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Spiking Autoencoders With Temporal
Coding
Iulia-Maria Comşa*, Luca Versari, Thomas Fischbacher and Jyrki Alakuijala

Google Research, Zürich, Switzerland

Spiking neural networks with temporal coding schemes process information based

on the relative timing of neuronal spikes. In supervised learning tasks, temporal

coding allows learning through backpropagation with exact derivatives, and achieves

accuracies on par with conventional artificial neural networks. Here we introduce spiking

autoencoders with temporal coding and pulses, trained using backpropagation to store

and reconstruct images with high fidelity from compact representations. We show that

spiking autoencoders with a single layer are able to effectively represent and reconstruct

images from the neuromorphically-encoded MNIST and FMNIST datasets. We explore

the effect of different spike time target latencies, data noise levels and embedding sizes,

as well as the classification performance from the embeddings. The spiking autoencoders

achieve results similar to or better than conventional non-spiking autoencoders. We find

that inhibition is essential in the functioning of the spiking autoencoders, particularly when

the input needs to be memorised for a longer time before the expected output spike

times. To reconstruct images with a high target latency, the network learns to accumulate

negative evidence and to use the pulses as excitatory triggers for producing the output

spikes at the required times. Our results highlight the potential of spiking autoencoders

as building blocks for more complex biologically-inspired architectures. We also provide

open-source code for the model.

Keywords: spiking networks, temporal coding, latency coding, backpropagation, autoencoders, inhibition,

biologically-inspired artificial intelligence

1. INTRODUCTION

Spiking neural networks (SNNs), hailed as the “third generation of neural networks” (Maass,
1997), are models of neuronal computation closely inspired by the biology of the brain.
Conventional artificial neural networks (ANNs) are currently highly successful on a wide range of
problems, routinely exceeding human performance (LeCun et al., 2015), but their representational
capabilities lack one fundamental aspect characteristic of all biological organisms: the temporal
dimension. While some ANN architectures, such as LSTMs (Hochreiter and Schmidhuber, 1997)
and Transformers (Vaswani et al., 2017), can operate on sequential information with great
results, encoding temporal information is not natural to ANNs. By contrast, in SNNs, neurons
communicate through spikes fired at specific times, which adds an intrinsic temporal aspect to their
information processing capabilities.

SNNs are of particular interest for the fields of neuromorphic hardware and computational
neuroscience (Zenke et al., 2021). From the perspective of neuromorphic computing, SNNs provide
models for event-based computing deployable in hardware, potentially with large energy savings
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compared to ANNs (Blouw and Eliasmith, 2020). As tools for
neuroscience, they can bring insight into the computational
capabilities of biological networks (Abbott et al., 2016).

One way of encoding data into spiking neural networks
employs temporal coding, which posits that information is
encoded in the relative timing of neuronal spikes. Further
to its biological inspiration (which is detailed in section 4),
temporal coding is of interest because it allows learning using
exact gradients with respect to spike times, hence allowing the
application of efficient standard machine learning techniques.
This addresses one of the main obstacles that prevent a larger
adoption of SNNs compared to ANNs, which is the difficulty
of training the former. Spiking networks that employ temporal
coding are sometimes called temporal neural networks (TNNs)
(Smith, 2021). Notable existing work in this field includes
the SpikeProp model (Bohte et al., 2000) and its extensions
(Schrauwen and Van Campenhout, 2004; Booij and tat Nguyen,
2005; McKennoch et al., 2006; Ahmed et al., 2013; Wang et al.,
2017; Mostafa, 2018; Hong et al., 2020). In previous work, we
have shown that SNNs with temporal coding provide a class of
universal approximators for well-behaved functions, and can be
trained with backpropagaton to perform classification tasks to
accuracies similar to ANNs (Comşa et al., 2021).

Autoencoders are a type of representation learning that was
first introduced in the context of restricted Boltzmann machines
for dimensionality reduction (Hinton and Salakhutdinov, 2006).
Their applications include noise removal from corrupted data
(Vincent et al., 2008) and generative modelling (Kingma et al.,
2019) (see also Bengio et al., 2013; Goodfellow et al., 2016).
They are interesting as a building block for deep learning
and, more ambitiously, for architectures inspired by the human
brain (Krauss and Maier, 2020). Spiking autoencoders have
only been sparsely explored, for example by Roy et al. (2019).
Unsupervised feature extraction with spiking neural networks
using spike-time-dependent plasticity (STDP) has been shown to
be feasible (Masquelier and Thorpe, 2007) and can be stacked
with promising results (Kheradpisheh et al., 2018). It has been
proposed that mirrored STDP implements autoencoder learning
in SNNs (Burbank, 2015). However, it has also been argued that
the performance of STDP learning can considerably lag behind
that of conventional ANN autoencoders (Falez et al., 2019).

Here show that SNNs with temporal coding can learn
to behave as autoencoders using standard backpropagation
techniques. We characterise one-layer spiking autoencoders
that learn to reconstruct images from the MNIST dataset of
handwritten digits (LeCun et al., 1998), which we encode in an
analogmanner in the spike times, atmultiple noise levels.We also
verify that similar results are obtained on the Fashion-MNIST
(FMNIST) dataset of clothing items (Xiao et al., 2017) encoded
in the same way. Autoencoders are trained to reconstruct
images with respect to multiple target latencies. We compare the
performance of the SNN autoencoders with that of conventional
ANN autoencoders, showing that they achieve at least similar
performance. Further, we explore the embedding properties and
the spiking dynamics of the autoencoders at different latencies
and noise levels. We demonstrate that inhibition has an essential
role when the input needs to be memorised for a longer time

before the expected output spike times, whereas the learnable
pulses are used as excitatory triggers for the target latency.
These results establish SNN autoencoders as potential building
blocks for more complex biologically-inspired architectures for
neuromorphic computing. We provide open-source code for the
model. We provide open-source code for the model at https://
github.com/google/ihmehimmeli/tree/autoencoder/.

2. METHODS

2.1. Spiking Neuron Model
We use a neuronal model previously described by Comşa et al.
(2021). Upon spiking, an input neuron, indexed by i, produces an
increase over time t in the temporal membrane of a downstream
(output) neuron described by an α function (Sterratt et al., 2018)
of the form wi(t − ti)e

−τ (t−ti), where:

• ti is the non-negative, real-valued spike time;
• wi is the real-valued synapse efficiency, or weight;
• τ is a real-valued decay rate constant, fixed across the network,

that scales the function in intensity and time.

This synaptic transfer function is inspired by recordings in
biological neurons (Rall, 1967) and is illustrated in Figure 1.

Consider a neuron receiving a sequence of inputs ti∈{1..n}. Its
membrane potential at any point t before spiking is given by
V(t) =

∑

i∈{1..n} wi(t − ti)e
τ (ti−t). As soon as its membrane

potential reaches a threshold θ , which is fixed across the
network, the neuron spikes and its membrane potential is reset.
In the current feedforward autoencoder, any neuron spikes at
most once, but this spiking neuron model and learning rule
can also be used with multiple spikes per neuron and with
recurrent architectures, by computing gradients corresponding
to each event individually and combining them at each neuron.
An implementation allowing for the construction of recurrent
networks with multiple spikes can be found on the GitHub
repository in the event_based branch.

On a regular computer architecture, simulating the spike
times can be done in an event-based manner, without the need
for discrete time steps. The spikes are processed one by one
in chronological order and the membrane potential of any
affected neuron is updated as required. One notable aspect of
the simulation is finding the correct set of inputs that determine
a neuron to spike; importantly, even if a set of input neurons
determines the crossing of the threshold and hence predicts a
future spike, this predicted spike may not occur, or may occur
at a different time, if a new input spike comes between the last
input spike and the predicted spike time.

Given a set of input spikes ti∈{1..n} and their corresponding
weightswi∈{1..n}, the output spike time is given by (refer to Comşa
et al., 2021 for the full derivation):

tout =
B

A
−

1

τ
Wk

(

−τ
θ

A
eτ

B
A

)

(1)

where A =
∑

i wie
τ ti , B =

∑

i wie
τ ti ti and Wk denotes branch

k the Lambert W function (Lambert, 1758; Corless et al., 1996).
This equation has two possible solutions corresponding to the
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FIGURE 1 | Illustration of membrane potential dynamics for a neuron with θ = 0.5 and τ = 1. The neuron receives input spikes at times ti ∈ {1, 4, 5, 8, 12, 17, 19} with

corresponding weights wi ∈ {0.5, 0.3, 0.4,−0.2,−0.3, 1.2, 0.9}, which cause it to spike at tout = 19.39.

ascending and the descending parts of the membrane potential
function. We are interested in the earliest solution and therefore
employ the main branch k = 0. The equation has exactly one
solution if the maximum of the membrane potential is at θ , and
no solution if θ is not reached and there is no spike.

2.2. Network Architecture
The architecture of the spiking autoencoder is shown in Figure 2.

The autoencoder is composed of three layers: an input layer,
a hidden layer that acts as an encoder and is composed of fewer
neurons compared to the input layer, and an output layer that acts
as a decoder and has the same size as the input layer. The purpose
of the autoencoder is to learn to reproduce the input image in
the output layer. In other words, the hidden layer must learn
to convert the input image into a compressed representation,
from which the output image can be reconstructed as closely as
possible to the original.

For the MNIST problem, we use hidden layer sizes of h ∈

{8, 16, 32}. The size of an MNIST digit is 28 × 28 = 784,
but the average number of non-empty pixels per image is
around 150. Hence, the hidden layer sizes correspond to around
{5, 10, 20%} of the original number of non-empty pixels per
image in this dataset.

In addition to the regular neurons of the SNN, we also connect
a variable number of “synchronisation pulses” to each neuron
of each non-input layer. The role of the pulses, which can be
thought of as non-input neurons, is to provide a temporal bias
and encourage regular neurons to spike in order for gradients
to keep flowing during the training process. Just like regular
neurons, the pulses connect using learnable weights, but their
spike times are also learnable under the same learning scheme

as the rest of the network (as described in section 2.5). The set of
pulses connected to each layer is initialised with pulses that spike
at time evenly distributed in the same interval as the inputs. In
section 3, we elaborate on the role that the pulses learn to play in
the image decoding process.

2.3. Image Encoding
The temporal coding scheme posits thatmore salient information
is encoded as earlier spike times. Given an image, we encode each
of its individual pixels in the spike time of an individual neuron.
The spike time is proportional to the brightness of the pixel. For
example, m pixels with brightness levels in the interval [0, 1] can
be encoded as the spike times of m neurons in the same interval,
where a pixel with brightness of 0.1 corresponds to a spike time
at ti = 0.1.

In the original MNIST dataset (LeCun et al., 1998), all
inputs are encoded as values in the interval [0, 1], but more
salient information (the usually central pixels that encode the
meaningful digit information in most images) is encoded as
larger values. In this case, we invert the brightness of each image
to obtain the spike times. White pixels (equal to 1 after brightness
inversion) do not cause spikes, as it can be considered that they
do not carry any information.

The idea of encoding more salient information as earlier
spikes also appears in time-to-first-spike (TTFS) encoding
schemes, which is often used in classification paradigms
(Mostafa, 2018; Kheradpisheh and Masquelier, 2020; Sakemi
et al., 2020; Zhang et al., 2020). However, since the objective of
the autoencoder is image reconstruction, other encoding schemes
could be used for the inputs, including an inverted scheme that
we briefly explore in section 3.
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FIGURE 2 | Architecture of the spiking autoencoder. The weights and the pulses are trainable.

2.4. Image Decoding
The aim of the decoder is to reproduce the input image from
the compressed representation provided by the encoder. As the
image is encoded in the spike times, we set a target latency l,
which is fixed for themodel, as a reference for the deconstruction.
In other words, if an input pixel is encoded as a spike time at
time ti, the target latency for the corresponding output pixel is
l + ti. In this work, given the input interval [0, 1], we explore
different models that aim to reconstruct the image with latencies
l ∈ {1, 2, 4, 8, 16}. The target latency is directly encoded in the loss
function (as described in section 2.5).

There exist alternative ways of choosing the temporal
reference for decoding the output image. One possible alternative
is to reconstruct with reference to the earliest spike in the output
layer, which would give the SNN the freedom to self-regulate
its spike times. Another possible way is to add an additional
neuron to the output layer, which could explicitly act like a
temporal reference. Here we opt for a fixed latency, which best
allows us to study how the spike dynamics change as the model
is required to wait for different times between producing the
image reconstruction.

2.5. Learning Spike Times Using
Backpropagation
The aim of training the spiking autoencoder is to obtain a faithful
reconstruction of the input image at the output layer, with a
given target latency l. We therefore minimise the following mean
square error loss function:

L(t, t̃) =

n
∑

i=1

(ti − t̃i − l)2 (2)

where t represents the original n-pixel input image (i.e., the n
input spike times), and t̃ represents the n-pixel reconstruction
(i.e., the n output spike times that represent the image produced
by the SNN). If an output neuron does not spike, we use a very
large value as a surrogate spike time, thus allowing the gradient
to amplify the weights.

As in the case of conventional backpropagation training
for neural networks, we use the chain rule to compute the
update rules for each neuronal spike time and weight in
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the network by expanding the expression across k layers
as follows:

∂L

∂wj
=

∂L

∂tj+k

∂tj+k

∂tj+k−1
...

∂tj

∂wj
(3)

By differentiating Equation (2), we can plug in the derivative
of the loss function L with respect to the spike times in the
output layer, which is simply 2(t − t̃ − l). Next, to backpropagate
the loss, we need to differentiate individual spike times tj with
respect to their direct input spike times tj−1 and their weights wj.
Thankfully, the temporal coding scheme allows us to differentiate
Equation (1) and obtain the exact derivatives of an output spike
time tj with respect to any input tj−1 and weight wj (refer to
Comşa et al., 2021 for the full derivation):

∂tj

∂tj−1
=

wje
τ tj−1 (τ (tj−1 −

B
A )+W + 1)

A(1+W)
(4)

∂tj

∂wj
=

eτ tj−1 (tj−1 −
B
A + W

τ
)

A(1+W)
(5)

whereW denotes the Lambert functionW0(−τ θ
A e

τ
BI
AI ).

We then plug these derivatives into Equation (3) to obtain
the update quantities for each individual neuron and weight.
Equation (4) can also be used for adjusting the spike times of
the pulses. This is the same backpropagation procedure that is
conventionally used in non-spiking ANNs.

If a neuron does not spike, then we add a small positive-
valued penalty to each of the input weight derivatives, in order
to encourage spiking. If an input neuron spikes after the output
neuron, we do not compute derivatives corresponding to that
input neuron or its weight.

As the derivative of each neuron can approach infinity when
the membrane potential is close to the threshold θ , we clip the
derivatives (Equations 4 and 5) during the training process using
a fixed clipping value.

The training process consists of minimising the loss function,
using an Adam optimiser, for 100 epochs. We use a modified
form of Glorot initialisation (Glorot and Bengio, 2010) where
the weights are drawn from a normal distribution with standard
deviation σ =

√

2.0/(fanin + fanout) (as in the original scheme)
and custom mean µ = multiplier × σ . We use different
learning rates for the weights and for the pulses.

2.6. Noise Removal From Images
We train spiking autoencoders to reconstruct images under noisy
conditions. We add normally distributed noise to each pixel
in the following form, where η is the noise factor and r is a
random variable drawn from a normal distribution with standard
deviation 1:

ti = max(0,min(ti + ηr, 1)) (6)

The mean of the noise variable r is 1 in the case where the image
brightness is inverted such that larger values in the input interval
[0, 1] represent less salient information. If the image brightness is
not inverted, the mean is set to 0.

We study spiking autoencoders trained on datasets with noise
factors η ∈ {0, 0.2, 0.4, 0.6, 0.8}. The noisy images are used as
training and test examples, while the training targets are the
original (clean) images.

2.7. Hyperparameters
We have three variables controlling the setup for the spiking
autoencoders: target latency l ∈ {1, 2, 4, 8, 16}, noise factor
η ∈ {0, 0.2, 0.4, 0.6, 0.8}, and embedding size h ∈ {8, 16, 32}.
For each combination of these parameters, we do a search to
find the best set of hyperparameter controlling the model and
the training options. The hyperaparameter search is conducted
using the Google Vizier framework (Golovin et al., 2017) using
evolutionary-neural hybrid agents (Maziarz et al., 2018), with
minimum of 1,000 and up to 7,000 trials per condition. The
search is conducted on the MNIST datasets only and the best
configurations are then used on FMNIST as well.

For each model analysed below, we report results obtained
with the best hyperparameter combination for its setup.
However, we can find sets of parameters with good performance
on multiple setups at each target latency. These parameters are
shown in Table 1. The hyperparameters used for each model
described in this paper can be found in the GitHub repository.

2.8. ANN Baseline
We compare spiking autoencoders with conventional ANN
(non-spiking) autoencoders of similar architecture. Specifically,
a single hidden layer of hidden size 8, 16, or 32 is used, acting as
the encoder. We use ReLU activation function in the encoder and
a sigmoid activation function in the decoder (but see the Results
for a brief exploration of other activation functions).

The ANNs are implemented in TensorFlow (Abadi et al.,
2015). Note that the ANN autoencoders do not have pulses, but
they have bias terms, which leads to a slightly smaller parameter
count in the ANN autoencoders [the number of parameters of a
SNN with p pulses and an architecture of the form i − h − o is
equal to (i+p)∗h+ (h+p)∗o+2∗p; comparatively, the number
parameters in an ANN with biases is i ∗ h + h + h ∗ o + o]. We
use the same optimiser and number of epochs for both the ANN
and the SNN autoencoders.

The input MNIST images are inverted in order to be fed into
the spiking autoencoders, given that more salient information
causes earlier spikes, so that the more central pixels should
cause spikes closer to t = 0 compared to background
pixels. In contrast, the natural representation of a MNIST in
a conventional ANN is the original (not inverted) version. We
start by comparing these two representations, but later also
explore inverting this representation in both the spiking and the
conventional networks.

3. RESULTS

3.1. Reconstruction Loss
The best reconstruction loss values obtained in the spiking
autoencoders and the ANN autoencoders are similar (Figure 3).
In the spiking autoencoder, we find that the noise level and the
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TABLE 1 | Hyperparameters that achieve an error within 0.01 of the best error on all the training configurations with the given latency.

Hyperparameter Search range Value (l = 1) Value (l = 16)

decay_constant (τ ) [0.1, 2] 0.3138976904122206 0.28781361955998486

fire_threshold (θ ) [0.1, 1.5] 0.8011900124783229 0.9063259346518524

n_pulses [0, 10] 10 8

nonpulse_init_multiplier [−10, 10] −9.533865719823941 −6.971635832107275

pulse_init_multiplier [−10, 10] −8.08055538136939 9.978394158917038

batch_size [1, 1000]* 3 27

clip_derivative [1, 1000] 247.36488789120077 373.3754658744521

penalty_no_spike [0, 100] 33.83286251355259 39.560790380375444

learning_rate [10−5, 1.0]* 0.0016762843980764315 0.00038521130189147893

learning_rate_pulses [10−5, 1.0]* 0.0014413603337483233 0.13300674961971326

The best set of hyperparameters for each individual {latency, noise, embedding size} configuration can be found on the GitHub repository.

*Logarithmic search space.

FIGURE 3 | Reconstruction errors for spiking (“snn”) and non-spiking (“ann”) autoencoders at different levels of noise, for embedding sizes 8, 16, and 32, on the

MNIST and FMNIST datasets.

FIGURE 4 | A digit from the MNIST test set reconstructed by a spiking autoencoder with embedding size 32 and target latency l = 1, at different levels of noise.
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FIGURE 5 | Visualisation of MNIST embeddings produced by a spiking autoencoders with target latency l = 1 at different levels of noise η and embedding sizes h,

using the t-distributed stochastic neighbour embedding (t-SNE) technique, with perplexity set to 20. The results are qualitatively similar for different perplexity values.

Axis units (not shown) are arbitrary and identical for each plot.

embedding size have a large effect for both the spiking and the
ANN autoencoders.

Figure 4 shows examples of reconstructions produced by
spiking autoencoders trained at different noise levels and
embedding sizes, demonstrating the loss of quality with
more noise and smaller embeddings. Nevertheless, the spiking
autoencoder is able to reconstruct original images from highly
noisy images relatively well. Similar results are obtained for
ANN autoencoders.

3.2. Embedded Features
We visualise in Figure 5 the quality of the embeddings produced
by spiking autoencoders. We use t-distributed stochastic
neighbour embedding (t-SNE) (van der Maaten and Hinton,
2008), a method that assigns 2-dimensional coordinates to
high-dimensional points based on their similarity. The t-SNE
algorithm was initialised using principal component analysis

and run with perplexity value of 20. We verified that the
results were similar for multiple perplexity values. The relative
distance between digit clusters decreases with higher noise level
and smaller embeddings size. Similar results are obtained for
ANN autoencoders.

A practical use of embeddings comes from collapsing a high-
dimensional input space, from which the training distribution
is sparsely drawn, into a smaller space where basic operations
like addition are meaningful. Figure 6 shows the interpolation
between four digits in original space and in embedding space,
demonstrating meaningful digit-like intermediary steps only
when the interpolation is done in embedding space. Similar
results are obtained using ANN autoencoders.

Finally, we use support-vector machines (SVMs) with
Gaussian kernel to classify digits using either the original space or
the embeddings as input features, at different levels of data noise.
As shown in Figure 7, in the noisier conditions, the classification
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FIGURE 6 | Interpolating between four items from the MNIST and FMNIST test sets in embedding space. The embeddings are generated by a spiking autoencoder

with hidden layer size 32, target latency l = 1, noise level η = 0. They are then interpolated and, finally, run through the decoder layer to obtain the representation in

original space.

FIGURE 7 | Accuracy of an SVM classifying embeddings produced by spiking (“snn”) and non-spiking (“ann”) autoencoders at different levels of noise, for embedding

sizes 8, 16, and 32, on the MNIST dataset. The baseline is the classification accuracy on the original set.
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FIGURE 8 | Spike distributions on the full test set in trained spiking autoencoders with embedding size 32, noise level η = 0, target latencies l = 1 and l = 16. The

pulses are shown individually.

FIGURE 9 | Output potentials during the reconstruction of a test example by spiking autoencoders with embedding size 32, noise level η = 0, target latencies l = 1

and l = 16. The output neuron is chosen such that the target spike time is smaller than l + 0.1 (in other words, it is located in the centre of the image and encodes

salient digit information). The figure underlines the initial negative response of the membrane voltage, followed by a positive response caused by pulses.

accuracy is higher when embeddings of size at least 16 are used
as classification input features. The performance for ANNs and
SNNs is similar, with neither of them consistently outperforming
the other.

3.3. Spike Dynamics and Weight
Distributions
Having established that spiking autoencoders with temporal
coding perform on par with their ANN counterparts qualitatively
and quantitatively, we proceed to a more in-depth analysis of
the trained SNN models. These analyses are performed on the
MNIST dataset.

We investigate the models with different spike latencies
trained to reconstruct original images (no noise). Intriguingly,
we find that the distribution of the embedding (hidden layer)
spikes does not shift away from the input distribution and
toward the output distribution with higher target latency,
but rather remains relatively early, as shown in Figure 8. In
contrast, the pulses shift toward later times with higher target
latency. This suggests that the pulses play an excitatory role at
higher latency, acting like triggers for eliciting spikes with the
required delay.

The role of inhibition at the higher latency can be
more directly observed in Figure 9, where the membrane
potential dynamics in the output neurons indicate that the
neurons are inhibited by the incoming spikes from the
hidden layer. The output spike is triggered by pulses, which
occur closer to the target spike time and have a strong
excitatory effect. Examining the weight distributions for the
regular neurons and the pulses in the encoder and the
decoder in Figure 10, it is clear that regular neurons have
on average inhibitory weights, whereas pulses are strongly
excitatory. As this happens in both layers of the network,
this can be interpreted as accumulating negative evidence
for inhibition.

3.4. ANN Performance on Inverted-Value
Images
As mentioned in section 2, the default input to the temporally-
coded SNN is the inverted version of the images (p : =

1 − p), such that the more informative pixels have values
closer to 0, whereas the less informative pixels have values
closer to 1. The ANNs presented so far were trained,
as conventional, on the non-inverted images. We briefly
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FIGURE 10 | Weight distributions in spiking autoencoders, for regular neurons and pulses. All models have embedding size h = 32 and noise level η = 0.

explored how they would perform on the inverted version of
the images.

We found that ANN autoencoders do not perform
as well at reconstructions on the inverted version of the
images. We explored multiple choices of activation function
combinations, including ReLU, sigmoid, ELU, tanh, and
Gaussian-shaped functions in either the encoder of the
decoder. The best performing ANN autoencoders had
Gaussian-Gaussian and ReLU-sigmoid activation functions
in the encoder and decoder layers, respectively. As shown
in Figure 11, the spiking autoencoders outperform all
the tested ANNs on the inverted images. Additional
processing of the input dataset may help ANNs achieve
better performance; as our aim is to study spiking
autoencoders without additional data processing, we do
not investigate further.

4. DISCUSSION

We have shown that spiking autoencoders that represent
information in the timing of neuronal spikes can learn
to reconstruct images through backpropagation learning.
They perform on par with conventional artificial neural
networks, and exceed their performance when the inputs are

encoded such that the smaller values correspond to more
salient information. We have illustrated the capabilities of
spiking autoencoders through multiple examples, and we
have underlined the important role of inhibition especially
when the SNN is required to keep the information in memory
(i.e., in the membrane potential of the spiking neurons) for a
longer time.

4.1. Biological Considerations
Wediscuss here the choice of coding scheme in a spiking network
in relation to biology of the brain, as well as some considerations
on backpropagation.

There are multiple ways of encoding information in the form
of spikes. Very often, information is encoded in the neuronal
spike rates. In such coding schemes, a more salient stimulus is
encoded as a higher spike rate of a particular neuron. ANNs
can, in fact, be thought of as operating with neuronal spike rates
averaged in time or in space.While rate coding has practical value
for comparisons with currently spatially-constrained methods of
neural recording (Yamins and DiCarlo, 2016), it is arguably not
optimal (Rullen and Thorpe, 2001). Overall, it is not clear that
spike rates may best reflect the true computational substrate of
the brain (Brette, 2015).
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FIGURE 11 | Reconstruction loss on the inverted-brightness MNIST dataset for spiking (“snn”) and non-spiking (“ann”) autoencoders. The embedding size is always

h = 32. The spiking autoencoder has a target latency of l = 1. The non-spiking networks have either ReLU activation functions in the encoder and sigmoid activation

functions in the decoder, or zero-centred Gaussian-like activation functions everywhere.

On the other hand, the idea of temporal coding is supported
by multiple pieces of biological evidence, in particular at sensory-
level such as in the retina (Gollisch and Meister, 2008) or in
the tactile system (Jones et al., 2004; Johansson and Flanagan,
2009), but also in the higher in the neural processing hierarchies
(Reinagel and Reid, 2000). The short time needed for visual
stimuli to produce discriminating signals in the temporal lobe
implies that single spikes must play an important rule in the
propagation of information across the brain (Thorpe and Imbert,
1989). Our work hence encourages the use of temporal coding as
a plausible information coding scheme for sensory processing in
biologically-inspired neural models.

In this work, we used backpropagation to teach SNNs to
reconstruct and remove noise from images of handwritten
digits. The idea of backpropagation learning occurring in the
biological brain is often questioned. However, it has been
shown that random connections (Lillicrap et al., 2016) or other
simple learning rules (Bengio et al., 2015) may approximate
backpropagation-like learning. Here we do not claim that the
learning method is necessarily biologically-plausible, but rather
effective as a learning algorithm for training networks with other
biologically-inspired characteristics.

4.2. The Role of Inhibition
A finding of particular interest that emerges from this work is
the interplay between inhibitory and excitatory connections in

producing spikes with the required timing. We allowed each
connection to learn its own weight, without fixing its polarity
from the beginning, but we allowed the hyperparameter search
to influence the initial distribution of weights in the pulses and
in the regular neurons. The networks learned to use inhibition
as a main mechanism in the regular neurons, whereas the pulses
were used as excitatory triggers to elicit output spikes at the
target latencies. We remark that inhibition was used in both the
hidden (encoder) layer and in the output (decoder) layer, which
suggests a double accumulation of inhibition; in other words,
the encoder accumulated information about which inhibitory
elements should be inhibited in the decoder. This feature was not
hard-coded in the models. As a consequence, the output timing
of the network can be adjusted by simply changing the timing of
the pulses connected to the output layer.

Despite our model being an oversimplification over the many
variables observed in real neurons, it is still relevant to note
that the balance of inhibition and excitation is essential in
producing the spike patterns routinely observed in biological
networks. For example, the theta rhythm in the hippocampus,
which modulates memory, is thought to be caused by an intricate
play between excitatory and inhibitory sources (Buzsáki, 2002).
Simulations show that Poisson distributions of spikes, which
often appear to be random in nature, may actually reflect
the interactions between excitatory and inhibitory inputs with
slightly different phase characteristics (Denève and Machens,
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2016). Our model offers a simple demonstration of how negative
evidence accumulation of inhibition, coupled with excitatory
self-regulation, may be used to solve an image reconstruction task
with externally-imposed timing.

4.3. Limitations
A significant challenge in scaling the current model and
learning scheme is the computational demand during both the
feedforward pass and the error backpropagation. Our model uses
a synaptic function that has the advantage of being biologically
faithful at the expense of requiring the computation of multiple
exponentials. Moreover, a general drawback of spiking neural
networks is that the event-based nature of the computation does
not allow for full parallelisation in non-specialised hardware. In
practice, our models can take a couple of minutes per epoch to
train on regular hardware. Nevertheless, we have verified that
deeper spiking autoencoders with up to five total layers can
successfully learn the same datasets, although we chose to present
here only single-layer experiments, which already achieved
acceptable reconstructions. Convolutional variations are also
possible, but they pose the same computational challenges on
regular hardware.

4.4. Conclusions and Outlook
Our work accrues evidence for the potential of spiking neural
networks with biologically-inspired characteristics as building
blocks for neuromorphic machine learning. The novelty of
our work consists in showing for the first time that spiking
autoencoders with temporal coding can achieve results on par
with conventional autoencoders, as well as providing insights
into their dynamics, including the important role of inhibition
in memorising information over longer periods of time. The

inhibition across the network is complemented by the excitatory
role that pulses learn to play in order to trigger the network
output at the required time. Further to single-layer architectures,
autoencoders can be stacked (Vincent et al., 2010) and even
used for architectures inspired by the human brain (Krauss and
Maier, 2020). Our model can thus be used as a building block
for spiking neural networks withmore complex architectures and
energy-efficient neuromorphic computing.
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