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The interference of noise will cause the degradation of image quality, which can have
a negative impact on the subsequent image processing and visual effect. Although
the existing image denoising algorithms are relatively perfect, their computational
efficiency is restricted by the performance of the computer, and the computational
process consumes a lot of energy. In this paper, we propose a method for image
denoising and recognition based on multi-conductance states of memristor devices.
By regulating the evolution of Pt/ZnO/Pt memristor wires, 26 continuous conductance
states were obtained. The image feature preservation and noise reduction are realized
via the mapping between the conductance state and the image pixel. Furthermore,
weight quantization of convolutional neural network is realized based on multi-
conductance states. The simulation results show the feasibility of CNN for image
denoising and recognition based on multi-conductance states. This method has a
certain guiding significance for the construction of high-performance image noise
reduction hardware system.

Keywords: memristor, conductance fine-tuning, synaptic plasticity, convolutional neural network, image
denoising

INTRODUCTION

Image denoising plays an important role in visual processing. In the process of image perception,
noise destruction will inevitably occur, which will seriously reduce the visual quality of the acquired
image and further reduce the accuracy of image recognition (Andrews and Hunt, 1977; Chatterjee
and Milanfar, 2010). In addition to the traditional algorithm of designing filter for image denoising
(Ullah and Halim, 2021; Upadhyay et al., 2021), the current popular and effective algorithm is the
deep learning algorithm for image denoising and feature extraction (Zhang et al., 2017; Tian et al.,
2020a,b; Wang et al., 2020). However, the above algorithms all run on the von Neumann computer
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architecture; thus, a large amount of energy consumption
will be required during the calculation process, while its
computational efficiency is limited (Chen et al., 2018; Xia and
Yang, 2019; Zhang W. Q. et al., 2020). Similar to how the human
brain transmits and processes information through a large
number of interconnected neurons and synapses, neuromorphic
computing approaches based on new solid-state electronics
have demonstrated high efficiency, low power consumption,
and parallel processing capabilities for big data analysis tasks
(Chua, 1971; Akinaga and Shima, 2010). Among them, the
resistance switch memristor is considered the best candidate for
the post-Moore era due to its simple device structure and the
very large-scale integration capability of the crossbar array. In
addition, studies have shown that memristor-based in-memory
computation is compatible with complementary metal-oxide-
semiconductor (CMOS) technology (Merced-Grafals et al., 2016;
Li et al., 2018).

Typically, the memristors consisted of two electrode layers
(top and bottom electrodes) and a dielectric layer (Sawa, 2008;
Brivio et al., 2018), and when the scanning or pulse voltage
was applied by the top electrode through the dielectric layer
to a bottom electrode, they displayed a continuous multi-
conductance state changes, similar to the regulation of the
synaptic connection strength, which is called synaptic plasticity
(Zhou et al., 2019; Gao et al., 2021). At present, a number
of studies have shown that such characteristics, which are
similar to the neuronal structure and the transmission mode
of neurotransmitters, have great advantages in realizing multi-
valued information storage and constructing memristor neural
networks (Zhang et al., 2019; Yao et al., 2020; Kimura et al.,
2021). The first step of the neural network in image recognition
is to transform the input image into a gray matrix with pixel
value between 0 and 255. In this process, the input image
with noise will directly change the distribution of pixel value
in the gray matrix, thus, affecting the subsequent iterative
calculation results of the network. By using the conductance
property of memristor to transform the pixel value into several
discrete conductance states, the influence of the change in pixel
value distribution can be reduced by quantifying the image
information. At the same time, based on the characteristics
of multi-conductance continuous change in memristor, the
mapping relationship between the weight of neural network
and the conductance of memristor can be constructed to
realize the memristor neural network (Ma et al., 2020;
Sun et al., 2021).

In this paper, we report an effective method for feature
preservation and image denoising based on the multi-
conductance switching property of memristor devices.
Meanwhile, the mapping relationship between the weight
of neural network and the conductance of memristors is
constructed by using the multi-conductance properties. Finally,
a memristor CNN, which can be used for image denoising
and recognition, is realized. The additive white Gaussian noise
(AWGN) was used to introduce noise to handwritten letters
as input, and the input images were quantized and denoised
using conductance curves measured by a Pt/ZnOx/Pt memristor
prepared in the laboratory. The results show that noise reduction

effect can reach about 10%, while quantized CNN still achieves
91.97% of the recognition rate of the original image.

MATERIALS AND METHODS

Device Fabrication and Operation
The ZnO-based memristors were fabricated by RF magnetron
sputtering deposition of 50-nm ZnOx thin film on commercial
Pt/Ti/SiO2 wafers (HF-Keijing, Hefei, China), in a pure argon
environment with 1.0-Pa environment pressure and 60-W AC
radio frequency at room temperature for 5 min. Then 50-nm-
thick round Pt electrodes with a diameter of 200 µm was
deposited though E-beam deposition to form the Pt/ZnO/Pt
structure. The transmission electron microscope (TEM) image
of the Pt/ZnO/Pt memristor prepared is shown in Figure 1A.
Applying sufficiently high voltage to the Pt/ZnO/Pt memristor
electrode can drive the migration of oxygen anions or vacancies
to form indentations, so that the memristor can undergo a
resistance transformation phenomenon.

Device Performance Evaluation
In general, memristors employ a conduction mechanism of
conductive filaments (CFs), in which the conductive filaments
can significantly regulate the resistance/conductance of the
device through ion migration and solid-state redox reactions
(Ambrogio et al., 2016; Chakrabarti et al., 2017; Hermann et al.,
2020). In the direct current (DC) scanning voltage mode, the
device exhibits obvious bipolar resistor switching behavior and
a large memory window suitable for multi-stage modulation, as
shown in Figure 1B. Three stable resistance states can be obtained
by controlling the limiting current during the set process and the
cutoff voltage during the reset process. We apply the scanning
voltage from top electrode T1 to electrode T2 to the device. When
the applied voltage rises from 0 to 0.9 V (scan 1 in Figure 1B, blue
curve), the device will change from high resistance state (HRS)
to middle resistance state (MRS). The corresponding resistance
ranges are (970 to 2,564 �) and (119 to 223 �) for HRS and MRS,
respectively. Similarly, scan 2 shows the current change from the
MRS to the low resistance state (LRS, ∼71 to 83 �) when the
applied voltage is increased to 1.2 V (gray curve). Scanning 3
and 4 show the current change curves of the device from LSR
to MRS and from MRS to HRS when the voltage is applied from
0 to −0.7 and −1.5 V, respectively. Especially, the reset process
for the device from MRS to HRS is different from the mutation
of other phases. This slow change in resistance is conducive
to selecting the appropriate programmed voltage to control the
multiple conductance states of the memristor to achieve the
image denoising based on memristor. As shown in Figure 1C,
the MRS/LRS and HRS/MRS resistance conversion ratios taken
in the experiment were all close to 10, and all resistance states
could be programmed and read repeatedly. Meanwhile, the
resistance value can be maintained at room temperature for a
long time (Figure 1D).

Regulating the multiple conductance states of memristors can
usually be achieved by controlling current compliance during
set process or by changing cut-off voltage during reset process
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FIGURE 1 | (A) Transmission electron microscope (TEM) image of the Pt/ZnO/Pt memristor. (B) Direct current (DC) current–voltage characteristics of the Pt/ZnO/Pt
memristor showing three-state switching behavior. (C,D) Show the room-temperature endurance and retention performance of the device, respectively.

(Xue et al., 2019a,b). Since the positive feedback in the set
process usually leads to the uncontrolled overgrowth of the CFs
in the overshooting of device conduction, we adopt a relatively
gentle reset process to modulate the evolution of the CFs (Chen
et al., 2019). Note that the incorporation of transistor into the
memristor crossbar array may also solve this problem (Hu et al.,
2018). As shown in Figure 2A, in the DC scanning mode,
we performed the reset operation on the Pt/ZnO/Pt device
and applied a cutoff voltage from −0.6 to −1.5 V, and found
that the device current decreased continuously. In addition,
26 continuously tunable conductance states were obtained by
applying a train of voltage pulses with the same amplitude
of 1.8 V and width of 200 ms to the electrode (Figure 2B).
Based on the resistive memory performance aforementioned,
the further investigation of the neurosynaptic bionics, which is
generally evaluated by the dynamic weight changes, contain long-
term potentiation (LTP) and long-term depression (LTD). As is
shown in Figure 2C, the output current of memristor synapse
increases first, then partially decreases, and finally rises rapidly
in the process of learning–forgetting–learning (Wang et al., 2016;
Zhang X. M. et al., 2020). This process is similar to that of human
learning for the first time, which takes a lot of time. After a
period of forgetting, the second learning can be learned quickly

because part of the memory has already been acquired. The
learning stage is the LTP process of applying positive pulse to the
device. On the contrary, the forgetting stage is the LTD process of
device with the negative pulses applied. The forgetting procedure
observed herein is partially volatile with relatively lower current
level of the device, which can be ascribed to the spontaneous
recombination of the oxygen anions with the vacancies of the
narrow filament formed in the device. Dimension variation or
even dissolution of the filament may lead to decreasing of the
device current, which is also originally small when compared
with that of the device with strong filament. As such, the
“learn–forget–learn” behavior is normally observed when the
current level of the device is relatively low and associated with
the weak filament.

RESULTS

Image Denoising Based on Memristor
The device maintains LRS before the reset voltage increases from
0 to −0.7 V. However, between −0.7 and −0.8 V, we can see
from Figure 1B that the device transition from LRS to MRS is
not stable. From −0.8 to −1.5 V, the device will show a slow
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FIGURE 2 | (A) Continuous regulation of the device current in the negatively biased reset processes. (B) Evolution of the device conductance as a function of the
voltage pulse stressing numbers. All the voltage pulses show the same width of 200 ms and amplitude of 1.8 V. (C) The simulation of learning–forgetting–learning
process based on long-term potentiation (LTP) with the positive voltage (pulse width of 200 ms, pulse interval of 50 ms, and amplitude of −0.4 V) and long-term
depression (LTD) with the negative voltage (pulse width of 200 ms, pulse interval of 50 ms, and amplitude of −0.4 V) of memristor synapses.

change of 26 conductance states during the transition from MRS
to HRS. If the input voltage of the memristor is defined as −0
to −1.5 V, then the output states of the device, LRS, MRS, and
HRS, can be defined as logical “0,” “1,” and “2,” respectively, in
which the MRS and HRS will be divided into 26 logic states in the
area [1,2]. According to this feature, we can map a picture with
a pixel value between 0 and 255 to the voltage as the input of the
memristor and then get a denoising picture of quantized by the
multi-conductance memristor.

The existence of noise not only seriously affects the quality
of the image, but also hinders the reception of information.
Especially in the field of artificial intelligence, the recognition
and prediction of the machine is usually trained on the data set
with obvious features and without interference factors, and its
performance is often greatly reduced in the case when the input
information contains noise (Andrews and Hunt, 1977; Chatterjee
and Milanfar, 2010). As shown in Figure 3A, the image with
added noise will not only weaken the feature pixel value, but
also increases the original pixel with 0 value, thus, increasing the
difficulty of prediction. Therefore, the key to image denoising lies
in how to retain important feature information and remove noise
information. In this work, the Gaussian white noise is generated
and added to the pristine image with white Gaussian noise
function imnoise (x, “Gaussian,” 0, σ2) based on the MATLAB
platform. The variance σ2 uses the Randn function to generate

randomly distributed values within [0–0.5], so the noise level is
different for each image. For example, 124,800 variance σ2 were
randomly generated within the range of [0–0.5] as the noise level
to be added to each image in the training data set.

From the conductance distribution of the device, we found
that if a picture with a pixel value between 0 and 255 is mapped
to the reset voltage of 0 to −1.5 V, most of the noise pixels will
be concentrated in the low voltage range of 0 to −0.7 V, then
all the output of the device will be “0.” The intermediate pixel
points usually cannot accurately locate whether they are noise or
characteristic information, so they are distributed between −0.7
and −0.8 V. At this time, the output conductance state of the
corresponding memristor will also have a certain randomness.
The more obvious feature pixels will be between−0.8 and−1.5 V,
and the input at this time will make the memristor show the
characteristics of slowing changing conductance state. Therefore,
we performed curve fitting for the multi-conductance states of
the memristor based on Figure 2A, as shown in Figure 3B. The
quantization method of prominent feature information will be
determined by the linear function y = a + bx after fitting,
with a = −745.17164 and b = −1,743.63131. The specific process
of image quantization and noise reduction using the multi-
resistance state of memristor is shown in Figure 3C. The image
is converted from the pixel matrix of 0 to −1.5 V reset voltage
matrix, which is used as the input of the memristor with the
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FIGURE 3 | (A) An example to show that the original features of an image are reduced after the noise is added. The change in color from dark to light indicates a
change in pixel value from 0 to 255. (B) The curve is obtained by linear fitting of the measured multi-resistance states of Pt/ZnO/Pt memristor as a function of
voltage. (C) The process of image denoising by memristor.

initial state of LRS. Where the input voltage between 0 and
−0.7 V corresponds to a memristor output of “0,” this process
is used to remove image noise. The input from −0.7 to −0.8 V
corresponds to the output of the memristor, which is randomly
assigned “0” or “1,” and this process retains weak characteristic
information. The input from −0.8 to −1.5 V corresponds to the
uniform distribution of the memristor output between “1” and
“2,” and this process retains strong characteristic information.
Therefore, after denoising the image by the memristor, it will be
changed into a multi-conductance state matrix containing only
27 conductance states, so that the effect of image denoising can
be achieved, and the original prominent feature information of
the image can be retained. It is noteworthy that when convolution
neural network is used to perform the recognition task for CIFAR
images, contour feature extraction will be conducted. The value
of the feature pixel is much larger than that of the background
pixel. Therefore, the background of the noise image can still be
quantized to 0 pixels in the process of image quantization, so
as to achieve the effect of noise reduction for images without a
clear background.

Implement Weight Quantization Based
on 26 Conductance States
CNN is the most commonly used deep neural network for image
recognition. In addition to the storage of a large number of

continuous weight values, its computing process also requires
a large number of convolution operations by the processor
(Wang et al., 2019; Lin et al., 2020; Mukherjee et al., 2020;
Liu and Yang, 2021). However, the processing efficiency of the
computer is often unsatisfactory. In-memory computation of
memristors can effectively improve the computational efficiency
of neural networks. According to Figure 2B, 26 continuously
adjustable conductance states were obtained by applying pulse
voltage. We performed weight quantization operation for the
CNN used in this paper, and handwritten letter recognition was
done based on the quantized network. As shown in Figure 4A,
the network consists of two convolutional layers, two pooling
layers, and a full connection layer, which is a typical Lenet-5
structure (Le et al., 1989). The first convolution layer contains
32 5 × 5 convolution kernels, while the pooling layer is all
2 × 2 structure. The second convolution layer contains 2,048
3 × 3 convolution kernels. According to statistics, in terms of
the number of weights, the first-layer convolution kernel only
contains 800 weights, while the second-layer convolution kernel
contains 18,432 weights, which accounts for about one-third of
the total number of weights to be stored in the network. For the
implementation of neural network hardware algorithm, such a
large weight is difficult to be stored by accurate voltage regulation.
In order to solve this problem, we need to quantify the second-
layer convolution kernel weight of the network, and the device
prepared above is suitable for realizing this process. Figure 4B
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FIGURE 4 | (A) CNN architecture for 26 handwritten letter recognition. (B) The function curve fitted with 26 conductance states regulated by pulse. (C) Schematic
flowchart for the simulation of supervised learning with CNN for image denoising and recognition.

shows that the device has 26 stable and continuous conductance
states under the pulse voltage. The relationship between the
number of pulses and the conductance is obtained by means of
polynomial fitting, and the mapping relationship between the
weights of second-layer convolution kernel and the conductance
of the device is constructed based on this. The optimized fitting
function is obtained as y = a + bx + cx2

+ dx3, with
a = 1.23218 × 10−4, b = 3.21443 × 10−5, c = −1.19652 × 10−6,
and d = 3.76505 × 10−8. In this process, we divide the original
weight distribution into 26 intervals, so all the weights will fall
within a corresponding interval. Each interval corresponds to a
conductance state, and the quantized weight will be mapped to
26 conductance states. According to the network training results
in the experiment, we found that the weights were continuously
distributed in [−1.30, 0.83]. According to the fitting results in
Figure 4B, [−1, 1] is divided into 26 regions, and the network
weight can be quantized into 26 discrete memristor weight values
in [−1, 1]. After quantization, the weight matrix only needs
to design 26 input pulses to realize the weight storage, which
improves the fault tolerance rate of the hardware realization
of weight storage. Backpropagation (BP) algorithm was used
to demonstrate and simulate supervised learning, including
the training of the above CNN weights, the corresponding
memristor conductance update, and the test of denoising images
(Figure 4C). The general process is mainly divided into the stage
of network training and the stage of image denoising. In the stage

of network training, the original image data set is used to train
the network weight, and the second-layer convolution kernel
weight after training is quantized. In the stage of image denoising,
we used the multi-conductance state property to optimize noise
image and test optimization results through the trained CNN.

Based on the above method, we use the multi-conductance
states of memristor to achieve denoising and recognition of noisy
images. The dataset used in the network simulation is taken
from the National Institute of Standards and Technology (NIST)
Special Database, which is an extension of MNIST to handwritten
letters called Extended MNIST (EMNIST). For the 26 English
letters, the database consists of 124,800 training samples, and
each letter contains 4,800 upper- and lowercase samples. There
are 20,800 test samples, and each letter contains 800 upper- and
lowercase samples. In the network training stage, the original data

TABLE 1 | The results of three samples were tested on unquantized
and quantized CNN.

Dataset Recognition accuracy

Unquantized Quantized

Original image 96.48% 91.97%

Noise image 64.54% 50.37%

Denoise image 74.73% 62.34%

Frontiers in Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 717222

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-717222 September 9, 2021 Time: 12:39 # 7

Zhang et al. Memristor for Image Denoising

FIGURE 5 | The confusion matrix obtained after testing the samples. (A,D) The initial samples, (B,E) the noise samples, and (C,F) the denoising samples for the
unquantized CNN and the quantized CNN, respectively. The ordinate denotes 26 input testing letters, and the abscissa denotes the output and recognition results.

samples were used, while in the test stage, the original samples,
noise samples, and denoising samples were recognized, and the
final accuracy was 96.48, 64.54, and 74.73%, respectively. After
that, we use 26 conductance states of Pt/ZnO/Pt memristor to
carry out weight quantization on the second layer convolution
kernel of CNN and test the network. The results confirm that
the quantized memristor neural network can still achieve the
recognition accuracy of 91.97% on the original data (Table 1).
At the same time, Table 1 also indicates that the proposed image
denoising scheme based on Pt/ZnO/Pt memristor is feasible.

In order to further explain the experimental results, we
extracted the confusion matrices obtained by the network under
different conditions for different test samples (Figure 5). By
comparing Figures 5A,D, it can be clearly seen that the network
can still maintain a good recognition rate after quantifying one of
the layers of CNN. Figures 5B,C,E,F all indicate that the device
prepared can effectively remove part of the noise in the image.

It is noteworthy that the inherent noise of the memristor is
indeed a critical issue that influences the practical application of
this novel device technology. To avoid the fluctuation of device
conductances that may deteriorate the overall image processing
performance, a good practice is to use conductance states that
do not overlap with each other during repeated switching
operations. There are approaches to achieve such a target, and
we are also making efforts toward the goal. Nevertheless, the

main purpose of this work is to demonstrate that memristors
with multi-level switching characteristics can theoretically be
used for feature preservation and noise reduction in image-
processing applications.

CONCLUSION

In this work, we demonstrate a simple image denoising method
based on 26 conductance states of Pt/ZnO/Pt memristor and
further construct a convolutional neural network for image
denoising and recognition. By analyzing the conductance
distribution characteristics of Pt/ZnO/Pt memristor, the mapping
relationship between device conductance and image pixel value
was constructed. The image was taken as the input of the
memristor in the form of voltage, and the corresponding output
conductance state was taken as a result of image quantization
to realize the denoising function. Moreover, the weight of CNN
is quantized by the conductance distribution measured by the
pulse voltage, and the weight quantization rules are designed to
implement the memristor neural network effectively. In addition
to the intrinsic storage capability of the memristor for in-memory
computing, the multi-conductance states property cannot only
accurately quantify the weight of neural network but also play a
role in image denoising and feature screening.
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