIMITATION AND CONCLUSION

Our study has several limitations that should be considered.
We tried to diminish the influence of ADHD’s comorbidities by

simply removing the subjects suffering these, so the advantage
of the large sample size cannot be fully taken. Our study has
approved that the MKL method possesses the potentials to
take full advantage of multimodal features, yet the moderate
classification performance might be hard to apply in clinical
diagnosis at the nonce.

These studies have approved that the features from distinct
neuroimages modalities, including sMRI, DTI, and rsfMRI,
encode complementary information for ADHD diagnosis, and
kernel-level fusion could improve classification performance.
The literature confirmed the identified multimodal predictors
in the current study, and each modality provided specific
importance in the MKL model, where the FC showed the most
discriminative power.
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