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Achieving high classification performance is challenging due to non-stationarity and

low signal-to-noise ratio (low SNR) characteristics of EEG signals. Spatial filtering is

commonly used to improve the SNR yet the individual differences in the underlying

temporal or frequency information is often ignored. This paper investigates motor

imagery signals via orthogonal wavelet decomposition, by which the raw signals are

decomposed into multiple unrelated sub-band components. Furthermore, channel-wise

spectral filtering via weighting the sub-band components are implemented jointly

with spatial filtering to improve the discriminability of EEG signals, with an l2-norm

regularization term embedded in the objective function to address the underlying

over-fitting issue. Finally, sparse Bayesian learning with Gaussian prior is applied to

the extracted power features, yielding an RVM classifier. The classification performance

of SEOWADE is significantly better than those of several competing algorithms (CSP,

FBCSP, CSSP, CSSSP, and shallow ConvNet). Moreover, scalp weight maps of the

spatial filters optimized by SEOWADE are more neurophysiologically meaningful. In

summary, these results demonstrate the effectiveness of SEOWADE in extracting relevant

spatio-temporal information for single-trial EEG classification.

Keywords: brain-computer interface, orthogonal wavelet decomposition, spatio-spectral filtering, l2-norm

regularization, relevance vector machine, sparse Bayesian learning

1. INTRODUCTION

Brain-computer interface (BCI) systems provide an approach for communicating with the external
world by brain signals (Lemm et al., 2011). BCI systems based on Electroencephalogram (EEG)
is the most common non-invasive modality, as EEG is inexpensive and has high temporal
resolution. Motor imagery based BCI is a commonly applied paradigm that can efficiently
decode the imagination of movement, and related features are derived from event-related
desynchronization/synchronization (ERD/ERS) (Blankertz et al., 2008). The signal processing steps
of a BCI system include brain signal acquisition, EEG signal preprocessing, feature extraction
and feature classification. The preprocessing step aims at enhancing the relevant information
by attenuating the artifacts and noise, e.g., band-pass filtering. The feature extraction stage
forms discriminative features for the performed tasks in the spatial domain, temporal domain or
frequency domain. The extracted features are then used to train a classification or regression model
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to decode the user’s intent. Hence, advanced signal processing
plays a key role in neuroscience research, and feature extraction
and classification of EEG signal have always been the two most
critical problems encountered in EEG signal analysis.

However, EEG signal processing is very challenging due to
the low spatial resolution, high non-stationarity and high intra-
subject variability of EEG. The challenges in developing an
efficient feature extraction algorithm are to address the above-
mentioned issues and form discriminative features. Common
spatial patterns (CSP) computes spatial filters, i.e., linear
combinations of EEG channels, to enhance class-discriminative
band power features contained in the EEG (Blankertz et al., 2008;
Lemm et al., 2011). However, the potential problem of CSP is that
it does not take into consideration the discriminative information
in the temporal or frequency domain. To address this problem,
many studies have applied spatial filtering or spatio-temporal
filtering for feature extraction, as reviewed below. The common
spatio-spectral patterns (CSSP) algorithm (Lemm et al., 2005)
is an approach to simultaneously optimize spatial filters and
channel-wise temporal filters; however, embedding one temporal
delay has less flexility. The common sparse spectral spatial
patterns (CSSSP) algorithm (Dornhege et al., 2006) optimizes
one high-order finite impulse response filter for all the channels,
and a sparse penalty term for the temporal filter is embedded
in the objective function of CSSSP. However, no close-form
solution is available by CSSSP. DFBCSP (Higashi and Tanaka,
2013) is developed to maximize the power ratio between two
motor imagery states (i.e., two classes) to design spatial and
temporal filter pairs. Note that the high-dimensional filters are
not regularized to ameliorate the potential over-fitting issue.
The filter bank common spatial pattern (FBCSP) algorithm
(Ang et al., 2008) operates spatial filtering and spectral filtering
in a sequential manner, which first filters the EEG signals
into several distinct sub-band components and then selects
discriminative features from the sub-bands via specific criteria.
The variants of FBCSP (Novi et al., 2007; Kavitha et al., 2008;
Zhang et al., 2011) differ in the feature selection criterion.
BSSFO (Suk and Lee, 2013) formulates a Bayesian inference
framework for the features of each sub-band. Along a different
line, several algorithms have been proposed to optimize the
spatial filters and spectral/temporal filters in separate stages.
SPEC-CSP (Tomioka et al., 2006) and ISSPL (Wu et al.,
2008) iteratively optimize spatial filters and spectral filters by
maximizing the Fisher ratio or margin hyper-plane. However,
the objective functions of FBCSP, ISSPL and SPEC-CSP are
distinctive for spatial filter and spectral filter optimization;
therefore, convergence and optimality cannot be guaranteed. In
our previous work, the regularized spatio-temporal filtering and
classification (RSTFC) algorithm (Qi et al., 2015) is proposed
as a new EEG analysis framework, which shows advantageous
classification performance. In recent years, there has been
increasing interest in using deep learning with convolutional
neural networks to decode imagined tasks from raw EEG signals
(Lawhern et al., 2016; Schirrmeister et al., 2017). However, more
training samples are needed, as the number of parameters is
larger than that of the conventional approaches.

In addition to spatial filtering, time-frequency representation
is highly desirable for EEG feature extraction from time-
frequency plots (Qin and He, 2005; Yang et al., 2007). In recent
years, wavelet transform has been found to be an effective time-
frequency analysis tool for analyzing transient signals and has
been applied to seizure detection (Bhattacharyya and Pachori,
2017) and emotion recognition (Mohammadi et al., 2017).
However, there is no standard method for selecting the best
wavelet and determining the decomposition level for processing
EEG signals (Hlawatsch and Boudreaux-Bartels, 1992; Subasi
et al., 2006). An algorithm based on an autoregressive model
and wavelet packet decomposition is proposed in Zhang et al.
(2017); however, the decomposed signals are redundant. CSP
is employed for feature extraction on the EEG signal that are
reconstructed and de-noised by single level wavelet in Zhang
et al. (2010). In Mousavi et al. (2011), wavelet packets are
used to decompose EEG signals into multiple levels, and fuzzy
logic is combined to select the discriminative packets. EEG
signals are decomposed by wavelets (Robinson et al., 2011, 2013)
after preprocessing, and then sub-band signals are reconstructed
at each level, which are further spatially filtered by the CSP
algorithm for feature extraction. An orthogonal wavelet is
employed to decompose the EEG signal into several sub-bands
in Robinson et al. (2012), and then spatial regularized CSP is
performed to extract features using the wavelet coefficients. The
wavelet coefficients are taken as input features for probabilistic
neural network in Gandhi et al. (2011). In Zhao et al. (2009), a
Morlet wavelet transformation is applied for different frequency
bins to each row of the composite covariance matrix and
store the new rows in a larger matrix, and then optimizes
the filters by maximizing the time-frequency ratio. However,
the Morlet wavelet is a linear transformation, and some rows
might be linearly dependent, leading to a non-full-rank matrix.
In summary, there are mainly two potential problems of the
existing wavelet-related algorithms: (a) the reconstructed signals
are linearly dependent as the used wavelet is not orthogonal, or
(b) the reconstructed signals from each level are used to construct
features separately; therefore, optimality cannot be guaranteed.

In this paper, an orthogonal wavelet decomposition-based
algorithm termed SEOWADE is proposed for single-trial EEG
classification of motor imagery signals. The contributions
are threefold:

(i) Unrelated sub-band components are obtained for
subsequent feature extraction. Specifically, the preprocessed
EEG signal is decomposed using orthogonal wavelets, and
the decomposed signals are subsequently reconstructed at
different levels/scales to yield sub-band components.

(ii) To enhance the discriminativity of the extracted features
for classification, the proposed algorithm localize signals
in spectral domain and spatial domain by implementing
spatio-spectral filtering on reconstructed EEG signals from
multiple levels.

(iii) As the choice of waveletmay have a significant impact on the
quality of the results regarding the classifier, cross-validation
is employed to select the most suitable wavelet function for
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TABLE 1 | List of symbols in the paper.

T: number of sampled time points

C: number of channels

L: level of orthogonal wavelet decomposition (L ≤ log2 T )

X ∈ R
C×T : data matrix of single-trial EEG data

R1,R2 ∈ R
C×C: estimated covariance matrices of the EEG data under two states

s ∈ R
C×1: spatial filter

h0, h1: high-pass and low-pass finite impulse response (FIR) filters

h′
0, h

′
1: time reversed filter sequences of h0 and h1

N: length of FIR filters h0 and h1

H0, H1: circulate matrices which are the even shifted version of the impulse

response h0 and h1

ul , vl , l ∈ {1, 2, · · · , L}: details coefficients and approximation coefficients at the

l-th level

ûl , v̂l , l ∈ {1, 2, · · · , L}: reconstructed signal at the l-th level

P ∈ R(L+1)×T : sub-band components of a single channel with the decomposition

level is L

X̃ ∈ R
M×T : wavelet filtered and embedded data matrix of EEG signal X, where

M = C · (L+ 1)

R̃1, R̃2 ∈ R
M×M: estimated augmented covariance matrices of the EEG data

under two states

w ∈ R
M×1: combined spatio-spectral filter

2m: dimension of feature vector, i.e., m features for each state

W ∈ R
M×2m: the combined spatio-spectral filter matrix

f ∈ R
2m×1: the feature vector obtained by logarithm of the normalized variance of

EEG signals projected onto W

signal processing. The SEOWADE algorithm is validated
using three EEG data sets from past BCI competitions,
and it is confirmed that the performance of the proposed
algorithm is comparable to or even better than other state-
of-the-art algorithms.

The remainder of this paper is structured as follows.
Mathematical details of the SEOWADE algorithm is presented
in section 2. The experimental results of SEOWADE on the three
data sets from past BCI competitions are provided in section
3, where the details of the data sets, analysis pipelines, and
classification results are provided. SEOWADE is benchmarked
against those of contemporary algorithms: CSP, CSSP, CSSSP,
FBCSP, and the algorithm termed shallow ConvNets proposed
in Schirrmeister et al. (2017). Finally, section 4 concludes this
paper. For ease of reference, the essential mathematical symbols
used in this paper are shown in Table 1.

2. METHODOLOGY

In this section, the orthogonal wavelet decomposition-based
feature extraction method is described. We used orthogonal
wavelets to construct independent sub-band components to
localize signals spectro-temporally. Subsequently, spectral
filtering via linearly transformed the sub-band components and
spatial filtering is applied to enhance the discriminativity of
EEG signals. In this way, the motor imagery-related patterns are
generated by spatio-spectral filtering, and distinct power features

defining the performed tasks are extracted. Finally, sparse
Bayesian learning with Gaussian prior is applied to the extracted
power features, with a RVM classifier obtained for classification.

2.1. Wavelet Decomposition and
Reconstruction
Fourier transform has been widely applied to the analysis of
non-stationary EEG signals. The advantage of wavelet analysis
over short-time Fourier transform is that one can look at the
signals at different scales or resolutions: a approximate level and
a detailed level. Specifically, the wavelet is a smooth function that
oscillates and quickly vanishes, which can localize well in both
the frequency domain and the temporal domain (Vetterli and
Herley, 1992). A wavelet family ψa,b(t) is a set of elementary
functions, which are generated by dilations a’s and translations
b’s of a unique admissible mother wavelet ψ(t): 9a,b(t) =
1√
|a|ψ(

t−b
a ), where a, b ∈ R, a 6= 0, and t is the time point.

The dilation parameter a, the translation parameter b determine
the oscillatory frequency and length, the shifting position of the
wavelet, respectively.

2.1.1. Discrete Orthogonal Wavelet Transform
In this subsection, we describe how the discrete orthogonal
wavelet transform is implemented. In wavelet transform multi-
resolution analysis, a finite impulse response filter pair [high-
pass (HP) and low-pass (LP) filters] is specifically designed,
the frequency responses of which separate the high-frequency
and low-frequency components of the input signal. The HP
filter coefficients are associated with the scaling function,
and the LP filter is associated with the wavelet function.
The outputs of the LP filters are called the approximation
(A), and the outputs of the HP filters are called the details
(D). In multi-resolution algorithms, any time series can be
completely decomposed in terms of the approximation and detail
components. Applications of discrete wavelet transformation
produce a multi-resolution analysis of signals across time
and frequency; however, the resulted wavelet components
are redundant, and the computational complexity increases
with additional decomposition layers. To address this issue
and accommodate non-stationarity frequency analysis, discrete
orthogonal wavelet transformation is applied for EEG signal
analysis in this paper to obtain an improved tradeoff between
temporal resolution and frequency resolution by varying the
window length over frequencies.

The concept of multi-resolution and successive
approximation of orthogonal wavelet transformation can
be explained as follows. Let Ai, i ∈ Z be the space of band limited
functions, and let Di, i ∈ Z be the orthogonal complement of Ai

in Ai−1. These spaces are related as in the equations (Hazarika
et al., 1997): Ai ⊂ Ai−1, Ai−1 = Ai

⊕
Di. The orthogonal

wavelet bases are constructed such that they span Ai and Di. For
example, at level i = 1, the functions that approximate signals
of space A0 in A1 represent a perfect half-band LP filter h1 and
those in D1 represent a perfect half-band HP filter h0. At each
decomposition level, orthogonal wavelet decomposition involves
filtering with h1 and h0 followed by sub-sampling by 2. From a
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signal processing approach, the orthogonal wavelet transform
can be defined as applying filters and samplers on discrete time
sequences to perform a coarse half-resolution approximation
of the original time sequences (Vetterli and Herley, 1992).
The original signals can be reconstructed from these sub-band
components using the reverse process, i.e., up-sampling by 2 and
filtering using time reversed filter sequences h′1 and h′0.

2.1.2. Wavelet Filtering and Embedding
Given a T-length EEG signal x = [x(0), x(1), · · · , x(T − 1)], we
show how the sub-band components of x by wavelet filtering
and embedding are obtained as follows. The finite impulse
response of the N-length filter h0 is in the form of h0 =
[h0(0), h0(1), · · · , h0(N−1)], while theN-length filter h1 satisfies
the following expression:

h1(n) = (−1)n · h0(N − 1− n), n ∈ {0, 1, · · · ,N − 1}. (1)

The assumption is that the even-shifted version of the impulse
response h0 [rows of the circulate matrix H0 given in (2)] forms
an orthogonal set that spans the subspace D1:

H0 =




.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

· · · h0(N − 1) h0(N − 2) h0(N − 3) · · · h0(0) 0 0 0 · · ·
· · · 0 0 h0(N − 1) · · · h0(2) h0(1) h0(0) 0 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.




(2)

Similarly, the even-shifted version of h1 forms H1 which has
the same structure as H0 and spans subspace A1. Note that the
subspaces spanned byH0 andH1 are non-overlapped:

H0 ·H∗
0 = I, H1 ·H∗

1 = I, H0 ·H∗
1 = H1 ·H∗

0 = 0, (3)

where B∗ denotes the complex conjugate of matrix B, and I is the
identity matrix.

The EEG signals x projected onto subspaces D1 and A1

followed by sub-sampling by 2, denoted by u1 and v1 can be
represented by:

u⊤1 = H0x
⊤, v⊤1 = H1x

⊤, (4)

where ⊤ denotes the transpose operator. Then, u1 consists of
the detailed coefficients, and v1 consists of the approximation
coefficients. The reconstruction of signal is achieved as:

u′⊤1 = H∗
0H0x

⊤, v′⊤1 = H∗
1H1x

⊤. (5)

Figure 1A shows the processing steps of decomposition and
reconstruction by orthogonal wavelet transformation at level 1.

For multilevel orthogonal wavelet decomposition,
the aforementioned process repeats to decompose vl,
l ∈ {1, 2, · · · , L} at each level. The wavelet decomposition
using coefficients from all L levels first gives L + 1 wavelet
coefficients, and then retains coefficients from only one
components for construction, until all the coefficients are used

for construction, with L + 1 reconstructed signals obtained:
v′L, u′L, u′L−1, · · · , u′1. Specifically, Figure 1B demonstrates
the process of obtaining the sub-band components with the
impulse response of decomposition and reconstruction filters.
The sub-band components via wavelet filtering and embedding
can be presented by the reconstructed signals of the EEG signal x
are denoted as a embedding matrix:

P =




u′1
u′2
...

u′L
v′L




∈ R
(L+1)×T . (6)

In Figure 2, an example of the 100th trial of the training data set
from subject al implemented by DB7 is presented, with the level
of wavelet decomposition is three.

2.2. SEOWADE
Though the CSP algorithm is a highly successful method that
has gained a surge of popularity and interest, the performance
suffers from a non-discriminative brain rhythm that has an
overlapping frequency range with the most discriminative brain
rhythm. On the other hand, the frequency band on which the
CSP operates is either selected manually or unspecifically set to
a broad band filter, which is likely to degrade the performance
by using an inappropriate frequency band. In the proposed
algorithm, the sub-band components are weighted channel-
wisely for spectral filtering because the discriminative frequency
bands are channel-distinct, and simultaneously spatial filtering
is implemented to enhance the discriminability of EEG signals.
Note that the previous paper (Robinson et al., 2013) considered
only the relative power distribution between each wavelet
component, while our algorithm considers the total power of all
the orthogonal wavelet components after spatio-spectral filtering,
which is considered to capture the discriminative features of the
EEG signal.

2.2.1. Combined Spatio-Spectral Filtering
The channel-wise spectral filters and the spatial filter can be
re-parameterized by a single vector, which is presented below.
Let X = [x1, x2, · · · , xC]⊤ ∈ R

C×T denote a single-trial
EEG signal, where C and T denote the number of channels
and sample points, respectively. Each xc ∈ R

1×T , c ∈
{1, 2, · · · ,C} denotes a T-length time sequence given by xc =
[xc(0), xc(1), · · · , xc(T − 1)]. Suppose the L+1-length spectral
filter for the sub-band components of the c-th channel is ac =
[ac(0), ac(1), · · · , ac(L)]⊤, c ∈ {1, 2, · · · ,C}, and the C-length
spatial filter is s = [s(1), s(2), · · · , s(C)]⊤. The C channel-
specific spectral filters ac’s composes a matrix A ∈ R

(L+1)×C

as: A = [a1, a2, · · · , aC]. Then, the combined operations of
spatial filtering and channel-wise spectral filtering on X can be
collectively expressed as:

Z = wX̃, (7)
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FIGURE 1 | (A) EEG signal decomposition and reconstruction by orthogonal wavelet. Here h0 (n) and h1(n) present the finite impulse response of the half-band LP

filter and half-band HP filter, and h′
0(n) and h′

1(n) present the reversed filters of h0(n) and h1(n), respectively. (B) EEG signal decomposition and reconstruction by

orthogonal wavelet filtering to obtain the wavelet filtered and embedded EEG data, with the level of wavelet decomposition equals to three.

where w ∈ RM×1 with M = (L + 1) × C denotes the combined
spatio-spectral filter:

w = vec((s⊤ ⊙ A)⊤) = [s(1) · a⊤1 , s(2) · a⊤2 , · · · , s(C) · a⊤C ]⊤

= [w⊤
1 ,w

⊤
2 , · · · ,w⊤

C ]
⊤, (8)

where X̃ denotes the embedding spatio-spectral matrix that
appends the reconstructed wavelet signals of all the channels:

X̃ =




P1

P2

...

PC


 , (9)

and Pc ∈ R(L+1)×T denotes the component matrix of the c-th
channel, c ∈ {1, 2, · · · ,C}, as described in (6).

According to (7), the implementation of spatial filtering
and channel-wise spectral filtering on EEG signal X can be
represented by linear combinations of X̃ by w, where w is re-
parameterized by a spatial filter and channel-wise spectral filters.

2.2.2. Filter Optimization
The optimization objective of our algorithm is to determine
spatio-spectral filter w by solving the following maximizing
variance ratio problem as in CSP (Blankertz et al., 2008):

max
w

J1(w) , max
w

w⊤R̃1w

w⊤R̃2w
, (10)

where R̃1 and R̃2 are augmented covariance matrices under
two states (labeled with 1 and 2) estimated by X̃’s with trace

normalization applied:

R̃i =
1

Ni

∑

k

X̃i
k
X̃i⊤
k

tr[X̃i
k
X̃i⊤
k
]
, i ∈ {1, 2}, (11)

where Ni is the number of training samples for the i-th state, X̃i
k

is the k-th training sample for the i-th state, i ∈ {1, 2}.
To ameliorate the potential over-fitting problem, we perform

a l2-norm regularization, which penalizes non-smooth combined
spatio-spectral filters, as shown in the following Rayleigh
quotient maximization problem:

w : = max
w

J2(w) , max
w

w⊤R̃1w

w⊤(R̃2 + ρ · I)w
, (12)

where ρ is the regularization parameter. Then, w can be
decomposed into a spatial filter s and channel-wise spectral filter
ac’s, c ∈ {1, 2, · · · ,C}. In this work, the c-th coefficient of s is
s(c) = sgn(wc(1)) · ‖wc‖2, and ac = wc/sc.

Typically, one can retain only a small number of projection
vectors, which contain most of the discriminative information
for each state. We term the number of filters per class as m.
Multiple spatio-spectral filters can be obtained by performing the
generalization eigenvalue problem: R̃1w = λR̃2w. The resulting
eigenvalues λ = J2(w) associated with each spatio-spectral filter is
presumed to indicate the discriminability of the spatio-spectrally
filtered EEG signals between the two class. By exchanging R̃1

and R̃2, m filters for another state can be obtained. In total, 2m
spatio-spectral filters are retained for subsequent analysis.
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FIGURE 2 | The 100th trial of the training data set from subject al implemented by DB7 where the level of wavelet decomposition is three: (A) waveform in time

domain after 7–40 Hz band-pass filtering; (B) amplitude waveform in frequency domain; (C) amplitude waveforms of the four sub-band components in the time

domain; (D) amplitude waveforms in the frequency domain of the four sub-band components.

2.2.3. Classification
Suppose W is a combination of the 2m filters: W =
[w1,w2, · · · ,w2m−1,w2m] ∈ R

M×2m. Spatio-filtering can be
implemented by projecting the wavelet filtered and embedded
EEG data onto W as: Z = W⊤X̃ ∈ R

2m×T . A classifier can
be trained on the feature vectors obtained by normalizing and
log-transforming the variances of Z as:

f = log(
diag[ZZ⊤]

tr[ZZ⊤]
) ∈ R2m×1, (13)

where f denotes the feature vector. The log transformation serves
to approximate the normal distribution of the feature vector,
which is the basic assumption of some classifiers.

Typically, the prediction of class label ŷ is defined over the
features f as follows, where u ∈ R

2m×1 and u0 denote the
vector of parameters and the bias term, respectively, and8 is the
basis function:

ŷ(f;u) = u⊤8(f)+ u0. (14)

The objective of a classifier is to estimate the values for those
parameters. Sparse Bayesian learning is designed to manage the
computational and statistical complexity in a principled way,
which defines a hyper-parameterized prior over the parameter
with the following form:

p(u|α) =
2m∏

k=1

p(uk|αk) ∝
2m∏

k=1

α
1
2

k
exp(−αk

2
u2k). (15)
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FIGURE 3 | Analysis pipeline of SEOWADE algorithm, with each EEG figure represent a single-trial EEG signal with dimension C× T. Note that the dimensions of a

single-trial EEG signal after preprocessing, wavelet filtering and embedding, channel-wise spectral filtering and spatial filtering are C× T, M× T, C× T, and 2m× T,

then the log-variance features with dimension 2m× 1 per trial are obtained for classification.

This type of prior ultimately favor a sparse model that also fits the
features well. The relevance vector machine (RVM) is a Bayesian
sparse kernel technique for regression and classification, which is
implemented as the classifier with Gaussian prior in this paper.

In summary, the involved analysis steps of SEOWADE can
be described as follows, with the analysis flowchart presented in
Figure 3:

• The EEG data are acquired and preprocessed;
• The preprocessed signals are decomposed by orthogonal

wavelets at different scales, which are then reconstructed
using wavelet reconstruction, with sub-band components are
obtained;

• With the wavelet filtered and embedded data, the spatio-
spectral filters are optimized by (12);

• We normalize and log-transform the discriminative features
constructed by the spatio-spectrally filtered signals as in (13);

• The RVM classifier with a Gaussian prior is trained with the
processed features, and the performance of the algorithm in
terms of classification performance is determined.

3. DATA ANALYSIS AND RESULTS

In this section, the binary classification performance of
SEOWADE algorithm applied to three real EEG data sets is
shown. In particular, the performance of SEOWADE is compared
with that of the following algorithms: CSP, FBCSP (Ang et al.,
2008), CSSP (Lemm et al., 2005), CSSSP (Dornhege et al., 2006),
and shallow ConvNets proposed in Schirrmeister et al. (2017).
Several intuitive examples are illustrated to demonstrate the
relative advantage of SEOWADE over the compared algorithms.

The MATLAB code of SEOWADE is available upon requests
from the authors to allow for the reproducibility.

3.1. Data Description
In this work, three publicly available motor imagery data sets
from past BCI competitions are used for performance evaluation.
The data sets consist of EEG data from 17 subjects during
motor imagination.

(1) Data Set A (Data Set IVa from BCI Competition III;
Dornhege et al., 2004): This data set is recorded from five
subjects (al, aa, av, aw, and ay), with a sampling rate of 100
Hz and 118 recorded channels. The experiment is a cue-
basedmotor imagery paradigm, with the subjects performing
right-hand and foot motor imagery tasks (labeled 1 and
2, respectively). A total of 280 trials are available for each
subject, among which 224 (80%), 168 (60%), 84 (30%), 56
(20%), and 28 (10%) trials compose the training data set for
al, aa, av, aw, and ay, and the remaining trials compose the
testing data set.

(2) Data Set B (Data Set IIIa from BCI Competition III; Schlögl
et al., 2005): This data set is recorded three subjects (K3,
K6, L1), with a sampling rate of 250 Hz and 60 recorded
channels. These subjects perform left-hand, right-hand, foot
and tongue motor imagery tasks (labeled 1, 2, 3, and 4,
respectively). Both the training and the testing data sets
contain 45 trials per class for subject K3, and 30 trials for
subjects K6 and L1. We split the data set of each subject
to generate C2

4 = 6 data subsets, as our aim is to evaluate
the binary classification performances of these algorithms.
Therefore, a total of 18 data subsets are obtained, and for
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FIGURE 4 | Electrode layouts for (A) Data Set A with 118 channels, (B) Data

Set B with 60 channels, (C) Data Set C with 22 channels.

convenience, we use “subject’s name-class labels” to denote
the data subset.

(3) Data Set C (Data Set IIa from BCI Competition IV; Naeem
et al., 2006): This data set comprises 22-channel EEG
signals with a sampling rate of 250 Hz. Nine subjects (A01-
A09) perform left-hand, right-hand, foot and tongue motor
imagery tasks (labeled 1, 2, 3, and 4, respectively). Both the
training and the testing data sets contain 72 trials per class
for each subject. Akin to Data Set B, 6× 9 = 54 data subsets
are generated for binary classification.

A total of 5 + 18 + 54 = 77 data subsets are obtained for
evaluation. The proposed SEOWADE algorithm and competing
algorithms are run on each data subset for binary classification.
The channel layouts for the three data sets are presented in
Figure 4.

3.2. Analysis Pipeline
The analysis pipeline of the considered algorithms for binary
classification is illustrated as follows.

(1) Preprocessing.
The following preprocessing steps are applied to the above

mentioned 77 data subsets.

• All the channels are used for data analysis, i.e., channels
covering both hemispheres are included in the analysis to
obtain spatio-spectral information.

• A sixth-order Butterworth filter with a pass-band range of
7-40 Hz is used to filter the EEG signals to filter out the
components unrelated to sensorimotor rhythms.

• The time window is set to 0.5-3.5 s for the three data sets,
where 0 denotes the time of cue ends.

For FBCSP, the EEG signals are band-pass filtered into eight
non-overlapping sub-band components (7–11, 11–15, 15–
19, 19–23, 23–27, 27–31, 31–35, 35–40 Hz) using a sixth-
order Butterworth filter.

(2) Feature Extraction.
For each data subset, the training data sets after

preprocessing are fed into SEOWADE and other competing
algorithms to optimize the spatial filters, spatio-temporal
filters or spatio-spectral filters. The normalized and log-
transformed variances of the spatially, spatio-temporally
or spatio-spectrally filtered signals are then defined as
the features for all the algorithms. Following previous

studies, 3 features per state are constructed from the filters
corresponding to the 3 largest generalized eigenvalues. That
is, 2m = 6 features are obtained.

(3) Classification.
RVM with Gaussian prior is applied as the classifier for

CSP, FBCSP, CSSP, CSSSP and SEOWADE. The classification
performance on the test data set is measured in terms of
mean classification accuracy and standard deviation.

3.3. Hyper-Parameters Settings
Several hyper-parameters need to be pre-determined for
SEOWADE by 10-fold cross-validation during the analysis of
CSSP, CSSSP, and SEOWADE. The hyper-parameters and the
candidate sets for the algorithms are summarized in Table 2.
Note that when L = 0 and ρ = 0 in SEOWADE, or τ = 0 in
CSSP, these algorithms are reduced to CSP.

N-fold cross-validation, sometimes called rotation estimation
(Devijver and Kittler, 1982), is the statistical practice of
partitioning a sample of data intoN subsets such that the analysis
is initially performed on N − 1 subsets, while the other subset
is retained for subsequent use in conforming and validating the
initial analysis. The initial subsets of data are called the training
set, and the other subset is called the validation or testing set.
The cross-validation process is then repeated N times (the folds),
with each of the N subsets used exactly once as the validation
data set. The results from the N folds can then be averaged to
produce a single estimation. For each hyper-parameter, the one
that achieves the highest average classification accuracy across the
10 repetitions is determined as its value.

3.4. Classification Performances
The classification performance of SEOWADE is compared
with those of other compared algorithms in this subsection.
The testing classification accuracies for all the algorithms
compared with SEOWADE are shown in Figure 5, and the
points above the diagonal line indicate that the classification
accuracy of SEOWADE is higher than that of the compared
algorithm on the x-axis. Moreover, the mean testing classification
accuracies on the three data sets and on all the data sets are
summarized in Table 3, in which the entries highlighted in
boldface indicate the best performance among the competing
algorithms. Repeated measures analysis of variance (ANOVA)
shows that SEOWADE and the other five algorithms significantly
differ in the classification performance [F(5,5×76) = 7.9617,
and p = 3.76 × 10−7). Moreover, based on the Bonferroni-
corrected Wilcoxon signed-rank tests, the significance of the
results between the two compared algorithms at the 5, 0.5, and
0.1% levels is indicated by *, **, *** beneath the corresponding
sub-figure of Figure 5. It can be confirmed that a considerable
improvement in classification performance can be achieved by
SEOWADE over the compared algorithms, which shows the
effectiveness of SEOWADE.

3.5. Presentations of Extracted Filters
To determine the physiological significance of the algorithm and
the source of informative features in the brain, we study the
extracted spatial filters obtained from the proposed SEOWADE
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TABLE 2 | Candidate sets of the hyper-parameters for each algorithm.

Algorithm Hyper-parameter Candidate

CSSP Delay time τ {0, 1, 2, 3, 4}

CSSSP
Regularization parameter α 0.1× {1, 2, · · · , 100}
Order of FIR filter N N = 6

SEOWADE

Wavelet type
{Coif3, Coif5, DB1,DB3, DB5, DB7, DB10, DB15,

dmey, fk4, fk6, fk8, fk14, sym5, sym8, sym20}

Decomposition level L {1, 2, 3, 4}
Regularization parameter ρ 10−6 × {1, 2, · · · , 100}

FIGURE 5 | Classification accuracies (%) of the algorithms (CSP, FBCSP, CSSP, CSSSP, and shallow ConvNets) compared with SEOWADE for the 77 binary data

subsets, among which the five-pointed stars, circles and diamonds in each sub-figure denote the corresponding data subsets from Data Set A, Data Set B and Data

Set C, respectively. Moreover, based on the Bonferronicorrected Wilcoxon signed-rank tests, the significance of the results between the two compared algorithms at

the 5, 0.5, and 0.1% levels is indicated by *, **, *** beneath the corresponding sub-figure of this figure.

TABLE 3 | Mean classification accuracies and standard deviation (%) of CSP, FBCSP, CSSP, CSSSP, shallow ConvNets and SEOWADE on the three data sets (the

numbers of subjects are M = 5, 18, 54, respectively), with RVM (with Gaussian prior) is implemented as the classifier.

Algorithms Data Set A (%) Data Set B (%) Data Set C (%) All data sets (%)

CSP 75.95 ± 14.46 89.23 ± 10.14 76.72 ± 13.43 79.60 ± 13.73

FBCSP 73.60 ± 16.82 84.54 ± 12.48 79.93 ± 12.34 80.59 ± 12.77

CSSP 77.60 ± 14.96 88.61 ± 10.08 78.25 ± 13.52 80.63 ± 13.48

CSSSP 76.68 ± 14.85 88.67 ± 11.27 77.55 ± 14.02 80.09 ± 14.14

shallow ConvNets 82.60 ± 15.24 83.61 ± 12.52 74.50 ± 14.57 77.16 ± 14.57

SEOWADE 82.43 ± 13.52 90.65 ± 10.21 80.12 ± 13.32 82.73 ± 13.28

The entries highlighted in boldface indicate the best performance among the competing algorithms.

algorithm and other compared algorithms. The results are shown
by three representative examples, namely, subjects ay, K6-23,
and A09-24 from the three data sets, with the performed motor
imagery tasks right-hand vs. foot, right-hand vs. foot, and right-
hand vs. tongue, respectively. Figure 6 shows the topological
scalp distribution maps of the spatial filters optimized by CSP,
CSP, CSSP, CSSSP, and SEOWADE, with the weight maps related
to the leading eigenvalue for each class.

Overall, the scalp weight distributions from SEOWADE
are neurophysiologically relevant to the motor imagery tasks,
with strong weights over the corresponding regions in the
contralateral motor cortex. In addition, we compare the spatial
filters of different algorithms by calculating the absolute value
r’s of correlation coefficients between their spatial maps, which
is shown in the rightmost column of Figure 6. It can be seen
that some spatial filter maps obtained by different algorithms are
highly correlated, yet not identical.

3.6. Computational Costs
SEOWADE can be optimized efficiently. Suppose the number of
the decomposition level for SEOWADE is L, and the number of
channels is C, below we assess the computational complexity of
each algorithm in the feature extraction step. The computational
complexity is O(((N + 1)C)2) for SEOWADE, and O(C2),
O((2C)2) for CSP and CSSP respectively. As for FBCSP, the
complexity is approximately 8 times as large as that of CSP,
since CSP is called for each of the 8 sub-band components.
As for CSSSP, the spatial filters and channel-common temporal
filters are optimized iteratively, and the complexity is O(C3)
for spatial filter optimization and O(K1N) for temporal filter
optimization in each iteration, respectively, where K1 is the
number of iterations for temporal filter optimization with
gradient descent. Let K2 denote the number of iterations to
reach convergence for CSSSP. The total complexity for CSSSP
is O(K2(C

3 + K1N)).
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FIGURE 6 | Scalp weight maps of the optimized spatial filters (corresponding to the leading eigenvalues of each class) optimized by CSP, CSSP, CSSSP, and

SEOWADE for the three representative subjects, and the absolute value r’s of correlation coefficients between the spatial weight maps from different algorithms:

(A) ay, with the performed motor imagery tasks are right-hand vs. foot; (B) K6-23, with the performed motor imagery tasks are right-hand vs. foot; and (C) A09-24,

with the performed motor imagery tasks are right-hand vs. tongue.
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TABLE 4 | Runtimes (millisecond) of CSP, FBCSP, CSSP, CSSSP, shallow Convnet (abbreviated as sConvnet here), and SEOWADE (with DB7 implemented as the

orthogonal wavelet) applied to the representative examples ay, k6-23, and A09-24.

other algorithms SEOWADE

Subject CSP (ms) FBCSP (ms) CSSP (ms) CSSSP (ms) sConvnet (ms) L = 1 (ms) L = 2 (ms) L = 3 (ms) L = 4 (ms)

ay 4.7 25 5.4 210 1.9 ×104 14 17 30 140

k6-23 2.4 16 4.6 130 2.4 ×104 5.6 6.1 12 14

A09-24 1.4 13 2.6 84 4.3 ×104 3.0 3.5 4.1 4.3

To highlight, in Table 4, we provide the runtimes for CSP,
FBCSP, CSSP, CSSSP, shallow Convnet (abbreviated as sConvnet
here), and SEOWADE (with DB7 implemented as the orthogonal
wavelet) on the representative examples. sConv is coded in
Pytorch, and other algorithms are run on a Windows PC with
a 3.70-GHz Inter Core (TM) i7-8700K CPU and 16-GB RAM,
in MATLAB© R2018b. It can be seen that the runtime of
SEOWADE is less than those of CSSP and sConvnet, albeit more
than those of CSP and CSSP.

4. DISCUSSION

Note that common average reference, removal of eyes
movements and blinks are not performed for SEOWADE
and other competing algorithms. The reason is that these
preprocessing steps amount to spatial filtering on EEG, which
is to a large extent redundant considering that the spatial
filtering algorithms considered in the paper are already
optimal for within-subject classification under their respective
optimization criteria.

The high classification performance of SEOWADE on
the three open motor imagery data sets demonstrates the
effectiveness of SEOWADE. However, a relatively small-sized
training set may lead to biased models with poor generalization
performance. To address this issue, our work can be improved
along the following two lines:

(i) Introducing inter-subject transfer learning. One idea is
borrowing useful information from other subjects or other
sessions to facilitate the current model learning process. In
this case, how to utilize the information from other subjects
to regularize the current model of the target subject will be
the focus of our future work.

(ii) Generating adversarial examples. Alternatively, the number
of training sample can be enlarged by generating adversarial
examples, i.e., through perturbing the real sample via
Generative Adversarial Networks (GAN). With more
training samples, the obtained model is expected to be more
stable and more robust with better generalization ability.

5. CONCLUSIONS

In this work, an SEOWADE algorithm based on orthogonal
wavelet decomposition is proposed formotor imagery EEG signal
classification. By SEOWADE, spatial filter and channel-specific
spectral filters can be optimized simultaneously under a single

optimization problem, with a l2-norm regularization term
embedded to ameliorate over-fitting issue. Feature vectors are
extracted via normalize and log-transform the spatio-spectral
filtered signals, and then RVM with Gaussian prior is employed
for classification. The proposed algorithm can effectively localize
signals both in spatial and temporal domain, and thus can
provide discriminative features for classification.

One motivation of BCI research is the application to motor
imagery signal classification. Three motor imagery data sets from
past BCI competitions are used to evaluate the performance of
the proposed algorithm. Compared with the classic algorithms
CSP, FBCSP, CSSP, CSSSP and shallow ConvNets, the testing
classification performance of SEOWADE is significantly better
at the 5% level. The extracted spatial patterns of SEOWADE
are mainly located in the contralateral cortex, which is
neurophysiologically relevant.
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