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The arrival of submillimeter ultra high-field fMRI makes it possible to compare activation
profiles across cortical layers. However, the blood oxygenation level dependent (BOLD)
signal measured by gradient echo (GE) fMRI is biased toward superficial layers of
the cortex, which is a serious confound for laminar analysis. Several univariate and
multivariate analysis methods have been proposed to correct this bias. We compare
these methods using computational simulations of 7T fMRI data from regions of interest
(ROI) during a visual attention paradigm. We also tested the methods on a pilot dataset
of human 7T fMRI data. The simulations show that two methods–the ratio of ROI means
across conditions and a novel application of Deming regression–offer the most robust
correction for superficial bias. Deming regression has the additional advantage that it
does not require that the conditions differ in their mean activation over voxels within an
ROI. When applied to the pilot dataset, we observed strikingly different layer profiles
when different attention metrics were used, but were unable to discern any differences
in laminar attention across layers when Deming regression or ROI ratio was applied.
Our simulations demonstrates that accurate correction of superficial bias is crucial to
avoid drawing erroneous conclusions from laminar analyses of GE fMRI data, and this
is affirmed by the results from our pilot 7T fMRI data.

Keywords: 7T GE-fMRI, fMRI methods, superficial bias correction, Deming regression, computational modeling

INTRODUCTION

Different layers in the neocortex support different types of neural computations. For instance,
different layers of the visual cortex are preferentially involved in feedforward vs. feedback
connectivity (Rockland and Pandya, 1979; Rockland, 2017), suggesting that they encode
distinct “bottom-up” and “top-down” processes. However, because the cortical ribbon is only
2–3 mm thick in the sensory cortices (vonEconomo, 1929), conventional fMRI acquisitions
with 2–3 mm isotropic voxels cannot resolve these layers (Dumoulin et al., 2017). Thus, most
previous investigations of laminar organization involved invasive measurements that are generally
unsuitable for human in vivo studies (Takahashi et al., 2016; Van Kerkoerle et al., 2017).

Recent advancement in MRI scanners, however, has changed the landscape. With higher field
strengths (e.g., 7T), and in turn higher signal-to-noise ratios, human scanners are able to acquire
data at submillimeter resolution, and thereby offer layer-specific or “laminar fMRI.” Recent 7T
fMRI studies (Polimeni et al., 2010; Muckli et al., 2015; Kok et al., 2016; Lawrence et al., 2019) have
suggested that top-down modulation of neural activity (for example, by attention or expectation)
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occurs in specific layers, though there is a disagreement about
which layers. For example, Kok et al. (2016) used the Kanizsa
triangle illusion to study attentional effects. By restricting their
analysis to an regions of interest (ROI) that responded to
the part of the visual field containing illusory contours but
no actual stimulus input, they observed evidence of strongest
top-down feedback effects in the activation of deep layers of
visual cortex. Lawrence et al. (2019) utilized visual gratings and
manipulated both bottom-up effects of visual contrast and top-
down effects of spatial attention. While they found bottom-up
effects on activation were strongest in the middle layer, their top-
down effects were strongest in the superficial layers, contrary to
Kok et al. (2016). Muckli et al. (2015) used partially occluded
images, where part of a visual scene was replaced with a blank
square. They again focused on an ROI that responded to the
occluded region of the visual field, but rather than measuring
the mean activation of that ROI, they attempted to decode
the pattern of activity over all voxels within that ROI. While
decoding of bottom-up information (in unoccluded images)
was above chance and relatively constant across layers, they
found that above-chance decoding of top-down information (in
partially occluded images) only occurred in superficial layers.
These discrepancies in layer selectivity could reflect a dissociation
between superficial and deep layers in terms of the type of
feedback they receive (depending on the precise paradigm),
or could arise due to different analysis methods, which may
result in different sensitivity to effects in particular layers. This
highlights the importance of examining the assumptions behind
the acquisition and analysis methods that researchers use.

In terms of acquisition, most laminar fMRI studies, including
the ones cited in the above paragraph, have used gradient echo
(GE) MRI sequences that are sensitive to the blood oxygenation
level dependent (BOLD) signal (Olman and Yacoub, 2011), but
alternative sequences are also increasingly popular (De Martino
et al., 2013). The BOLD-GE sequences tend to provide good
sensitivity to functional changes, but are also susceptible to signal
artifacts, particularly from the large draining veins on the cortical
surface (Boxerman et al., 1995; Rua et al., 2017).

An alternative class of sequences measure BOLD with spin
echo (SE), or gradient and spin echo (GRASE) (Feinberg et al.,
2015). These sequences are less prone to superficial bias but have
lower functional contrast to noise ratios (Beckett et al., 2019) and
are also limited by more stringent SAR constraints. A final class
of sequences focuses on alternative metrics of neural activation.
Cerebral blood volume (CBV) can be measured with vascular
space occupancy (VASO) sequences (Lu et al., 2013; Huber et al.,
2017b), and cerebral blood flow (CBF) can be measured using
arterial spin labeling (ASL) sequences (Petcharunpaisan, 2010;
Huber et al., 2017b; Kashyap et al., 2019). While these blood flow-
based sequences are able to remove the spatial blurring due to
draining veins, they come with drawbacks relative to GE-BOLD
MRI. These drawbacks include the largest CBV changes being
localized in the arteries and potential dilation retrogradely in
the upper layers relative to the location of neuronal activation
(Uludağ and Blinder, 2018). These methods also tend to have
less sensitivity as a trade-off for their higher specificity (Huber
et al., 2017b). Finally, VASO and ASL generally have longer TRs

than GE and so are generally restricted to a smaller field of view
(Huber et al., 2017a).

These limitations of alternative sequences have resulted in
continued popularity for BOLD-GE laminar fMRI (Kok et al.,
2016; Lawrence et al., 2019; de Hollander et al., 2020; Liu
et al., 2020). However, the main drawback of using BOLD-GE
sequences is the presence of superficial bias, where larger signals
are observed in the superficial layers relative to the deep layers.
Specifically, we are referring to the mitigation of variations in
signal across layers at high resolution, and not the initial bias
that arises due to large pial veins at low resolution fMRI. There
are two neurological bases for the presence of this superficial
bias: the presence of intra-cortical ascending draining veins and
variations in baseline physiological parameters across cortical
depths. Draining veins carry deoxygenated blood from the deep
layers toward the superficial layers, which results in leakage effects
across all voxels, whereby the measured signal is a combination
of the laminar signal and unwanted signals from all the layers
beneath (Markuerkiaga et al., 2016; Havlicek and Uludag, 2020).
Secondly, variations in baseline CBV and relaxation parameters
such as T2∗ across different cortical depths have a multiplicative
effect on the signal (Kashyap et al., 2017) and thus, can also
give rise to a superficial bias. The net effect is that BOLD-GE
sequences have lower specificity and a bias toward higher signal in
superficial layers, which complicates comparisons of task-related
activation across layers.

There have been many different approaches to characterize
and correct for this superficial bias, although few investigators
have systematically explored whether different superficial bias-
correction methods are expected to successfully correct bias
under a particular model. In terms of bias models, Huber (2020)
distinguishes three general classes of models: the linear-offset
model, the multiplicative model and the leakage model. The
multiplicative model seeks to emulate the effect of variations
in baseline parameters across cortical depths, which has a
multiplicative effect on the fMRI signal. Meanwhile, the leakage
model attempts to capture the effect of draining veins on the fMRI
data as it simulates the propagation of signal from the deep layers
to the superficial layers, mimicking the effect of draining veins
carrying oxygenated blood toward the superficial layers. In terms
of methods that seek to correct bias in empirical studies, proposed
solutions include Z-scoring timecourses (Lawrence et al., 2019),
L2 normalization of beta estimates across conditions (Kay
et al., 2019), taking the ratio of activations in two experimental
conditions (Kashyap et al., 2017; Liu et al., 2020) and decoding
using multi-voxel classification techniques (Muckli et al., 2015;
de Hollander et al., 2020).

Here, we explore how seven of these superficial bias-correction
methods perform under a simple multiplicative model applied
to a visual attention paradigm. Specifically, we simulated data
with a (non-linear) laminar profile, and compared how different
superficial bias-correction methods perform in recovering these
ground truth profiles in the context of a superficial bias nuisance
effect. We also introduce a new application of Deming regression
to this problem, and found that this method outperformed
other commonly used approaches when conditions do not
differ in regional-mean offset, while performing comparably
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to a region-mean ratio metric when conditions do differ.
By introducing a method that provides robust correction for
superficial bias, future studies will be able to benefit from the high
sensitivity of BOLD-GE sequences for laminar fMRI.

MATERIALS AND METHODS

Since the simulations are matched to the design of the example
dataset, we describe this experiment first. Processed simulation
and fMRI data is available at https://github.com/MRC-CBU/
LaminafMRIsimulations/tree/1.1. Full simulation and analysis
code is also available at the same repository. Note that the main
fMRI task is carried out at 7T while the localizer tasks were
conducted at 3T.

Experimental Design
We designed a block-based sustained attention paradigm. On
each trial, participants performed a same-different judgment of
two images that were presented at diagonally offset locations
around a central fixation cross (Figure 1). We varied the
attended location (positive diagonal vs. negative diagonal of a
2 × 2 stimulus array around the fixation cross) and stimulus
category (face or house images) between blocks of 10 trials.
Each run comprised 20 blocks in total: attending to houses
along the positive diagonal (H45), attending to houses along the
negative diagonal (H135), attending to faces along the positive
diagonal (F45) and attending to faces along the negative diagonal
(F135). The conditions were presented in a sequence that was
randomized separately for each run.

Between runs, we also manipulated the presence of a second
pair of distractor image sequences, which, when present, were
located at the opposite location and drawn from the opposite
stimulus category. For both simulation and our fMRI acquisition,
there were a total of eight runs: four with distractors present
(TaskD+) and four with distractors absent (TaskD−). For the
fMRI acquisition, we alternated the presence or absence of
distractors between runs. In the simulation, each run is detrended
individually and hence, there is no overarching effect due to
the order of runs.

We attribute any selectivity for category or location when the
distractor is present (TaskD+) to attentional selection, because
both locations and both categories are present on each block,
which provides complete matching of the conditions at the level
of bottom-up stimulus-driven responses. By contrast, location
and category selectivity during the no distractor (TaskD−)
context could also reflect stimulus-driven effects of the stimulated
visual quadrants or the presented object category. Some of the
superficial bias-correction methods we explore below are based
on the notion that the no distractor (TaskD−) context provides a
control condition that can be used to correct any superficial bias
in the estimates for attentional selectivity when the distractor is
present (TaskD+). We will expand on this idea below.

Stimulus and Procedure
All stimuli were created using Matlab (2009a, The MathWorks,
Natwick, MA, United States) and presented in the scanner using

Presentation (v17.2). For the main experiment, the category
stimuli were presented in a circular patch at four locations,
diagonally from the fixation cross at 45, 135, 225, and 315◦,
respectively and spanning 0.16–2.42◦ eccentricity. The fixation
cross was shifted up from the center of the screen by 2◦
visual angle due to visual obstruction of the lower segment
of the screen by the head coil. There were a total of 20 face
images and 20 house images for each category. All images
were presented in grayscale and histogram-matched to equate
luminance and root mean squared contrast. Thus, any category
selectivity cannot be attributed to differences in brightness or
contrast between the categories.

At the start of each block, two white dots (0.10◦ eccentricity)
appeared for 350 ms indicating the pair of patches [either 45 and
225◦ (indicated by 45) or 135 and 315◦ (indicated by 135)] to which
the participant should attend. This was followed by 550 ms of
fixation. The stimuli then appeared for 950 ms, during which the
participant was required to perform a same-different judgmenton
the two attended stimuli, followed by 550 ms of fixation. The two
stimuli were identical on 50% of trials. This stimulus-fixation trial
was repeated 10 times within each block (Figure 1A). Between
blocks, there was a rest block of fixation with a duration of
1560 ms (1260 ms for the two participants with TR = 2440 ms, see
section “Data Acquisition” for more details). The duration was
chosen to ensure that the start of each block was in sync with the
start of a volume acquisition. In the distractor-absent condition,
the display consisted of two stimuli from the attended category in
the attended locations, while in the distractor-present condition,
two additional stimuli from the other category appeared in the
non-attended locations (Figure 1C).

Stimulus Design for Localizer (fMRI)
The localizer session comprised of four runs of a category-
selective localizer.

The category-selective localizer task comprised 15-s blocked
presentations of sequences of faces, scenes, objects, scrambled
objects and fixation, with 1 s fixation between blocks. Each of
these five block types appeared in a random order in each run.
There were 20 blocks per run (four presentations of each block
type). Within each block, 25 randomly selected stimuli from the
current category were presented consecutively for 800 ms each.
Participants performed a 1-back matching task while fixating on
a black dot in the middle of the screen.

We used the categorical localizer data to define the following
ROIs according to conventional functional criteria (see below
for details): occipital face area (OFA), fusiform face area
(FFA), scene-selective transverse occipital sulcus (TOS), and
parahippocampal place area (PPA).

Data Acquisition
Participants provided informed consent under a procedure
approved by the institution’s local ethics committee (Cambridge
Psychology Research Ethics Committee). A total of six healthy
participants (two females, age range 20–41, two participants were
authors of this study) were scanned for this pilot study.

Prior to the experiment, participants underwent a separate
session of behavioral training with eye-tracking using an SMI
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FIGURE 1 | Panel (A) shows the experimental paradigm for each trial block. An initial pair of white dots cued participants to attend to a specific diagonal at the
beginning of each task block. Ten image pairs from one category (faces or houses) appeared sequentially along the attended diagonal. Panel (B) illustrates the four
main stimulus block types. In the “TaskD+” distractor-present condition, image pairs from the other category appeared along the opposite diagonal; in the “TaskD–”
distractor-absent condition, no stimuli appeared in the opposite diagonal (C). Participants decided whether the two stimuli on the attended diagonal were “same” or
“different” (D); 50% of trials involved the same stimuli. The purple dotted circle indicates the attended regions and was not present for the participant.
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high speed eye tracker. The participant attempted the same task
and received feedback on their fixation levels after each run. We
recorded calibrated eye position during each block, and measured
fixation stability as the difference in standard deviation along the
attended and neglected axes over the block. We repeated the task
until this fixation stability metric met a criterion level of under
0.5◦ visual angle mean difference for two consecutive runs. As
eye-tracking was not available in the 7T scanner, the behavioral
training was important to ensure that participants were able to
perform the task while maintaining fixation.

Participants contributed data over a total of two MRI sessions;
one session of retinotopic and category localizers at 3T and one
main experimental session at 7T. The 3T data were acquired on
a Siemens 3T Prisma-Fit scanner using a standard 32-channel
head coil, while the 7T data were acquired on a Siemens 7T
Terra scanner using the Nova Medical 1Tx/32Rx head coil. At
the start of each session, we also acquired a MPRAGE (3T)
or MP2RAGE (7T) (Marques et al., 2010) structural that was
used for co-registration across sessions. Participants maintained
fixation on a cross in the middle of the screen throughout, and
fixation accuracy was verified using the 50 Hz SMI MRI eye
tracker system at 3T.

For 3T, the MPRAGE parameters were as follows:
TR = 2,250 ms, TE = 3.02 ms, TI = 900 ms, GRAPPA = 2,
FOV = 256 mm × 256 mm × 192 mm, Matrix
size = 256 × 256 × 192, FA = 9◦, ToA = ∼5 min and the
EPI parameters for the functional localizer task were as follows:
3 mm isotropic voxels, TR = 2000 ms, TE = 30 ms, FA = 78◦,
Matrix size = 64× 64× 32, ToA =∼11 min.

For the 7T data, the MP2RAGE parameters were as follows:
TR = 4,300 ms, TE = 1.99 ms, TI 1 = 840 ms, TI 2 = 2370 ms,
GRAPPA = 3, Matrix size = 320 × 320 × 224, FA 1 = 5◦, FA
2 = 6◦ and the EPI parameters for the task-based fMRI were as
follows: 0.8 mm isotropic voxels, TR = 2390 ms (2440 ms for two
participants), TE = 24 ms (24.4 ms for two participants), FA = 80◦,
GRAPPA = 3, Matrix size = 200 × 168 × 84, ToA = ∼11 min.
The TR and TE were slightly longer for two participants due
to the peripheral nerve stimulation threshold being exceeded
in the 7T scanner.

Data Analysis
MRI Data Pre-processing
For the functional volumes acquired on the 3T scanner,
the images underwent slice time correction and rigid body
realignment using SPM121. For the volumes acquired on the
7T scanner, the images first underwent slice time correction
using SPM12, and then TOPUP (Andersson et al., 2003) in
FSL v6.0 (Niazy et al., 2004) was applied to estimate the
susceptibility-induced distortions, using the first five volumes
of each experimental run plus five additional volumes acquired
before each run with the reverse phase-encoding direction. The
resultant distortion correction was applied to the entire run. Each
fMRI volume was then individually realigned to the structural
using boundary-based registration (BBR) (Greve and Fischl,
2009). In doing so, we use the structural as a reference to ensure

1www.fil.ion.ucl.ac.uk/spm

that the volumes are co-registered with each other, which we
previously showed to provide better realignment within and
across runs for high-resolution fMRI data compared to standard
methods that separate motion correction and co-registration
(Huang et al., 2020).

Of note, some previous work has attempted to correct
for superficial bias in this stage via the exclusion of voxels
with low tSNR and high t-values on a fMRI statistical map
(Olman et al., 2007; Jia et al., 2020; Zamboni et al., 2020). We
attempted to exclude voxels with the bottom 30% tSNR in our
analysis. However, this did not change our findings substantially
(see Figure 7 and Supplementary Figure 1) and hence, was
not included in the main analysis to reduce the number of
potential confounds.

Regions of Interest
For the categorical ROIs, activation t-maps where obtained
using SPM12 by fitting a GLM to the fMRI data from the
categorical localizer runs. The activation maps were corrected
for multiple comparisons using Gaussian random field theory in
SPM12. The face-selective areas (FFA and OFA) were obtained
from the t-score map from subtracting the object conditions
from the face conditions. Similarly, the scene-selective areas
(TOS and PPA) were obtained from the t-score map from
subtracting the object conditions from the scene conditions.
For each ROI, we identified the peak voxel in the expected
anatomical location in a statistical map thresholded at p < 0.05
(uncorrected). We then grew the complete ROI by adding
the contiguous voxel that was most selective for the localizing
contrast iteratively until the ROI comprised 100 voxels (for
implementation)2.

To improve the stability of the estimates and our sensitivity
to any variations in the data across layers, we combined
the TOS, PPA, OFA, and FFA regions to generate a pooled
category-selective ROI. This approach is further justified in
section “Laminar Analysis of Real 7T Data.” Note that we
flipped the sign of the contrast vector to align with the
region’s expected preference (e.g., F45

+F135-H45-H135 for FFA
and H45

+H135-F45-F135 for PPA). All subsequent analyses
concern this pooled category-selective ROI unless specifically
noted otherwise.

We co-registered the 3T localizer session to the main
experiment 7T session. This was done by first co-registering
the 3T functional images to the 3T structural image using the
SPM coreg function. The 3T structural image was then co-
registered to the 7T structural image, again using the SPM
coreg function. The transformations from both co-registration
steps were then applied to the ROI mask images. No further
transformation was necessary since the BBR realignment process
realigns the functional 7T images to the 7T structural image.
Note that the registration of the 3T localizer data to the 7T
fMRI session results in an upsampling of the voxels from
3 mm isotropic resolution to 0.8 mm isotropic resolution to
be congruent with the 7T fMRI data. This also results in the

2https://github.com/jooh/roitools/blob/master/spm2roi.m
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number of voxels in each ROI to increase from 100 voxels to an
average of 2500 voxels.

Cortical-Depth Definition
The gray matter-white matter (GM-WM) and gray matter-
cerebrospinal fluid (GM-CSF) boundaries were obtained
from the FreeSurfer’s (version 6.0.0) reconstruction of
each participant’s 7T structural image (Fischl et al., 2002).
These boundaries were visually inspected to ensure that the
segmentation was accurate. In cases of poor segmentation,
the realignment between the structural and the FreeSurfer
segmentation template was manually adjusted prior to repeating
the FreeSurfer reconstruction. The boundaries were exported
to CBStools (version 3.0.8) (Bazin et al., 2012) and used to
generate three equivolume (Leprince et al., 2015) segmentations
of the GM. Each GM voxel was then assigned to one of
the three layers using a winner-takes-all approach, in which
the voxel is assigned to the layer with which it has the
largest overlap.

Computational Simulations
Our computational simulations were carried out in Matlab
(2019a, The MathWorks, Natwick, MA, United States); the code
is available on github3.

For clarity, we describe our simulations in terms of categorical
attentional selectivity for a face-selective area such as the FFA.
However, the model is a general account for how fMRI responses
arise as a function of neural modulations of interest and layer bias
of no interest, so is applicable to other scenarios.

We model the effects of attention on neuronal responses,
and how such modulations manifest in fMRI activations. In
our model, the signal component in N = 2500 fMRI voxels
is expressed as a sum over neuronal populations that are
purely selective for houses or for faces. Neurons fire at rate
f = 1 when their preferred category is present in the stimulus
display, and f = 0 to the presence of the non-preferred
category. We generate the number of neurons n that prefer
each stimulus category for each voxel by sampling a half-
normal distribution, and control category selectivity by varying
the standard deviation of the distribution over categories. At
the population level, for an ROI that prefers faces, we set the
standard deviation of that distribution to 1.1 for faces and 0.5
for houses; for an un-selective ROI (see section “Simulating
the Effects of No Region-Mean Preference”), we equate the
standard deviations to 0.5 for faces and houses. To simulate
inter-subject variability, the specific standard deviation used for
each subject was sampled from a truncated Gaussian with mean
equal to the above population values and standard deviation
of 0.25 and values restricted between 0 and double that of the
population value. Although selectivity at the voxel level in this
formulation arises from differences in the relative frequency of
face and house neurons, one could also interpret these standard
deviation parameters as controlling the firing rates of equally
sized populations.

In our model, attention operates as a scale factor a that
increases the responses of neurons coding the attended category,

3https://github.com/MRC-CBU/LaminafMRIsimulations/tree/1.2

while leaving the unattended category unaffected. We simulate
layer differences in the strength of attentional modulation by
varying this a parameter as a function of the layer l. The signal
component of the response R at voxel v across all categories c can
be expressed as

R (v) =
∑

c
f (c)× n (v, c)× a

(
c, l(v)

)
(1)

where l(v) indicates the (dominant) layer captured by voxel v. We
modeled the neural response R(v) for the duration of each block,
based on the timings of conditions in our experimental paradigm,
and convolved these responses with a canonical hemodynamic
response function to generate a timeseries for each voxel, h(v,t).

We added two sources of noise: A physiological noise source,
which has a low-dimensional structure over voxels and which
scales with layer depth, and a white thermal noise source,
which is constant in magnitude over the simulated volume. The
rationale for the physiological noise is to model known low-
dimensional fMRI noise processes such as heartbeat, respiration
and residual head motion (Liu, 2016), which voxels exhibit
to different extents. Formally, the physiological noise, Ep, was
modeled by generating 20 independent Gaussian noise vectors
for the entire timecourse and projecting a randomly weighted
combination of the vectors onto each voxel (Huang et al.,
2018). This physiological noise was scaled to match a random
zero-mean Gaussian distribution with standard deviation of σp.
The resulting timeseries was then multiplied by a scalar LBias
to capture the bias toward superficial layers. Lastly, we added
thermal noise, Et , from Rician distribution (Gudbjartsson and
Patz, 1995) with standard deviation of σt , which is independent
of superficial bias. This was done for all 2500 voxels to generate
a simulated timecourse, y(v,t), for voxel v in layer l. Thus:

y (v, t) = LBias(l(v)) ∗
(
h (v, t)+ Ep (v, t)

)
+ Et(v, t) (2)

Having generated synthetic BOLD timeseries for each voxel, one
can estimate the response to each condition by applying the
general linear model (GLM), as is standard in fMRI analysis.
To simulate the high-pass filtering commonly performed on
real data to remove low-frequency noise in fMRI, first order
sinusoidal and linear detrending was also performed. The GLM
is based on the block timings and a canonical HRF, and
produces a parameter estimate β for each condition and each
voxel. The final contrast estimate (for a face-selective ROI)
for the TaskD+ and TaskD− contrasts is then the subtraction
of β for blocks when faces were unattended from that when
blocks were attended.

To calculate the attentional contrast for our TaskD+ condition
(when both positive and negative diagonals contain faces and
houses, and the category being attended is equally often faces
or houses), we take the simulated fMRI response during blocks
where the participant is attending to the faces and subtract blocks
where the participant is attending to the houses. The response for
the TaskD+ contrast is therefore:

RD + (v) = (a(l(v))× n(v, f )+ n(v, h))

−(n(v, f )+ a(l(v))× n(v, h)) (3)
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where f = face, h = house, while in our TaskD− contrast, where
faces or houses are only presented on the attended diagonal, the
response is:

RD− (v) = a(l(v))× n
(
v, f
)
− a(l(v))× n(v, h) (4)

We explored a wide range of physiological and thermal noise
parameters, and the final values of σp = 11 and σt = 15 were
chosen by visually comparing scatterplots of TaskD+ against
TaskD− for our simulated dataset against the experimental
fMRI dataset for the pooled ROI (Figure 2). Furthermore, the
combination of noise parameters and standard deviation values
for the half-normal distributions were chosen such that the
distribution of t-statistic for the simulated contrast was similar
to the experimental dataset (see Supplementary Figure 2).
Similarly, an attentional modulation factor of a = 3 was used
to reflect the estimate generated from the experimental fMRI
dataset. To simulate weaker attentional modulation in the middle
layer, an attentional modulation factor of a = 2 was used for the
middle layers. Note that while the exact parameter values were
coarsely estimated, the results of our simulation hold across a
wide range of parameters (Supplementary Figure 3) and are thus
not restricted to the specific values used in this simulation.

The seven attentional modulation metrics were evaluated
using simulated datasets with a V-shaped attentional modulation
profile across layers of a

(
l = 1...3

)
= [323]. This profile indicates

stronger attentional modulation in the superficial and deep
layers, as might be expected from stronger feedback connectivity
in these layers (Rockland and Pandya, 1979; Rockland, 2017). We
repeated the simulation 10,000 times to calculate the accuracy
and reliability of the seven attentional modulation metrics.

Attentional Modulation Metrics
We were interested in validating the accuracy and reliability of the
following seven metrics of attentional modulation, which were
applied to both the simulated and real data. The metrics were
analyzed in two ways. Firstly, the variation of each metric across
layers was plotted and compared to the “ground truth” attentional
modulation graph. Secondly, for each metric, we quantified the
contributions of the superficial bias and attentional modulation
toward the laminar profile. This was achieved by correlating
the simulated data with either a [1 0 −1] contrast vector (for
superficial bias) or [0.5 −1 0.5] (for attentional modulation)
to determine the contributions of the two factors. The ideal
laminar profile correlates with attentional modulation and not
with superficial bias.

Ratio Metrics
The first group of attentional modulation metrics can be classified
as ratio metrics; these metrics take the ratio between two
experimental conditions (in this case, TaskD+ and TaskD−)
to remove the superficial bias across layers. This method is
motivated by the assumption that the baseline parameters,
including baseline blood volume, oxygen extraction fraction,
T2∗ relaxation time and echo time, have a multiplicative effect
on BOLD sensitivity, as suggested in Kashyap et al. (2017)
and conforms to the single vascular compartment BOLD signal
models (such as in Buxton et al., 2004). Thus, we can formulate

the BOLD signal change as δS = L(l) × R, where L is a function
of the baseline physiological parameters that influence the BOLD
response and R is the actual change in CBV and concentration of
deoxygenated hemoglobin in response to neural activity. In our
simulation, Lbias(l) is used to model L(l). We assume that L(l)
is constant within each cortical layer but varies across cortical
layers, while R is the quantity of interest. Thus, by taking a ratio
of the signal changes for two contrast estimates for each voxel,
we can remove the dependence of the contrast on the baseline
parameters:

δS1

δS2
=

L(l) ∗ R1

L(l) ∗ R2
=

R1

R2

Note that while the attentional modulation, a, is defined to
be greater than 1, the ratio metric of TaskD+/TaskD− in our
simulation and experiment should always be less than 1. We
refer to this ratio metric of TaskD+/TaskD− as selectivity, S, to
differentiate it from the attentional modulation. The selectivity
looks at the magnitude of top-down attentional modulation in
TaskD+ as a fraction of both top-down attentional modulation
and bottom-up stimulus activation in TaskD−. If we assume that
our model is accurate, the relationship between selectivity and
attentional modulation is:

S = 1−
1
a

Ratio of individual voxels (voxel ratio)
Given the above argument, one possible approach is to calculate
the ratio of two values the GLM contrast for the TaskD+
condition relative to that for the TaskD− condition, for each
voxel separately, and then average these ratios across voxels in
a layer:

1
nv

∑
Nv

TaskD+
TaskD−

We refer to this metric as the “voxel ratio” throughout. However,
this method has a high sensitivity to voxels where the TaskD−
contrast is close to zero (e.g., because no attentional effect, or
owing to random noise or fMRI susceptibility artifacts), which
can produce extreme outliers. Assuming both TaskD+ and
TaskD− contrasts follow a Gaussian distribution, the resultant
voxel ratio would have a heavy-tailed distribution, on which
statistical tests are difficult. As such, we do not expect the voxel
ratio to generate stable estimates but include it for completeness.

Ratio of entire ROI (ROI ratio)
To reduce the effect of outlier voxel values, one can first average
(or sum) responses across voxels in a layer, before taking the ratio
of the averages in each condition (cf. Liu et al., 2020):∑

Nv
TaskD+∑

Nv
TaskD−

We refer to this metric as the “ROI ratio” for simplicity.
A similar approach was adopted by Kashyap et al. (2017),
where they compared the average of the activation peak against
the average post-stimulus undershoot. However, by taking the
average prior to the ratio, this method discards any pattern
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FIGURE 2 | Scatterplots of the voxel responses (contrast estimates from the GLM) to TaskD+ against TaskD– comparing the simulated data with a = 3 (A) against
the real 7T data (B). The scatterplots look similar, suggesting that the simulation is capturing the behavior of real voxels. Note that the methods we evaluate are
invariant to the absolute scale of the response, so these do not require matching; rather, we are only interested in the relation of the values across task types, i.e., the
gradient of the best fit line (indicated by the red line), which is comparable across simulated (0.65) and real (0.72) data.

information that might be present within the voxels (we return
to this point below).

Deming regression
Here, we chose not to average across voxels, but to regress one
condition against the other condition and estimate the gradient
of the best fit line. Importantly, we used Deming regression
to estimate this gradient, rather than ordinary least squares,
because Deming regression accounts for errors in both variables
(Adcock, 1878). We theorize that this gradient would provide
a stable estimate of the selectivity. A key benefit of Deming
regression is that it does not require a regional-mean activation
level difference between the two conditions, unlike the ROI ratio
approach above. This makes the method potentially attractive
for cases where voxels within an ROI have strong but opposing
selectivity, as might for instance be expected in retinotopic maps
of the visual field.

In our study, we assume the errors in both variables have
similar variances (i.e., δ = 1) as data for both TaskD− and
TaskD+ were acquired during the same scanner session and in
an interleaved manner across runs. Thus, we can assume that the
variance of the noise is similar across TaskD+ and TaskD−. Note
that this special case of Deming regression can also be referred to
as Orthogonal regression.

Z-Scoring of Data
Rather than taking ratios or gradients of the estimated responses
(i.e., contrasts of GLM Betas), another approach is to normalize
the original data (y(v,t) in Eq. 2) before fitting the GLM, for
example by using Z-scoring (Lawrence et al., 2019), in an attempt
to equate the scaling across layers. Here, after Z-scoring the data
and fitting the GLM, we simply calculated the contrast estimate
for the TaskD+ condition. Z-scoring assumes that the noise and
the signal of interest have a linear correlation. However, given that
this is not the case in our simulation (physiological noise scales

with the signal but thermal noise does not), we expect Z-scoring
to perform worse than the ratio approaches.

L2 Normalization
The last method included in our analysis is L2 normalization, as
suggested in Kay et al. (2019). Similar to Z-scoring, this method
seeks to eliminate the multiplicative effect of superficial bias by
normalizing the response. However, the normalization (scaling
factor) is estimated across parameter estimates (from a GLM
fit) rather than across scans (i.e., the original timeseries, as in
Z-scoring). The scaling factor (the square root of the sum of
squared values) is also relative to zero, which depends on the
baseline in the GLM, rather than being relative to the mean, as
in Z-scoring.

Multivoxel Pattern Analysis
The methods described above that first average over voxels within
an ROI are only able to estimate a layer’s univariate activation. An
alternative approach is to examine the multivariate information
across voxels, e.g., by comparing the ability to classify whether
faces or houses were attended. This was the approach taken by
Muckli et al. (2015). The logic underlying this approach is that
cross-validation performance will be unaffected by superficial
bias as long as the effect of interest and the noise scale together
with overall signal magnitude. Like Z-scoring above, any additive
(thermal) noise components will invalidate this assumption and
reintroduce sensitivity to layer depth.

Here, we compared the ability of two methods of classification,
support vector machines (SVMs) classification and linear
discriminant contrast (LDC) to discern between attending to
houses vs. faces in the TaskD+ condition. SVM is a robust
method that has been widely used in fMRI analysis (Hoeft et al.,
2011; Meier et al., 2012; Weygandt et al., 2012; Abdulkadir
et al., 2013) and have also been used previously for laminar
analysis (Muckli et al., 2015). LDC is often preferable for fMRI
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decoding since it is a continuous measure that does not exhibit
ceiling effects (Zhu et al., 2008; Misaki et al., 2010; Yoon et al.,
2012; Kriegeskorte and Diedrichsen, 2016; Huang et al., 2018).
Furthermore, unlike SVM, it does not require multiple instances
for effective training, and therefore avoids issues to do with
small numbers and temporal autocorrelation of single-trial/block
estimates from the same run. Previous work demonstrated that
LDC outperforms SVM in terms of detecting a difference in
discriminability (Huang et al., 2018) and in terms of overall
reproducibility of pairwise discriminants over splits in the data
(Walther et al., 2016). Both SVM and LDC used leave-one-out
cross-validation across the four runs of each task.

SVM
We used the “fitcsvm” classifier in the Matlab Bioinformatics
toolbox, with default settings (specifically, a linear kernel with
C = 1). To obtain multiple patterns for training, each block within
a run was modeled with a separate regressor in a new GLM,
producing 60 block estimates for training and 20 for testing on
each fold of leave-one-run-out cross-validation. The final result
is mean classification accuracy (% of test blocks correct).

LDC
Linear discriminant contrast is a continuous statistic related to
Fisher’s linear discriminant. First, the training data is used to
generate a set of weights to maximize the distance between the
conditions of interest (e.g., houses vs. faces). This set of weights is
referred to as the discriminant. The LDC quantifies the difference
between the two conditions in the testing data, measured on
this discriminant.

As LDC does not require multiple training patterns, all blocks
of the same type (within the training set) were modeled with a
single regressor in the GLM. The contrast between attending to
faces vs. houses generates a distance metric, which is normalized
using the sparse covariance matrix of the noise residuals (Ledoit
and Wolf, 2003) to produce a weights vector. The dot product of
the weights vector with the pairwise contrast estimate from the
held-out test run produces the LDC test statistic. The final result
is the average LDC across the four folds of leave-one-out cross
validation runs and normalized by the square root of the number
of voxels (which differed by ROI in the real data).

RESULTS

Computational Simulations
Comparison of the Seven Attentional Modulation
Metrics
For our main simulations, we simulated an attentional
modulation that is strongest in the superficial and deep
layers and weaker in the middle layer. The simulated fMRI
responses were then measured according to the seven different
metrics and compared against the ground truth profile to
verify their accuracy and precision. Selectivity estimates using
Deming regression, Voxel ratio and ROI ratio were plotted
on the same axis as they generate commensurate estimates;
the remaining three metrics were plotted on individual axes
and scaled to best match the ground truth profile. In addition,

we also plotted the raw contrast estimates and “ground truth”
attentional modulation as a baseline comparison. The “ground
truth” attentional modulation (Figure 3A) is obtained from the
attentional modulation [a(c,l(v))] that is used as a model input
while the raw contrast estimates (Figure 3B) is given by RD+ (v)
in Eq. 4 and reflects the response obtained by fitting a GLM to
the simulated data and contrasting the blocks, identical to what is
done to the real fMRI data in section “Laminar Analysis of Real
7T Data.”

As can be seen in Figure 3, both Deming regression and ROI
ratio were able to replicate the attentional modulation profile
with high precision: The variability across iterations was low,
as the percentile error bars illustrate. Though the voxel ratio
recovered the V-shaped profile, it had very large error bars, owing
to extremely high values for some voxels with a denominator
(TaskD−) close to zero.

Z-scoring the data before fitting the GLM produced a slanted
V profile, indicating contributions from superficial bias as well as
attentional modulation. L2 normalization performed a bit better,
being able to retain the V shaped profile, but still showing a
significant difference between the deep and superficial layers due
to superficial bias. Furthermore, the L2 normalization is also
substantially noisier than both Deming and ROI ratio metrics.

The SVM and LDC multivoxel classification methods
produced similar “slanted V” profiles, with residual effects of
superficial bias. The LDC method exhibited particularly dramatic
superficial bias, with strong discriminant values for the superficial
layer where the response magnitude was greatest.

Quantifying the Relative Contributions of Superficial
Bias and Attentional Modulation to Laminar Profile
We correlated the laminar profile of each metric (normalized by
their mean) with either a [1 0 −1] or a [0.5 −1 0.5] vector to
obtain a summary measure of the contributions of superficial
bias and attentional modulation across layers. This was done by
multiplying the estimates of each layer with the corresponding
vector element and summing the result. These summary
measures indicate the reliability of any apparent layer differences
and provide a means to compare the magnitude of attentional
modulation and superficial bias effects within each metric.

As shown in Figure 4, both Deming regression and ROI
ratio were highly correlated with the ground-truth attentional
modulation effect, with almost zero contribution of superficial
bias. Both metrics also exhibited low variability over iterations,
as indicated by the 25-percentile error bars. By contrast, the voxel
ratio was highly variable. While relatively stable over iterations,
the Z-scoring metric was substantially influenced by the nuisance
superficial bias effect. This superficial bias was less pronounced
after L2 normalization, but still present. Similar effects were
observed for the SVM metric. The LDC metric had the lowest
variability over iterations, but exhibited the strongest influence of
superficial bias out of all evaluated metrics.

The SVM and LDC metrics exhibited distinct effects even
though both are based on linear discriminants. We reasoned
that this could reflect compressive effects of close-to-ceiling
performance for the SVM (Figure 3F). This could obscure
a superficial bias effect since the highest accuracy is in the
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FIGURE 3 | Simulation results showing (A) the ground truth (neural response), (B) the simulated measured (BOLD) response, and (C–G) the seven attention metrics.
Deming regression, Voxel ratio and ROI ratio were plotted on the same scale as they are commensurate; the other four metrics have different scales so were plotted
individually. The different bar colors represent the different layers, with the dark blue representing the superficial layer and the light blue representing the deep layer.
The bars indicate median performances over iterations of the simulation, while the error bars indicate the 25th and 75th percentile values.

FIGURE 4 | The contribution of superficial bias (pink bars) and attentional modulation (blue bars) to the laminar profile as recovered by the respective attentional
metrics. The bars indicate the median correlation over iterations of the simulation, while the error bars indicate the 25th and 75th percentile values.

superficial layer, where the bias is strongest. As a continuous
metric, LDC does not exhibit ceiling effect. This can be
demonstrated by repeating the simulation with increased noise
levels (such as σp = 20 and σt = 30, Supplementary Figure 4),
under which the profiles for the SVM and LDC metrics
were comparable, confirming that the apparent differences
between the SVM and LDC metrics in Figures 3, 4 reflect an
SVM ceiling effect.

Simulating the Effects of No Region-Mean Preference
Both the Deming regression and ROI Ratio showed similar
results in our initial simulations. However, Deming regression
is potentially sensitive to local variations within an ROI, even
if there is no global preference of that ROI. To illustrate
this, we repeated the simulation with the same underlying
[3 2 3] attentional modulation (Figure 5A) but removed
the global preference for houses by sampling the density of
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FIGURE 5 | Simulation results showing (A) the ground truth (neural response), (B) the simulated measured (BOLD) response, and (C) Deming regression, Voxel ratio
and ROI ratio in the absence of a global preference. The different bar colors represent the different layers, with the dark blue representing the superficial layer and the
light blue representing the deep layer. The bars indicate the median effect over iterations of the simulation, while the error bars indicate the 25th and 75th percentile
values.

house responsive cells and face responsive cells from the
same distribution (folded normal distribution with mean 0
and standard deviation 0.7). Thus, each voxel has an equal
chance of preferring faces or houses, with a resultant near-
zero global preference for either house or faces (on average
across simulations). As Figure 5B shows, there was no
distinguishable variation in the measured response. However,
Figure 5C shows that only Deming regression was able to
recover the V-shape with sufficient sensitivity (i.e., relative to
the error bars).

It is interesting to note that, while the ROI ratio (like
the Voxel ratio) is extremely noisy when there is no global
preference, there is still a hint of a V-shape in the means
in Figure 5C. We suspect this occurs because, while the
overall preference averages to zero across all simulations, by
chance, most individual simulations still have some global
preference for either faces or houses. These small, but
persistent, global preferences would still be sufficient for a
ratio metric to recover the attentional modulation to some
extent. However, as the percentile error bars illustrate, these
ratio metrics are likely to be too variable to be useful when
global preferences are near zero. This result demonstrates that
Deming regression is the only method that can robustly detect
layer specific modulations even in the absence of region-
average differences.

Laminar Analysis of Real 7T Data
Initial laminar analysis of the 7T data showed strong selectivity
in the superficial layers with a constant decrease toward deeper
layers, consistent across all ROIs. In Figure 6, we plotted the
contrast estimates for the TaskD+ condition for the ROIs to
illustrate the consistency of the superficial bias profile across
the ROIs. For the scene-selective TOS and PPA, the contrast
estimate is defined as taking the house attention condition and
subtracting the face attention condition, while for the face-
selective OFA and FFA, the contrast estimate is defined as taking
the face attention condition and subtracting the house attention
condition. This definition is chosen to align with the category
preference of the ROI so as to generate a positive contrast for all
ROIs. This reduction in selectivity with layer depth is consistent
with previous evidence for a superficial bias in GE sequences
(Polimeni et al., 2010; De Martino et al., 2013). In order to
obtain maximally robust estimators for the following analyses,
we pooled the voxels from TOS, PPA, OFA, and FFA into a
single pooled “category-selective” ROI. This step can be justified
by the considerable variability across the six participants in the
context of relatively higher similarity of selectivity profiles across
the four ROIs. The pooled ROI exhibited substantially reduced
between-participant variability (Figure 7A), while preserving
the superficial bias profile we observed in the individual ROIs.
In the following analyses, we focus on this pooled ROI, since
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FIGURE 6 | Plots of the contrast estimates obtained at 7T across different
layers for the four different ROIs in the TaskD+ condition. The bars represent
the median of all six participants, while each color in the overlaid circles
represent an individual participant. The same color represents the same
participant throughout all plots.

we had no hypotheses concerning regional specificity of these
effects. Furthermore, repeating the analysis on individual ROIs
(Supplementary Figure 4) yielded similar, but substantially
noisier, results as compared to the pooled analysis (Figure 7).

Laminar Analysis of 7T Data Using Attentional
Modulation Metrics
The attentional modulation of the voxels as estimated with
Deming regression was constant across layers (Figure 7B).
Considered together with the simulation results, this indicates
that the increased selectivity in superficial layers that we observed
in Figure 6 can be explained by GE superficial bias. The ROI
ratio metric demonstrated a similar lack of variation across
layers, and comparable inter-subject variability. The voxel ratio
was highly unstable across participants (see inset panel for
full data range). The remaining four measures (Z-scoring, L2
normalization, SVM classification and LDC) exhibited stronger
effect in superficial layers (Figures 7C–F), consistent with the
sensitivity to superficial bias that we observed in our simulations.

Taken together, our results suggest that the superficial bias,
as shown by the decrease in measured response across layers
(Figure 7A), is successfully removed by both Deming regression
and ROI ratio metrics (Figure 7B), giving rise to the flat
selectivity profiles. Other methods were unsuccessful in removing
the superficial bias.

DISCUSSION

A key challenge for interpreting layer analysis of high-resolution
GE EPI fMRI data is that signal magnitude decreases with
layer depth. This study investigates methods for correcting such

superficial bias effects. We used computational simulations to
evaluate the ability of seven different metrics to recover an
attentional modulation layer effect of interest in the presence
of a superficial bias nuisance effect. Two of the evaluated
methods were proposed by us (Deming regression, LDC) and
the remaining have been previously used in the literature (Voxel
and ROI Ratio, Z-scoring, L2 normalization, and SVM). Only the
ROI Ratio and Deming Regression metrics were able to recover
the attentional modulation layer effect accurately and precisely.
While the remaining metrics were able to detect some underlying
differences in attentional modulation across layers, they were
either noisier than the aforementioned two metrics (in the case of
the Voxel Ratio) or retained a substantial component of residual
superficial bias (in the case of Z-scoring and L2 normalization,
or the multivoxel methods of SVM and LDC). Such partial
correction for layer bias is particularly concerning because it
might lead to mistaken inferences. Thus, the main contribution
of our study is to demonstrate that Deming regression and
ROI ratio are the most promising metrics for layer analysis
of GE fMRI data.

Although the Deming regression and ROI ratio metrics
performed similarly in the context of a region-mean activation-
level difference between the conditions, we found that Deming
Regression was better able to extract layer-profiles when we
simulated a scenario where activation-level differences were near
zero. This property may be useful in early visual areas such as
V1, where an ROI might not show a global preference for two
orientations of a visual stimulus, even though voxels within that
ROI often show a local preference for one or other orientation
(Kamitani and Tong, 2005; Alink et al., 2013). Conversely, our
simulations suggest that the ROI ratio metric produces slightly
less variable estimates when ROIs do exhibit strong activation-
level differences. In summary, we recommend Deming regression
as a general solution for correcting superficial bias in GE fMRI,
although studies focused exclusively on effects carried by the
regional mean may realize a small improvement by adopting the
ROI ratio metric instead.

The substantial residual superficial bias in the Z-scoring, L2
normalization, SVM and LDC metrics can be explained by the
characteristics of fMRI noise, which likely exhibit components
that are both additive and multiplicative with respect to layer
depth in GE fMRI data. For instance, Z-scoring assumes a
linear relationship between the noise and the contrast of interest,
and normalizes the contrast by dividing it by an estimate of
noise from the variance in the data. However, since our model
includes both thermal (laminar invariant) and physiological
(laminar dependent) noise sources, the variance in the data is
not a perfect reflection of the superficial bias. Thus, Z-scoring
is unable to fully correct the superficial bias in our simulations.
Similarly, L2 normalization assumes that averaging the voxel
response across time can accurately capture the superficial bias,
an assumption that would only hold true without additive noise.
Finally, multivariate pattern analysis methods (SVM and LDC)
fail to account for the superficial bias in the data because relatively
greater contrast to noise ratios (due to superficial bias) leads to
more robust contrast and better classification/LDC values. These
metrics are only expected to correct layer bias successfully if all
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FIGURE 7 | Plots of the measured response (A) and attentional modulation metrics (Deming regression, Voxel ratio, ROI ratio, Z-scoring, L2 norm, SVM
classification, and LDC, B–F) across different layers. These bars represent the median of all six participants, with each set of joint circles represent an individual
subject. The same color represents the same participant throughout all plots. The axis range of panel (B) has been restricted due to extreme outliers for the voxel
ratio. The full range of this data is shown in the panel inset.

noise components scale with layer depth; a noise model that
would be implausible for high-resolution fMRI where substantial
additive thermal noise is inevitable.

Interestingly, LDC and SVM showed different sensitivities
to superficial bias vs. attentional modulation in the simulations
(Figure 4). As we have observed previously (Huang et al.,
2018), LDC results had smaller variability across iterations,
reflecting greater stability in the estimates. However, LDC also
demonstrated higher sensitivity to the laminar bias. We believe
that this is primarily caused by the performance of the SVM
classifier being close to 100% in the superficial layer. This ceiling
effect results in a non-linear relationship between the functional
activation and classification accuracy and partially masks the
superficial bias. By contrast, LDC is expected to scale linearly with
response magnitude (Arbuckle et al., 2019), which in this context
means it is better able to capture the full extent of the superficial
bias. A repeated analysis with higher noise levels confirmed that
SVM and LDC metrics performed more similarly when the SVM
classifier’s performance was brought down from ceiling levels.

Our numerical simulations (see text footnote 3) may be useful
to test yet other approaches to correcting for superficial bias.
Nonetheless, the code makes several simplifying assumptions for
ease of calculation and generalization, which we list here for
clarity. Firstly, we assumed that neurons are purely responsive
to faces or houses only, and that the voxel BOLD response is
a simple sum of populations of face- and house-cells within
the voxel. Secondly, we assumed that attention modulates
responsive cells only by applying a gain factor and there is no
constant additive component of attention. Thirdly, superficial
bias was modeled as a gain factor on responses. Fourthly, we
only modeled two sources of noise: at the level of the true
hemodynamic response and at the level of measurement of
that response, with only the former noise term being scaled by
the laminar bias. Moreover, while we introduced some spatial
covariance in this noise across voxels (which could reflect,
for example, effects of head motion), we did not explore the
degree of this spatial covariance, nor explore effects of the

temporal autocorrelation known to exist in fMRI data (e.g., from
physiological noise sources). While it is not obvious that changes
in these assumptions would affect the current conclusions, this
may be worth exploring in future simulations. Note also that we
set the parameters of the simulation to approximately match the
ratio of activations in the two conditions from the voxels in real
7T data. Supplementary Figure 3 shows that the same pattern
of results emerges across a range of values for the signal and
noise within voxels. One might also wonder whether the results
depend on the number of voxels, e.g., for smaller ROIs. When we
explored a range 2500 down to 100 voxels, we did not observe
any differences in the relative performance of the metrics (only
the expected increase in overall variance for all metrics). Thus
while other parameter settings could produce different results,
we think that it is unlikely that the other four metrics would
outperform ROI ratio and Deming regression within the range
of realistic parameters.

A final key limitation of our numerical simulations is that
they are based on a multiplicative scaling model of superficial
bias (Kashyap et al., 2017; Huber, 2020). While we believe this
is more plausible than the linear-offset model discussed by Huber
in the above reference, there are more sophisticated models that
consider leakage effects (Markuerkiaga et al., 2016; Havlicek and
Uludag, 2020). Based on our anatomical understanding of the
basis for superficial bias, it is likely that a more complex model
consisting of both multiplicative effects (variations in BOLD
response parameters across layers) and leakage effects (presence
of draining veins across layers) is needed to fully capture the
intricacies of the superficial bias. However, the implementation
of such a model, specifically the leakage effects, would require
making specific assumptions of the vascular architecture that
are likely to vary across different ROIs, and are not universally
applicable. Moreover, modeling the leakage effects requires
substantially more parameters to be defined, such as the radius
of ascending veins, volume of capillaries, baseline intravascular
and extravascular relaxation rate and their signal ratio, relative
amounts of CBV in the microvasculature and ascending veins,

Frontiers in Neuroscience | www.frontiersin.org 13 September 2021 | Volume 15 | Article 715549

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-715549 September 22, 2021 Time: 12:16 # 14

Huang et al. Correcting Superficial Bias at 7T

among many others. These parameters either have to be
obtained experimentally through additional measurements, or
assumed using a priori knowledge of the vascular structure and
associated parameters. In contrast, the multiplicative model, and
in turn the ratio and Deming Regression methods, relies on
fewer assumptions, and is likely to generalize across a variety
of brain regions. This simple multiplicative model can serve
as a preliminary filter: methods that fail to account for the
multiplicative effect of superficial bias is unlikely to perform well
in a more complex model with both multiplicative and leakage
effects, even if they successfully account for leakage effects.

While more complicated models and methods may be
necessary to extract laminar profile for responses of a single
condition vs. baseline, we suspect that when the interest is in
the difference between two or more conditions, taking an ROI
ratio or estimating the slope of a Deming Regression is a simpler
and effective way of removing the scaling component of the
superficial bias effect. However it must be kept in mind that
leakage effects might not be corrected by these methods as they
are not simulated in the model. This limitation is particularly
pressing when differences between layers are not found, since this
can potentially reflect leakage.

We also applied the seven correction methods to the GE-
fMRI 7T data acquired on the same paradigm. The uncorrected
data showed the characteristic increase in BOLD signal toward
superficial layers (Kok et al., 2016; de Hollander et al., 2020). This
superficial profile remained after Z-scoring, L2 normalization
and applying SVM or LDC, while the Voxel Ratio produced an
extremely variable estimate, suggestive of greatest modulation
in the middle layer. However, the Deming Regression or ROI
Ratio metrics produced a largely flat profile across layers,
with low variability across participants compared to the other
metrics. These results are broadly consistent with the numerical
simulations, and suggest that apparent modulations in selectivity
across layers in the initial regional-mean contrasts can be
explained in terms of superficial bias in the GE-fMRI signal,
rather than a difference in attentional modulation as such.
However, the small sample size of the initial study reported here
prevents us from drawing strong inferences about the magnitude
of layer-specific effects of attention in the population.

Our failure to observe a layer-specific effect of attention
contrasts with other findings using similar manipulations of
“top-down” processes (Muckli et al., 2015; Kok et al., 2016;
Lawrence et al., 2019). These studies are quite heterogeneous in
experimental design and have yet to be independently replicated,
so completely consistent findings may not be expected. However,
we note that some of these results were obtained using metrics
that our numerical simulations suggest do not successfully
correct superficial bias, which may provide a further explanation
for any discrepancies. In particular, we believe that inadequate
correction for superficial bias may explain the superficial profile
reported by Lawrence et al. (2019) for spatial attention with a
Z-scoring metric, and the superficial profile reported by Muckli
et al. (2015) for SVM classification of visual content outside
the voxelwise receptive field. Thus, it would be difficult to draw
any conclusions as to the presence of any neuronal response
differences across layers based on those results. By contrast, Kok

et al. (2016) reported relatively stronger selectivity for illusory
contours in deep layers, a result that runs opposite to the
expected direction of a superficial bias effect. Such a pattern is
not expected by superficial bias–instead the selectivity estimates
in Kok et al. (2016) would likely be stronger after correction
for superficial bias. In general, we urge caution in interpreting
GE fMRI layer analyses where superficial bias has not been
appropriately corrected.

For completeness, we would also like to highlight that this
is a rapidly growing field and newer methodologies, such as
phase regression (Stanley et al., 2021), are constantly emerging to
address the problem of superficial bias in GE fMRI. In their paper,
Stanley et al. (2021) utilized the phase differences to estimate
the contribution from vessels, and were able to generate similar
laminar profiles to those observed using SE fMRI.

CONCLUSION

In this study, we demonstrate that Deming regression and ROI
ratio can adjust for superficial bias across cortical layers. This is
important because there is a growing wealth of high resolution,
GE-fMRI data that can be used for laminar analysis, but a lack of
consensus on the optimal way to analyze these data, which could
partially explain the variance in conclusions drawn from these
data. By proposing robust yet simple analysis methods to remove
the superficial bias, such as the use of Deming Regression, we
hope these will help reconcile results across different studies, and
allow researchers to probe deeper into the function of neuronal
activity in different cortical layers.
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Supplementary Figure 1 | Plots of the simulated measured response (A) and
attentional modulation metrics (Deming regression, Voxel ratio, ROI ratio,

Z-scoring, L2 norm, SVM classification, and LDC, B–F) across different layers
where voxels with the bottom 30% tSNR were excluded. These bars
represent the median of all six participants, with each set of joint circles represent
an individual subject. The same color represents the same participant throughout
all plots. The axis range of panel (B) has been restricted due to extreme outliers
for the voxel ratio. Note that these results are similar to that of Figure 7,
suggesting that the exclusion of low tSNR voxels does not change the findings.

Supplementary Figure 2 | Comparison of mean (A) and standard deviation (B)
of t-statistic of the voxels in the ROI for real and simulated data. The error bars
indicate the standard deviation of the summary metrics of the voxels across
participants/iterations.

Supplementary Figure 3 | Plots of the simulated response and attentional
modulation metrics (Deming regression, Voxel ratio, ROI ratio, Z-scoring, L2 norm,
SVM classification, and LDC) across different layers for different simulation
parameters [reduced signal (A), increased signal (B), reduced noise (C), and
increased noise (D)]. The general trend is similar to that of the parameters used in
the main paper (which were σface = 1.1, σhouse = 0.5, σphsiological = 11, and
σthermal = 15). Key differences are that Deming regression becomes noisier with
low signal or high noise while L2 normalization is able to remove the majority of
superficial bias at high SNR.

Supplementary Figure 4 | Plots of the attentional modulation metrics
(Deming regression, Voxel ratio, ROI ratio, Z-scoring, L2 norm, SVM classification,
and LDC) across different layers for the four ROIs [FFA (A), OFA (B), PPA (C), and
TOS (D)]. These bars represent the median of all six participants, with each set of
joint circles represent an individual subject. The same color represents the same
participant throughout all plots. Note that the results are similar to
that of Figure 7, except with increase variance between participants. These
results justify the pooling of the ROIs to reduce the impact of noise.
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