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Borderline intellectual functioning (BIF) is a multifactorial condition in which both
genetic and environmental factors are likely to contribute to the clinical outcome.
Abnormal cortical development and lower IQ scores were shown to be correlated
in BIF children, but the genetic components of this condition and their possible
connection with intelligence and brain morphology have never been investigated in
BIF. The synaptosomal-associated protein of 25 kD (SNAP-25) is involved in synaptic
plasticity, neural maturation, and neurotransmission, affecting intellectual functioning.
We investigated SNAP-25 polymorphisms in BIF and correlated such polymorphisms
with intelligence and cortical thickness, using socioeconomic status and environmental
stress as covariates as a good proxy of the variables that determine intellectual
abilities. Thirty-three children with a diagnosis of BIF were enrolled in the study.
SNAP-25 polymorphisms rs363050, rs363039, rs363043, rs3746544, and rs1051312
were analyzed by genotyping; cortical thickness was studied by MRI; intelligence was
measured using the WISC-III/IV subscales; environmental stressors playing a role in
neuropsychiatric development were considered as covariate factors. Results showed
that BIF children carrying the rs363043(T) minor allele represented by (CT + TT)
genotypes were characterized by lower performance Perceptual Reasoning Index and
lower full-scale IQ scores (p = 0.04) compared to those carrying the (CC) genotype.
This association was correlated with a reduced thickness of the left inferior parietal
cortex (direct effect = 0.44) and of the left supramarginal gyrus (direct effect = 0.56).
These results suggest a link between SNAP-25 polymorphism and intelligence with the
mediation role of brain morphological features in children with BIF.
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INTRODUCTION

Borderline intellectual functioning (BIF) is a condition
characterized by a mental ability at the border between
normal intellectual functioning and intellectual disability, with
an Intellectual Quotient (IQ) within 1 and 2 standard deviations
below the mean of the normal curve of the distribution of
intelligence that impacts on adaptive abilities (Salvador-Carulla
et al., 2013; Peltopuro et al., 2014). In primary school age,
children with BIF are burdened with difficulties in school
achievements due to learning difficulties in more than one
executive functions domain, such as attention, concentration,
planning, and inhibition of impulsive responses, as well as
memory and motor skill limitations (Alloway, 2010; Vuijk
et al., 2010; Salvador-Carulla et al., 2013; Peltopuro et al., 2014;
Contena and Taddei, 2017). Furthermore, limitations in social
skills, emotional competencies, and behavioral problems affect
the social participation of these children (Baglio et al., 2016;
Predescu et al., 2020). Children with BIF are thus at high risk
of school failure and dropout (Fernell and Ek, 2010), and
are more likely to develop psychiatric problems in adulthood
(Douma et al., 2007; Emerson et al., 2010; Gigi et al., 2014;
Hassiotis, 2015; Hassiotis et al., 2019). Potential risk factors
for BIF include low weight at birth, low socioeconomic status,
maltreatment, and high levels of maternal stress. However, the
negative social condition does not explain all the BIF cases and
their development across the life span.

Intelligence is one of the most heritable behavioral traits
(Deary et al., 2009). Intelligence is nevertheless also a malleable
entity under the influence of environmental conditions (Sauce
and Matzel, 2018). As a logical consequence of this, intellectual
disability, as well as the development of psychiatric disorders
were suggested to be the result of an interaction between social
environment and genetic background (Rizzi et al., 2012). Finally,
a multifactorial and multigenic set may be responsible for BIF
development (Ropers, 2008).

An important role in intelligence is likely played by the
synaptosomal-associated protein of 25 kD (SNAP-25) gene,
which is located on chromosome 20p12-p11.2, an area of
previous suggestive linkage to intelligence (Posthuma et al.,
2005). SNAP-25 protein takes part in the regulation of calcium-
dependent synaptic vesicles exocytosis, ensuring the efficient
release of neurotransmitters and the propagation of action
potentials. The key role of SNAP-25 is to initiate exocytosis
through the formation of a SNARE complex (Südhof, 2015).
The SNARE complex is therefore involved in the processes of
learning, locomotion, memory formation, and ultimately the
normal functioning of the brain as a whole. SNAP-25 single
nucleotide polymorphisms (SNPs) were associated with variation
of performance IQ in non-clinical, population based samples
(Gosso et al., 2006, 2008). Interestingly, polymorphisms in
the SNAP-25 gene, as well as an altered expression of the
SNAP-25 protein, are also associated with abnormal behavioral
phenotype both in humans (Thompson et al., 2003; Guerini
et al., 2011; Braida et al., 2015; Liu et al., 2017) and in animal
models (Bruno et al., 2006; Gunn et al., 2011). Finally, evidence
derived from multiple organisms suggested that SNAP-25 is

involved in the process of axonal growth and synaptic plasticity
(Martinez-Arca et al., 2001). Therefore, any variation of SNAP-
25 protein expression may interfere with neural maturation and
neurotransmission, affecting intellectual functioning.

Neural plasticity during development was investigated with
neuroimaging techniques that evaluated longitudinal changes in
cortical thickness, a parameter influenced by genetics, which
modulates intelligence (Brans et al., 2010). Notably, a number
of results show how differences in a distributed network that
include frontal and parietal cortices predict individual profiles in
intelligence (Jung and Haier, 2007). Earlier data from our group,
in particular, showed the presence of significant differences in
cortical volume in areas belonging to this network in children
with BIF and the relationship of this difference with intelligence
(Baglio et al., 2014).

The aim of our work was to examine the complex
relation between SNAP-25 and cortical thickness in determining
intelligence. To accomplish this aim, we selected four SNPs
located in the intron region which were proved to be involved in
both typical (Gosso et al., 2006, 2008) and atypical development
(Barr et al., 2000; Guerini et al., 2011; Braida et al., 2015).
We first identified the presence of possible correlations between
the SNAP-25 rs363050, rs363039, rs363043, rs3746544, and
rs1051312 genetic polymorphisms with brain area morphology,
and IQ scale in 33 children with BIF. Next, we conducted a
mediation analysis in which genetic polymorphisms, brain area
morphology and IQ scale were modeled in a comprehensive
fashion. An association of the SNAP-25 rs363043 polymorphism
with PRI as well as with IQ scores was reported to be mediated by
brain cortical thickness in the inferior parietal lobule.

MATERIALS AND METHODS

Patients Enrolled in the Study
Children were recruited from the Child and Adolescent
Neuropsychiatry Unit of IRCCS Don Carlo Gnocchi Foundation
and the ASST S. Paolo and S. Carlo Hospital; both in Milan,
Italy. The sample included thirty-three children (6–11 years old)
with BIF, i.e., a Full-Scale Intelligence Quotient (FSIQ) score in
the borderline range, and clinical criteria, that attend primary
mainstream school. The clinical evaluation consisted of a detailed
medical history and social skills of the child and of his/her family
and clinical observations reports.

Excluded criteria were: (1) ADHD, autism spectrum disorder,
or other major neuropsychiatric disorders; (2) epilepsy, traumatic
brain injury, brain malformation, infectious disease and other
neurological conditions involving the central nervous system,
and perinatal complications such as prematurity or other adverse
events; (3) genetic syndromes such as Down syndrome or
Fragile X syndrome and (4) systemic diseases such as diabetes
or dysimmune disorders; and (5) current or past substance
abuse (psychoactive drugs, psycho stimulants, neuroleptics,
antidepressants, benzodiazepines, and antiepileptic drugs).

Informed consent was obtained from all parents/legal
guardians prior to inclusion in the study. The study was
conducted according to the guidelines of the Declaration of
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Helsinki and was approved by the institutional review board of
the Don Carlo Gnocchi ONLUS Foundation, Milan (Protocol nr:
06_18-05-2016).

Socioeconomic status was assessed by the SES questionnaire,
an integrated measure of parent’s education grade and
occupation, widely used in research to identify the child/family
social standing. The socio-cultural levels are low (range 8–19),
middle-low (range 20–29), middle (range 30–39), middle-high
(range 40–54) and high (range 55–66) (Hollingshead, 2011).
Environmental stress was defined according to the ESCL, a
list of V-codes from DSM-5, and Z-codes from ICD-10, to
detect relational, neglect, physical, sexual and/or psychological
abuse, educational and occupational, housing and economic,
social exclusion or rejection problems, plus the presence of the
following three conditions: social services intervention, major
psychiatric diagnosis and/or substance abuse within the family
members. The scoring is binary with a 0 (absence) or 1 (presence)
attribution to each item, with a total score ranging from 0 to 24
(Blasi et al., 2020).

Neuropsychological Evaluation
The neuropsychological evaluation included: (1) the WISC –III
(Orsini and Picone, 2006), with the exception of nine children
evaluated with the WISC-IV (Orsini et al., 2012) that assess
the global intellectual functioning and the cognitive profile;
(2) the Socioeconomic Status (SES) (Hollingshead, 2011), to
evaluate the family education level and financial well-being; (3)
the Environmental Stress Check List (ESCL), a tool to detect all
possible sources of environmental stress (Blasi et al., 2020) to
which the children were exposed to.

The WISC-III provides three principal scores: the FSIQ, the
Verbal IQ (VIQ), and the Performance (PIQ); in addition, to
better describe the cognitive profile, it is possible to calculate four
indices: the Verbal Comprehension Index (VCI), the Perceptual
Organization Index (POI), the Freedom from Distractibility
Index (FDI) and the Processing Speed Index (PSI). The WISC–
IV provides an FSIQ and a four-index framework similar to
that of the WISC III: the VCI, the Perceptual Reasoning Index
(PRI), the Working Memory Index (WMI), and the PSI. The
increased emphasis on fluid reasoning abilities and on working
memory, with the introduction of new subtests, has resulted
in the renaming of the POI as the Perceptual Reasoning Index
(PRI) and the FDI as the Working Memory Index (WMI)
respectively. Moreover, a high correlation between FSIQ, VCI,
and PRI of both versions is demonstrated (FSIQ-FSIQ = 0.89;
VCI-VCI = 0.88; POI-PRI = 0.72) (Flanagan and Kaufman,
2012). Finally, all indices are expressed in the standard score
(Mean = 100; SD = 15). For the present study, we will refer to both
POI and PRI indices with the acronym PRI and to both FDI and
WMI as WMI. All the data were age-corrected when measured.

MRI Acquisition
All subjects underwent a magnetic resonance imaging
(MRI) evaluation. MRI was performed on a 1.5 T Siemens
Magnetom Avanto (Erlangen, Germany) scanner equipped
with a 12-channels head coil. The acquisition included: (1)

a 3D T1-weighted Magnetization Prepared Rapid Gradient-
Echo (MPRAGE) image, (repetition time (TR)/echo time
(TE) = 1900/3.37 ms, Filed of View (FoV) = 192 × 256 mm2,
voxel size = 1 mm isotropic, 176 axial slices); (2) two conventional
anatomical sequences (axial PD/T2 and coronal FLAIR) to
exclude gross brain abnormalities.

MRI Data Analysis
The 3D-T1 images were segmented and parcellated using
FreeSurfer version 5.31 into 68 cortical areas (34 for each
hemisphere) according to the Desikan atlas (Desikan et al.,
2006). Furthermore, the FreeSurfer automatic labeling process
was used to extract seven subcortical regions per hemisphere
(thalamus, caudate, putamen, pallidum, and nucleus accumbens,
amygdala, and hippocampus) and the brain stem for a total of
82 parcels. The quality of recon-all parcelation was assessed in
each subject according to ENIGMA guidelines2 for cortical and
subcortical areas.

Mean thickness was then computed for each cortical area, and
mean volume for each subcortical region.

Genetic Analyses
Single nucleotide polymorphisms typing: Three SNAP-25 SNPs:
rs363050, rs363039, and rs363043 located within intron 1,
in a region of about 13.8 kb, known to affect transcription
factor binding sites (Gosso et al., 2008) as well as two
SNAP-25 SNPs: rs3746544 and rs1051312 located in the 3′
untranslated region predicted as a binding site of miRNAs
(endogenous non-coding RNA regulators of gene activity at
the post-transcriptional level) (Ambros, 2004; Bartel, 2004)
were investigated; these SNPs have previously been associated
with ADHD (Barr et al., 2000). Genomic DNA was isolated
from peripheral blood mononuclear cells by phenol-chloroform
extraction. SNPs were typed using the Taqman SNP Genotyping
Assays (Applied Biosystems by Life Technologies, Foster City,
CA, United States) on an ABI PRISM 7000 Sequence Detection
System. For rs363039, rs363043, rs363050, and rs3746544,
respectively, the C_327976_10, C_2488346_10, C_329097_10
and C_27494002_10 Human Pre-Designed Assays (Applied
Biosystems by Life Technologies) were used. The restriction
enzyme polymorphism rs1051312 was genotyped by DdeI
digestion as previously described (Barr et al., 2000).

Statistical Analysis
Age, socioeconomic status, environmental stress index, the
total score, and the subscales of the Wechsler Intelligence
Scale for Children were described by median and 5th to
95th centile range. SNAP-25 polymorphisms were described by
frequencies (Table 1).

Exact Hardy Weinberg analysis was applied to verify if SNAP-
25 SNPs genotype distribution among children with BIF were in
Equilibrium (HWE).

SNAP-25 Linkage disequilibrium was calculated by SHEsis
(Shi and He, 2005) by adding data from 615 healthy control

1https://surfer.nmr.mgh.harvard.edu
2http://enigma.ini.usc.edu/enigma-vis
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TABLE 1 | Median, 5th–95th centiles of age, socioeconomic status, environmental
stress and psychometric scores.

Overall, Boys, Girls,

N = 33 N = 19 (57.6%) N = 14 (42.4%)

Age (years) 9.0 (6.0,10.0) 8.0 (6.0,10.1) 9.0 (6.0,10.0)

SES 22.0 (14.0,45.2) 22.0 (15.6,51.0) 22.0 (14.0,32.7)

ESCL 4.0 (0.6,8.0) 4.0 (1.0,8.2) 2.5 (0.0,8.0)

WISC-III-IV

FSIQ 78.0 (62.8,85.4) 80.0 (69.1,86.2) 76.0 (62.3,85.0)

VCI 80.0 (57.0,94.8) 84.0 (68.2,94.4) 78.5 (57.3,89.5)

PRI 84.0 (77.2,104.2) 85.0 (77.8,103.8) 83.0 (74.9,98.9)

WMI 75.0 (63.0,92.2) 75.0 (61.8,94.6) 76.5 (63.0,91.0)

PSI 77.0 (60.8,95.2) 74.0 (58.7,94.6) 77.3 (64.0,95.0)

SNAP-25

rs363039 GG (11), GA + AA (22) GG (7), GA + AA (12) GG (4), GA + AA (12)

rs363043 CC (16), CT + TT (17) CC (8), CT + TT (11) CC (8), CT + TT (6)

rs363050 AA (14), AG + GG (19) AA (8), AG + GG (11) AA (6), AG + GG (10)

rs3746544 TT (11), TG + GG (22) TT (6), TG + GG (13) TT (5), TG + GG (9)

rs1051312 TT (25), TC + CC (8) TT (16), TC + CC (3) TT (9), TC + CC (5)

Frequencies were reported for SNAP-25 polymorphisms.
SES, socioeconomic status; ESCL, environmental stress check list score; WISC-III-
IV, Wechsler Intelligence Scale for Children; FSIQ, Full-Scale Intelligence Quotient;
VCI, Verbal Comprehension Index; PRI, Perceptual Reasoning Index; WMI, Working
Memory index; PSI, Processing Speed Index.

from a previous study (Guerini et al., 2014). Haplotype
correlation with IQ profile was calculated by regression analysis,
adjusting by gender, SES, and ESCL, using PLINK software
(Purcell et al., 2007).

A causal network approach was applied to investigate the
association between SNAP-25 SNPs, MRI morphological data,
and WISC-III-IV subscales (FSIQ, VCI, PRI, WMI, PSI) (Agler
and De Boeck, 2017). Specifically, we considered a network
in which SNAP-25 SNPs may act on psychometric scores
through a direct relation and by an indirect pathway in
which morphological data, measured by MRI, may act as a
mediator. Firstly, to reduce skewness, all outcome data were
standardized and transformed in normal ranks using Blom’s
transformation (Gumbel, 1959). Afterward, models bearing the
direct association (SNAP-25 to WISC III-IV subscale) and
two indirect associations (SNAP-25 to brain morphology and
brain morphology to WISC III-IV subscale), were applied
to investigate the above causal pathway. Those models were
based on a Kernel not parametric regression adjusted for sex,
socioeconomic status, and Environmental Stress Check List score
(ESCL). Regression coefficients were estimated and tested for
significance by a procedure based on 5,000 bootstrap replications.
To take into account numerous comparisons and to manage
the related false discovery rate, the threshold P-value to detect
significant associations was set according to the Benjamini–
Hochberg procedure (Chen et al., 2017). Briefly, this method was
chosen, instead of more conservative approaches, because of the
small sample size and the need to reduce the false-negative rate
(reduce the type-II error). Heat maps of statistically significant
results were the graphical tool chosen to represent multiple
associations between SNAP-25 SNPs, MRI morphological data,
and psychometric scores.

Afterward, according to the above explorative analyses, a
mediation analysis was used to investigate the role of brain
morphology in the association between SNAP-25 SNPs and
psychometric scores. In the mediation analyses, the direct and
indirect effects were reported as standardized and rescaled
regression coefficients. The total effect of SNAP-25 SNPs on
psychometric scores was computed as a + b × c and as b × c
as the total and indirect effects respectively. Here the term “a”
was the slope of the direct effect, while the terms “b” and “c”
were the slopes of the two sides of the indirect effects, the
association between single nucleotide polymorphism with MRI
data, and the association between MRI data and the psychometric
scores, respectively. Standardized coefficients were reported for
all the associations. All statistical tests were two-tailed and the
type-I error rate was set according to the Benjamini–Hochberg
procedure for the single Kernel non-parametric models while an
ordinary type-I error rate of 5% (α = 0.05) was considered for
the mediation analyses. The NP and the LAVAAN packages of
the R software vers. 3.6. were used to conduct the kernel non-
parametric regressions and the mediation analysis, respectively.

Given the small sample size, a priori and a posteriori power
calculations were performed. In particular, the statistical power
of Kernel non-parametric regression was investigated using the
MultNonParam package of the R software vers. 3.6 while the
statistical power of the mediation analysis was investigated using
the pwr package of the R software vers. 3.6. According to this
evaluation and considering the current sample size and type-
I error rate used, medium to large standardized effect size in
the range of 0.3–0.5, could be detected with a type-II error
rate below 20% (Statistical power above 80%) for those two
methods. According to statistical power, the current study could
be defined as explorative.

RESULTS

SNAP-25 Polymorphisms Association
With Neuropsychological Scores
The sample was composed of 19 boys and 14 girls with a
median age of 9 years (5th to 95th centile 6–10 years old).
Age, socioeconomic status, IQ evaluation scores, and SNAP-25
polymorphisms were similar in boys and girls; the ESCL score, on
the other hand, was lower in girls compared to boys, although not
significantly (p = 0.3964). All WISC-III-IV scores had a median
lower than 85, below 1 standard deviation with respect to the
normal population (Table 1).

Initial results showed that SNAP-25 rs363039, rs363043,
rs363050, rs3746544, and rs1051312 SNPs genotype distribution
was in HWE (p = 0.96; p = 0.05; p = 0.07; p = 0.71;
p = 0.57 respectively) (Figure 1). The SNAP-25 genetic patterns of
distribution in BIF children, clustered into carriers of the minor
allele (i.e., heterozygous+ homozygous for minor) and carriers of
the homozygote major allele, were analyzed next in relationship
with FSIQ, VCI, PRI, WMI, and PSI scores (Figure 1).

Analysis of the relation between SNAP-25 polymorphisms
and IQ scores showed the presence of a significant association
between the rs363043 (T) minor allele represented by (CT+ TT)
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FIGURE 1 | Violin plots of Kernel’s smoothed distributions of WISC-III/IV scores by SNAP-25 genotypes. The box plots present the distribution of each IQ score
(median and interquartile range) relatively to the genotype distribution. The “violin” area indicate the percentage of children with BIF for each allele (in gray the minor
allele and white the major allele).

genotypes and lower FSIQ and PRI scores (p = 0.04). Notably,
additional results showed that the rs3746544 (TT) genotype
was also significantly associated with reduced WMI scores
(p = 0.04) (Figure 1).

SNAP-25 Haplotype Linkage Analyses
Linkage haplotype analyses were used to evaluate the linkage
disequilibrium between SNAP-25 variants, as well as to verify
the presence of an association between the different haplotypes
and FSIQ, VCI, PRI, WMI, and PSI scores. Haplotype analysis
evidenced, the presence of a linkage disequilibrium (LD)

between: (1) rs363050 and rs363039 (r2 > 0.3); (2) rs363043
and rs363050 (r2 = 0.24); and (3) rs363043 and rs363039
(r2 = 0.17) and a linkage between rs3746544 and rs105312
polymorphisms (r2 = 0.17). Haplotype distributions were not
significantly associated with IQ scores (data not shown).

MRI Parameters Mediators Between
SNAP-25 Polymorphisms and Intelligence
The relations between SNAP-25 polymorphisms and MRI
morphological data, along with the relations between MRI
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morphological data from IQ evaluation were analyzed next.
Results showed the presence of a number of associations between
these features (Supplementary Figures 1, 2). In particular, this
exploratory association identified the cortical thickness in the left
inferior parietal cortex as a possible mediator between rs363043
and PRI scores. Moreover, the thickness of the left supramarginal
gyrus was suggested to act as a possible mediator between
rs363043 and FSIQ. Finally, when considering the relation
between the PRI score with the left inferior parietal cortex a
significant variance of 21% was observed, whereas the relation
between FSIQ with the left supramarginal gyrus resulted in an
explained variance of 24%.

According to our mediation analyses, the association of the
rs363043 polymorphism influenced the PRI score with a direct
effect of 0.44. This association was mediated by a cortical
thickness of the left inferior parietal by 3.1%. This means that a
lower score of PRI associated with rs363043 (CT+TT) genotypes
is directly related to a reduced cortical thickness. Similarly, the
association of the rs363043 polymorphism with the FSIQ score
had a direct effect of 0.56 and a mediated indirect effect of the
cortical thickness of the left supramarginal gyrus of 3.5%. This
means that the lower FSIQ score associated with the rs363043
(CT + TT) genotypes is directly related to a reduced cortical
thickness of the left supramarginal gyrus. Results of the mediation
analyses are presented in Figure 2.

DISCUSSION

In the present study, we show that SNAP-25 rs363043(T) minor
allele represented by (CT + TT) genotypes are associated
with lower PRI scores in children with BIF; such association
was found to be mediated by the left inferior parietal
cortex thickness: lower thickness mediates lower PRI scores.
Notably, the same children carrying the rs363043 (CT) or
(TT) genotypes showed a lower full-scale IQ score, and this
association was mediated by the cortical thickness in the left
supramarginal gyrus.

The SNAP-25 SNP rs363043, along with other polymorphisms
on the SNAP-25 gene, has previously been associated with
intelligence in a normal population of Dutch children,
adolescents, and adults (Gosso et al., 2006, 2008). In that case,
though, the rs363043 (T) allele was associated with higher Verbal
and performance IQ. Differences in the populations that have
been analyzed, as well as in environmental components, might
explain these discrepant results. Specifically, in the previous work
(Gosso et al., 2008) the authors studied a population with an
average IQ while we analyzed a group of BIF children belonging
to a low socioeconomic status; importantly, the effect of several
environmental stressors was considered as well in our analyses.

The interplay between genetic and environmental factors is
complex and most likely both these factors have an important
impact on individual differences in IQ (Sauce and Matzel, 2018).
In the attempt to consider both aspects, we designed a model
that includes the socioeconomic status and environmental stress
as covariates; we believe this approach to be a good proxy of the
diverse variables that determine intellectual abilities.

The SNAP-25 rs363043 polymorphism herein reported is a
(non) coding variant within the intron 1 of the SNAP-25 gene
that was shown to be involved in the regulation of SNAP-
25 protein expression (Gosso et al., 2006). SNAP-25 protein is
differentially expressed in the brain and is primarily present
in the cerebral cortex, cerebellum, hippocampus, and caudate3.
Notably, chronic reduction of SNAP-25 expression was shown
to affect behavior in animal models. Thus, the coloboma mouse
model, characterized by halved SNAP-25 levels (Hess et al.,
1992), displays a hyperactive phenotype (Hess et al., 1992),
associated with abnormal thalamic spike-wave discharges (Hess
et al., 1995; Zhang et al., 2004; Faraone et al., 2005; Russell,
2007). Similarly, juvenile SNAP-25 heterozygous mice display
moderate hyperactivity, which disappears in the adult animals, as
well as impaired associative learning and memory, which persist
in adulthood (Corradini et al., 2014).

Multiple studies have shown that different SNAP-25 SNPs are
associated with related traits of autism (Guerini et al., 2011)
and ADHD (Forero et al., 2009; Braida et al., 2015), as well as
with working memory ability (Söderqvist et al., 2010; Gao et al.,
2015), short-/long-term memory and visual attention (Golimbet
et al., 2010), and intellectual disability (Rizzi et al., 2012), These
observations can be explained by the fact that the markers
studied here are located close to a locus linked with behavioral
and cognitive functions. A genetic linkage disequilibrium effect,
which would explain the involvement of different SNPs in the
same SNAP-25 genetic locus cannot be excluded either in our
cohort of BIF children.

In the attempt to find an explanation for our results, we
investigated if SNAP-25 SNPs could influence differences in
brain morphology, thus explaining the connection between
genetics and IQ scores. Results showed the involvement of
different areas in the left hemisphere. In particular, the left
inferior parietal cortex and the left supramarginal gyrus were
found to mediate between genetics and the PRI and the
FSIQ respectively. The PRI is a measure of the non-verbal
components of intelligence such as visuospatial and visuomotor
abilities involved in the reasoning and solving of new problems,
while FSIQ is a composite measure derived by all IQ scores
relative to verbal and non-verbal abilities. Interestingly, we
observed that the relationship between PRI and FSIQ and
genetics was mediated by the inferior parietal cortex and the
supramarginal gyrus, which are both parts of the inferior
parietal lobule (IPL), a multimodal region, considered a hub
for its great interconnectivity with several areas in the brain
(Igelström and Graziano, 2017). Our results are in line with
previous evidence showing how the IPL has a relevant role in
multimodal information integration for higher-order cognitive
functions such as abstraction and symbolization (Igelström and
Graziano, 2017). Moreover, the IPL is part of the mirror neuron
system (Rizzolatti and Craighero, 2004), which is involved
in the visuomotor integration processing of gestures, relevant
not only for action understanding but also for learning. In
support of these data, previous results showed how multimodal
rehabilitation interventions to improve the intellectual abilities

3https://www.proteinatlas.org/ENSG00000132639-SNAP25/tissue#top
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FIGURE 2 | Causal mediation analyses of SNAP-25 rs363043 on PRI and FSIQ scores of the WISC-III/IV. The Left inferoparietal and supramarginal cortex thickness
as the mediators for PRI and FSIQ, respectively. The Left inferior parietal and supramarginal cortex thickness were observed to be the mediators for PRI and FSIQ,
respectively. The upper part of the figure shows the association of the rs363043 polymorphism with PRI score (direct effect = 0.44; contribution of the left inferior
parietal = 3.1%). The lower part of the figure shows the association of the rs363043 polymorphism with FSIQ score (direct effect = 0.56; contribution of the left
Supramarginal gyrus = 3.5%).

of children with BIF were more effective than single domain
treatment (Blasi et al., 2020). Notably, our results can be seen
in the light of previous studies showing how the variation
in the cortical thickness of a distributed network comprising
the dorsolateral prefrontal cortex, the inferior and superior
parietal lobule, the anterior cingulate, and regions within the
temporal and occipital lobes, predicts individual differences in
the g-factor of intelligence (Jung and Haier, 2007). Specifically,
a positive correlation between intelligence and cortical thickness
in the IPL has been demonstrated in both children and adults
(Menary et al., 2013).

Results herein are in line with previous studies showing that
individual differences in frontal and parietal cortical thickness
are strongly influenced by genetic components (Posthuma
et al., 2002). The interplay between genetic and environment is
complex and most likely both these factors have an important
impact on individual differences in IQ (Sauce and Matzel, 2018).
In our study, all children belonged to high-risk environments,
had a medium to low SES, and were undergoing the effect of
environmental stressors, all factors indirectly associated with
low thickness in the frontoparietal network (Rosen et al.,
2018). Our data suggest that the genetic background interacts
with environmental factors in shaping brain configuration, thus
determining the outcome of BIF.

Strength and Limitations
The current work has remarkable strengths. Firstly, we
investigated determinants of intelligence in a sample of children
with borderline intellectual functioning, a population of great
clinical interest. Secondly, we adopted a rigorous research

methodology resulting in reliable genetic polymorphisms,
measures of intelligence, and brain morphology. Moreover, we
used a comprehensive approach that included genetic, brain
morphology, and intelligence outcomes as a whole, in an
integrated analytical framework in which the issue of false
discovery rate given by the limited sample size and large numbers
of comparisons were taken into account using the appropriate
statistical approaches. Finally, we would like to underline that this
is the first study conducted in children with BIF that describes
a multimodal association between SNAP-25 polymorphisms,
intelligence, and brain morphological features.

As usually is the case, though, this work also has limitations.
Firstly, results were drawn from analyses performed in a limited
number of children which could result in false-negative results.
Moreover, the lack of a deeper analysis of the SNAP-25 gene
by next generation sequencing does not allow us to exclude
that other polymorphisms could also be involved in shaping
the intellectual functioning of children with BIF. Future studies
evaluating the rs363043 polymorphism regulatory ability in larger
cohorts of patients as well as an expression analysis of SNAP-25
gene would be necessary.

Further, the observational nature of the study, the reduced
sample size, and the skewness of the outcomes considered led
to the use of non-parametric multivariate-adjusted models; this
might have reduced the statistical power of statistical analyses.
The use of Benjamini–Hochberg procedure to adjust for multiple
comparisons and the use of bootstrap, nevertheless likely took
care of this issue. Finally, without a control group, our study
could be defined just as an explorative attempt. More rigorous
observational studies, with larger sample size and possibly based
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on a matched case-control design, should be performed to
validate our results.
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