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This article employs the new IBM INC-3000 prototype FPGA-based neural
supercomputer to implement a widely used model of the cortical microcircuit. With
approximately 80,000 neurons and 300 Million synapses this model has become a
benchmark network for comparing simulation architectures with regard to performance.
To the best of our knowledge, the achieved speed-up factor is 2.4 times larger than the
highest speed-up factor reported in the literature and four times larger than biological
real time demonstrating the potential of FPGA systems for neural modeling. The work
was performed at Julich Research Centre in Germany and the INC-3000 was built at the
IBM Almaden Research Center in San Jose, CA, United States. For the simulation of the
microcircuit only the programmable logic part of the FPGA nodes are used. All arithmetic
is implemented with single-floating point precision. The original microcircuit network with
linear LIF neurons and current-based exponential-decay-, alpha-function- as well as
beta-function-shaped synapses was simulated using exact exponential integration as
ODE solver method. In order to demonstrate the flexibility of the approach, additionally
networks with non-linear neuron models (AdEX, Izhikevich) and conductance-based
synapses were simulated, applying Runge-Kutta and Parker—-Sochacki solver methods.
In all cases, the simulation-time speed-up factor did not decrease by more than a very
few percent. It finally turns out that the speed-up factor is essentially limited by the
latency of the INC-3000 communication system.

Keywords: reconfigurable computing, neuromorphic computing, parallel computing, FPGA cluster, spiking neural
networks, performance benchmarking, procedural connectivity

INTRODUCTION

In the last decades, significant progress has been made in theoretical and experimental neuroscience
giving rise to a tremendous body of available knowledge about biological neural networks
(Sejnowski et al., 2014). While the brain dynamics can be resolved from fractions of milliseconds
(e.g., the ion-channel dynamics of the cell membrane) to years (long-term learning and brain
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development), the spatial structure of the brain has been
examined from the level of synapses and multi-compartmental
dendrites up to multi-area networks of interconnected brain areas
featuring millions of neurons and billions of synapses.

Neuroscience researchers improve the understanding of the
brain by the systematic elaboration of advanced brain models.
These models concentrate on the functional architecture [e.g.,
Waterloo’s Semantic Pointer Architecture Unified Network,
Spaun (Eliasmith et al, 2012)] or on the detailed interplay
between brain structure and activity (e.g., models of the cortical
microcircuit (Haeusler and Maass, 2007; Potjans and Diesmann,
2014; Markram et al., 2015) and a multi-area model (Schmidt
etal., 2018) of the vision related areas of the macaque monkey).

The creation and improvement of these networks currently
gets more and more supported by sophisticated generic scientific
development environments (Einevoll et al, 2019) such as
NEST (Gewaltig and Diesmann, 2007), Nengo (Bekolay et al.,
2014), and neuCube (Kasabov, 2014) aiming at multimodal
model evaluation by means of simulation - typically carried
out on traditional digital high-performance computers (HPC),
dedicated compute engines such as Manchester’s SpiNNaker
(Furber et al., 2014), Heidelberg’s BrainScaleS (Schemmel et al.,
2010), or commercially available general purpose GPU-based
machines (Knight and Nowotny, 2018).

At the resolution of nerve cells, network instantiation and the
execution of simulation tasks on state-of-the-art supercomputers
are by far too slow, especially for the study of plasticity and
learning in brain-scale networks. Today, supercomputers reach
a simulation speed equivalent to biological real time for the
cortical microcircuit (representing 0.0001% of the human brain),
and the simulation of advanced multi-area brain models is
slowed down by orders of magnitude. Here, the elaboration of
dedicated accelerator circuits being either attached to existing
high performance compute systems or stand-alone solutions are
highly demanded in order to overcome the persistent challenges
in speeding up the simulation of biological neural networks.

The current state-of-the-art in neuroscience simulation is
illustrated in Figure 1. The figure shows that network models of
significant components of the mammalian brain can be simulated
today with severe restrictions regarding the simulation time.

At present these performance limitations can be attributed
to significant latencies in available communication technologies
used to cope with the required interconnect at full (ie.,
biologically ~meaningful) synaptic connection  density.
Furthermore, with the incorporation of in-depth neuron
dynamics and realistic synaptic rules also critical-path induced
latencies of the numerics contribute to the deterioration of
the performance.

The aim of the current investigation is to overcome
fundamental limitations of present neuromorphic technology.
Predominantly, these are the inability to represent neuronal
networks at full density, the long times required for network
generation, and the difficulties to reach a processing speed
significantly faster than real time at a moderate level of flexibility
in neuronal and synaptic dynamics. The latter is relevant as
processes of system-level learning and development unfold over
minutes and hours of biological time.

The next-generation neuroscience simulation platform has to
be designed such that the common case of relevant neuroscience
brain models is executed in the most efficient way, the required
design time and costs stay within an acceptable range, and system
integration density assures that inter-node communication can
be carried out with ultra-low-latency. Particular attention will be
paid on the designed-in flexibility of the dedicated accelerator
circuits, which will be restricted and optimized to the NC-
specific application domain in order to achieve significant
speed up. It is to be expected that these challenges cannot
be solved without a sophisticated design-space exploration
with regard to the architectural organization of a digital
simulation platform. Here, the IBM INC platform (Narayanan
et al, 2020) serves as a means to implement prototypical
circuits and architectures for the envisioned next-generation
neuroscience simulation platform (Configurable Spiking Neural
Network Simulations, CsNNs. All used acronyms and symbols
are explained in Supplementary Data Sheet 1) in order to
identify bottlenecks and critical algorithmic sections in the
simulation flow.

MATERIALS AND METHODS

The IBM INC-3000 Neural

Supercomputer

Motivation for the Development of the IBM Neural
Supercomputer (INC)

The IBM Neural Supercomputer (Narayanan et al, 2020)
originated as part of the IBM General Artificial Intelligence
(GAI) project (aka Machine Intelligence Project) at IBM
Research in Almaden, California. This project aims to develop
an architectural model of the neo-cortex which is based on
key elements of what neuroscience has learned about the
structure and functioning of the mammalian brain. This is
a Goldilocks problem - we want to utilize just enough of
this biological information to enable GAI, but not slavishly
follow all the known details of the brain’s architecture. As an
analogy - if the brain were a tree, then we want to capture
concepts like roots, trunk, branches, leaves, but not the detailed
location of each leaf.

The details of this approach are out of scope for this article, but
among the key ideas are that learning in the brain is not based
on adjusting weights in a very densely connected network - as
it is done in conventional machine learning - but forming new
connections in a sparsely (<1%) connected network of neurons.
As the project has demonstrated, this leads to the fundamental
capability of such a plastic network to extract invariant (stable)
representations from temporal varying sensory input without
supervision. This has been demonstrated in a recent article by the
IBM Almaden team (Scott et al., 2019).

The traditional machine learning model of dense matrix-
vector operations maps nicely on GPUs but GPUs are not good
platforms for the sparse and dynamically changing (plastic)
topology of realistic brain models. A large traditional message-
passing supercomputer would also be a good platform for the
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GAI model, but IBM does not have internal access to big
supercomputers. So we decided to build our own platform based
on large FPGA nodes. Since GAI algorithms are very much under
development, the extreme flexibility provided by FPGA systems
was a deciding factor to go this route. Also, if an application
lends itself to deep pipelining, FPGAs can provide multiple order
of magnitude performance improvements over traditional CPU
systems of comparable cost.

We decided to build a large (16-1,296 nodes) system with
special focus on good connectivity between the nodes. It is
organized as a massively parallel 3D mesh of reconfigurable
computing nodes, where each node consist of a large Xilinx FPGA
including two ARM cores, external DRAM, a programmable
memory and twelve high speed serial transmitters.

The basic unit of the INC is a large 48 layer custom card
with 27 nodes connected on-card as a 3 x 3 x 3 cube, cf.
Figures 2A,B. An INC system contains 1 cage (INC-3000) or 3
cages (INC-9000). Each cage contains 16 cards. Two INC-3000
systems have been built so far, one for IBM Almaden and the
other for Jilich Research Centre. The INC-3000 systems contain
16 x 27 or 432 nodes.

The INC-3000 systems have already been used - in addition
to the major application discussed in this present article -
for demonstrating the formation of invariant representations
as discussed above and for very fast AI learning of video
games based on genetic algorithms (“neuroevolution”)
(Asseman et al., 2020).

For this particular project, the INC machine serves as
a prototyping platform. Based on the results obtained from
prototypical circuit realizations the aim is to elaborate an
optimized dedicated hardware platform based on customized
accelerator-circuits. In particular, the question regarding a most

appropriate node topology for the realization of architectures
suitable for the simulation of spiking neural networks (e.g., based
on a tree-like interconnect structure with ultra-low latency packet
transmission) is very important.

The INC-3000 Compute Node

Each of the Xilinx XC Z7045 System on a Chip (SoCs) (Xilinx,
2018b) contains ~218k programmable 6-input lookup tables
(LUTS - configurable logic), ~437k flip-flops, 900 dedicated
customizable DSP blocks for the implementation of arithmetic
functions, 19.2 Mbit Block-RAM (BRAM, realized as static
random access memory), and 16 serial GTX transceivers with
a maximum data rate of 12.5 Gb/s in each direction. For
INC-3000, 12 GTX transceivers are used in order to establish
the bidirectional interconnect architecture, cf. Figure 2C. DSP
blocks and BRAMs are organized in slices and can be accessed
via the interconnect fabric. On an INC-3000 compute node,
circuits are subdivided into two clock domains. While the
logic for the communication system is clocked with a clock
frequency of 100 MHz, the application logic is clocked with
fek = 150 MHz. Both domains are interfaced via dedicated FIFO
circuits running at 250 MHz.

In addition to the logic fabric, an ARM-A9-subsystem is
provided on each SoC, comprising two independent ARM cores
running at 1 GHz, various peripherals, an AXI bus system, and
an interface to an external 1 GB DDR memory system per node.
The external memory system can be accessed by the fabric logic
(without using the ARM cores) via dedicated AXI-channels and
can be used to store configuration data, simulation results, as
well as state variables. Currently, for the simulation of spiking
neural networks on INC-3000 solely the programmable logic (PL)
resources are used.
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The INC-3000 Communication System

In the following, the SoC devices are the key components
of nodes. Each node includes the complete router logic
necessary to post, relay, and deliver data packets. On INC-3000,
communication is realized via a three-dimensional mesh of
locally interconnected nodes. Individual nodes can be addressed
via an unique identifier which specifies the absolute node location
in terms of its coordinates (X, ¥, Z) in the mesh. Communication

channels are physically realized to the nearest neighbors (“up,”
“down,” “north,” “south,” “east; “west”) of a node via gigabit
GTX transceivers. There are also express connections to non-
nearest neighbors to decrease hop count, for a total of twelve links
emanating from each node. The smallest amount of information
which can be transmitted on INC-3000 is given by a 64 bit
payload and a 32 bit target node specifier which contains
information about the target node which receives the packet,
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cf. Figure 2D. Node (0, 0, 0) provides a separate PCI-express
interface (PCle) to a host system which is used to configure,
monitor, and control the INC-3000 system. There are two PCle
connections from each card to an external host computer.

Packets can be sent in two distinct modes: One mode directly
and uniquely addresses a single target node (unicast routing) via
specification of the target coordinates (X, ¥, Z). Using the second
mode, a packet is submitted in an unspecific way to all nodes
located in the INC-3000 system (broadcast routing). The routing
method applies deterministic dimension-order-routing in order to
direct a packet to its targets.

Nodes fall apart into two classes, depending on their
purpose in the system architecture: So-called compute nodes
(CNs) actively participate in the solution of the neuro-synaptic
dynamic equations, while so-called relay nodes (RNs) take
over special functions for the management and organization
of communication. Any node in the INC-3000 system can be
configured to act as CN, RN, or both. For the current application,
a single node is configured as an RN which is subsequently called
master node (MN). The MN manages the node synchronization
and distributes spike events to all CNs in the system.

Spiking Neural Networks

Spiking Integrate-and-Fire Neuron Models

Almost all biophysically grounded spiking neuron models are
based on ordinary differential equations and systems of it.
Depending on the required level of details it is possible to break
down the neuro-synaptic dynamics to the dynamics of individual
ion channels which results, e.g., in Hodgkin-Huxley-like coupled
equations systems. It turns out to be computational expensive to
obtain a solution of these equation systems. To be able to simulate
networks of significant size, simplified models with focus on
the subthreshold dynamics of the neuron’s membrane voltage
are used, with only few coupled state variables, (e.g., Izhikevich,
2003; Brette and Gerstner, 2005; Yamauchi et al.,, 2011). The
simplest model of the membrane dynamics is due to Lapicque
(1907) and described by a single dynamic equation, the so-called
leaky integrate-and-fire (LIF) model. Here, the dynamics of the
membrane is given by,

v,
T = —8m- (Vq - EL) +Im,q + Texs. (1)

Cm
In (1) Cu, Vg Ei, gm» Img, Iexts denote the membrane
capacitance, the membrane potential of neuron g, the resting
potential, the membrane conductance, the aggregated synaptic
membrane current, and an external current, respectively. The
aggregated synaptic current represents activity that has arrived
at the neuron from the remainder of the network. Realistic
neurophysical models incorporate at least two types of synapses:
excitatory synapses (e) and inhibitory synapses (i). Then, the
current I, 4 splits up into two types of synaptical currents: an
excitatory I, g, and an inhibitory I, 4; one. For the cortical
microcircuit model, the concept of lumped synapses (Rotter and
Diesmann, 1999) is used, which essentially implies that dynamic
equations have to be considered for specific synaptic types instead
of synaptic instances, only. The following equation describes

synapses with exponential decay and current-based coupling
(CUBA):

. ALy, g.x
$,x "
’ dt

In (2),ts,e (Ts,i)s Im,q.e (Im,q.i)s Is,q.e (Is,q,i) denote the synaptic
time constant of excitatory (inhibitory) synapses, the aggregated
postsynaptic membrane current, and the aggregated excitatory
(inhibitory) synaptic input, respectively. With (2), the overall
membrane current is given by the sum Iy g = LngetIm,q.i-
Finally, the so-called synaptic input is derived from the incoming
(presynaptic) spike train Sp,

= _Im,q,x + IS,q,x , x€f{e,i}. (2)

Iigx =2 Jop S (t=Dpg) - x€lei). ()

In (3) p, Jgp, Dpq, t. Sp describe an index of a presynaptic
neuron, a synaptic strength, a transmission delay, the time ¢,
and a spike train S, = X;8(t-tx ), respectively. The set B, (B;)
represents the set of excitatory (inhibitory) neurons: Excitatory
neurons drive excitatory synapses, while inhibitory neurons drive
inhibitory synapses.

The Microcircuit Model

The evolutionary youngest part of the mammalian brain is
the neocortex, cortex for short, a sheet of roughly 1 mm
thickness covering the surface of the brain. This structure
has increased in volume by three orders of magnitude from
mouse to man while its local structure remained essentially
unchanged. Furthermore, the structure looks very similar in
parts of the cortex responsible for the processing of visual
information, auditory information, or the planning of motor
tasks. This dual universality gives neuroscientists hope that
fundamental computational principles can be conserved by
evolution and reused again and again. The microcircuit model
(Potjans and Diesmann, 2014) represents the network below
a patch of ~1 mm? surface of the early mammalian sensory
cortex. The model is organized into four layers (L2/3, L4, L5,
and L6), each incorporating two populations (an excitatory
population and an inhibitory population) what results in a total
number of eight separate populations (L2/3E, L2/31, L4E, L4I,
L5E, L5I, L6E, and L6I). The synaptic connections are defined
by population-specific connection probabilities of randomly
distributed neuron-to-neuron connections. Synaptic strengths
and synaptic transmission delays are modeled by normally
distributed random numbers. Compared to the Brunel model (cf.
Brunel, 2000 and section “Simple Example: Random Networks”
in the Supplementary Material), the cortical microcircuit
features a more realistic interconnect model of a multiplicity
of populations. For the cortical microcircuit the number of
involved neurons is sufficiently high to produce a significant
amount of internal synaptic connections making the dynamic
properties of the network more dependent on the network
itself than on the external input. About 50% of the total
connections originate from the model itself. However, in order
to mimic the remaining 50% of (excitatory) synaptic input from
adjacent cortex and other cortical areas, individual neurons
receive Poisson-distributed independent spikes with population
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specific rates. The neuroscientific relevance of the model is that
it constitutes the smallest network in which two characteristic
parameters can simultaneously be realized: the local connection
probability of 0.1 and in the order of 10,000 synapses per
neuron. The volume also covers the space in which a neuron
establishes most of its local synapses. In this respect the model
constitutes a unit cell of the cortical network. The ability to
simulate networks of this size was a breakthrough because in
smaller models either the connection probability needs to be
increased or the synaptic strength needs to be increased to
achieve realistic levels of activity. This raised the question on
the appropriate procedure of down scaling and whether results
obtained for downscaled models hold for the true size. Indeed,
(van Albada et al., 2015) showed that the mean of neuronal
spiking activity can perfectly be preserved in downscaling, but
that there are severe limits already for the second order statistics.
Synaptic plasticity, however, directly depends on the correlation
structure of the network. In addition, the correlations between
neurons drive the fluctuations of neuronal activity observed
on the network level by measures like the local-field potential
(LEP). As the microcircuit model captures all the synapses
between the neurons, from this size on, memory consumption
grows only linearly with network size. Because of the falloff
of connection probability with distance, larger networks are
necessarily less densely connected and should therefore be
easier to simulate.

The microcircuit model applies the LIF model for neurons
and synaptic currents with exponential decay. The complete
parameterization including the network architecture is shown in
the Supplementary Tables 4A-H and Supplementary Figure 8.

CsNNs on INC-3000

The CsNNs Compute Node and Simulation Flow
Figure 3A gives a general overview of the components integrated
in a compute node (CN, see section “CsNNs Microarchitecture
and Logic Design”). The architecture is divided into (i) a
memory layer retaining state variables, input, and stimuli, (ii)
a computation layer which operates on the memory to transfer
and update state variables, and (iii) a communication layer
responsible for posting and receiving spikes to and from the
communication system (CS), configuration as well as monitoring.
The modules in the computational block are dedicated to
execute tasks related to solving eqs. (1-3) and managing data
involved herein.

The hardware resources of the k-th CN are capable of
simulating the dynamics of a set of neurons Wy including the
associated synaptic connections. With respect to the synaptic
connections, Wy represents a set of postsynaptic neurons. While
the size of the set Wy is limited to |Wy| < 256, a network of
considerable size as a whole is mapped to a number of nodes.
Neurons hosted by a particular CN always belong to the same
population, and the respective subnetwork hosted on a CN is
subsequently called a micro-cluster. At this, the procedure of
mapping neurons to CNs guarantees a consistent distribution of
neurons to CNs in the particular sense that the respective sizes
| Wi| are of almost equal magnitude.

The simulation sequence is based on a time-driven simulation
loop (Brette et al., 2007). The biological time ¢ is subdivided
into discrete time-steps #; (also called algorithmic time) while
a fixed time step size of t; - t;_; = At = 0.1 ms is assumed.
As the simulation is carried out on globally asynchronous
CNs, a particular synchronization method for the node is
applied on INC-3000 which is based on the exchange of
both barrier messages and synchronizations messages. The
node synchronization continuously synchronizes the algorithmic
time on the CN.

The operation of a CN is initiated once a sync-message is
received by the packet decoder (PD) of the communication layer.
Sync messages will be typically provided by the MN which,
in brief, indicate that a new simulation time step is ready for
computation. The first step of the computation is to transfer
the currently valid aggregated synaptic input (3) to the SS-buffer
[Synaptic inputS (SS)] and to prepare the ES-buffer [External
Stimuli (ES)] with the external stimuli. After the buffers are
updated, the ODE-unit [Ordinary Differential Equation (ODE)
solver] updates the state memory based on the solution of
the dynamic eqs. (1, 2) under the consideration of (3). All
involved arithmetic operations are carried out with single-float
precision. In the current implementation, simple LIF neurons
and lumped synapses featuring exponential decay with CUBA
current contribution are implemented whose solution of (1-
3) is based on the method of exact integration (Rotter and
Diesmann, 1999). However, the implementation of models with
elaborated biological plausibility requiring sophisticated ODE-
solver architectures will be discussed in section “Performance for
Alternative Neuron Models and Ordinary Differential Equation
Solvers.”

After the update of the states, the membrane voltage V; is
compared with a given threshold voltage in order to trigger
spikes. In the case that V; exceeds the threshold, the global
source-ID of the spiking neurons is looked-up (using an index-
translation-table), and a subsequent transfer of the source-ID to
the packet encoder (PE) is carried out. Spikes will be distributed
among CNs via source-encoded AER-packets [Address Event
Representation (AER)]. In addition, spike events submitted to
the PE are recorded in the DRAM. Presynaptic neurons carry
out effect on neurons from the set Wy by posting spikes to
the communication system via AER-packets. The node router
transmits the spike packet to the MN via unicast routing which
transmits a source-encoded AER-packet to all CNs via an
undirected broadcast packet. The AER-packet will be received by
the packet decoder (PD) which transfers the enclosed source ID,
represented by the unique identifier 3, to the input FIFO. The
identifier 8, is initially blocked in the FIFO and subsequently
released when the receiving RTR-unit [local spike RouTeR
(RTR)] is able to process 3,. The RTR-unit picks the source IDs
from the input FIFO one-by-one in order to update a circular
buffer (CB) which aggregates the synaptic input.

Specifically, the RTR-unit operates the local network of
synaptic connections. The RTR-unit holds data structures
which describe the full set of synaptic connections regarding
the set Wy and for any given 3,. Thus, the function of
the RTR-unit is directly related to eq. (3) and ensures that
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for any (biological) simulation time step f; the synaptic
input are known for the update (2). While the RTR-unit
is driven by spikes submitted by neurons in the neural
network, the EXT-unit [EXTernal spike generator (EXT)]
creates and handles the external spikes (see section “The
CsNNs Spike-Distribution, Generation, and Synapse-Parameter
Look-Up”).

Each synaptic connection is described by a quadruple
Q= (3,J,D,N): § represents the unique identifier of the presynaptic
neuron, J represents the synaptic strength, D represents the
synaptic transmission delay, and N denotes the unique (local)
identifier of the postsynaptic neuron. Given the input 3, the
RTR-unit retrieves all quadruples Q; which fulfill $=3, and
consecutively updates the circular buffer CB with regard to
(J,D,N);, ct. Figure 3C. The circular buffer retains all intermediate
states derived from (3) for the synaptic input based on the most
recently incoming spike trains, synaptic strengths, and synaptic
transmission delays. On INC, the CB is capable of preserving
prospective synaptic input up to 6.4 ms biological real time (BRT)
at the resolution of the time step size At =100 ps.

CsNNs Pseudo-Random Number Generators
As will be shown below, CsNNs make extensive use of pseudo-
random number generators (PRNGs). Recall that a PRNG is a

deterministic algorithm that produces pseudo-random numbers
whose distribution is almost indistinguishable from that of
a true random number. Typically, the synaptic connectivity,
transmission delays, and weights are drawn by a PRNG during
the network-construction phase upfront to the simulation of
a random neural network (NN). The results are stored in
huge connectivity and synapse-parameter tables, which are
looked-up in the actual simulation phase. This approach can
be very much network-construction-time consuming as well
as memory hungry.

In contrast to using connectivity tables, the on-line
computation of the connections reduces the required amount of
memory dramatically (Jahnke et al., 1999). First approaches in
this direction were carried out for regular connection schemes
which follow (simple) deterministic rules and where regular
connections can be computed efficiently (Roth et al., 1995, 1997).
This approach, however, can also be applied to irregular (ie.,
random) connections. It will be shown in the following that
re-creating all these pseudo-random numbers (deterministically)
during the simulation again and again can be surprisingly more
efficient, as long as highly efficient PRNGs are involved. This
is one of the core ideas that lies at the heart of CsNNs. On
INC-3000, various table-based random number generators were
implemented which play a significant role for the generation
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of external spikes trains and for the generation of a local
interconnect structure in the RTR-unit. Table-based PRNG
methods offer the advantage of being flexible with respect to the
implementable probability mass function (pmf) with restricted
support (i.e., with a restricted range of acceptable output values),
and require only few table lookups to generate random numbers
with a particular pmf.

On INC-3000, variants of Walker’s alias method (Walker,
1974, 1977) have been implemented which allows to draw a
random variable with almost arbitrary probability distribution p,
at O(1) time. In Walker’s algorithm, a set of pairs (p,,r), r = 1,.. .,z
was given whereby the condition Xy py = I had to be fulfilled. Aim
of the described method was to provide a pseudo random number
generator which generates random (integer) numbers r whose
empirical pmf approaches p, for large sample sequences. In the
following, the integer random variable r is generally replaced by a
continuous substitute R(r). A one-to-one mapping of R to r allows
to approximate distributions of continuous random variables by
a discrete pmf. Here, continuous intervals of a random variable
R will be represented by a respective average R which in turn
is represented by a unique integer number r. The associated
probability density functions (pdf) can be aggregated into a
unique bin which results in the specification of p,.

In Figure 4B the fundamental architecture of the generator
is shown. The method requires three arrays (H,A,N) and two
independent PRNGs generating uniformly distributed RNs. The
first PRNG generates an index 0 < k < z (z is the number
of table entries), used to select three table locations H(k), A(k),
and N(k). The second PRNG generates a RN 0 < h < 1 which
is then compared against H(k). Dependent on the outcome of
the comparison, either A(k) or N(k) is selected as the output
value R. In order to simplify the comparison operation, the array
H uses 32-bit fixed-point representations of scaled probabilities
pr of the pmf. Note that the table entries of (H,A,N) can be
calculated offline for given pmf in O(zxlog(z)) or better (Vose,
1991). In Figure 4C a variant of a table-based random number
generator (TBRNG) is shown which features an additional
parameter S, which is used to select a particular set of (H,
A, N)-tables. In the following, this kind of TBRNG is called
multidimensional TBRNG (MTBRNG).

The PRNGs are based on xorshift-generators (Marsaglia,
2003a,b; Vigna, 2014; Blackman and Vigna, 2018), cf.
Figure 4A. Xorshift PRNGs are very simple in its structure
and provide sufficiently long sequence periods for particular
parameterizations. Typically, the update of the internal state of
Xorshift-based PRNGs can be finished within a single cycle on
the FPGA-logic, e.g., the initiation interval I is equal to 1 (see
section “CsNNs Microarchitecture and Logic Design” for the
definition of IT).

The CsNNs Spike-Distribution, Generation, and
Synapse-Parameter Look-Up

As will be shown in the Supplementary Material (see section
“Locality Properties”) in case of the microcircuit and a chosen
micro-cluster size of 256 neurons, practically every incoming
spike needs to be projected to at least one neuron in every
micro-cluster. A micro-cluster is defined by the sub-network

which emerges from the local set of 256 postsynaptic neurons and
the full set of presynaptic neurons defined for the microcircuit.
When a spike arrives, based on the global source ID, the CN
needs to identify the local target ID and the according synapse
parameters have to be looked-up from a table. The first task
requires some associative memory functionality, while the second
one requires quick reading from a large memory. For the
microcircuit, there are 77,169 source IDs (demanding at least 17
address bits). A synapse described by a quadruple Q = (8,,D,N)
requires 32 bits to represent a single float strength J, 6 bits to
represent a synaptic transmission delay D (under the assumption
of a maximum synaptic delay of 6.4 ms), and 8 bits to encode
a unique (local) identifier N for a postsynaptic neuron of a
micro-cluster. The costs for the representation of the source ID
3 typically can be neglected as data structures can be optimized
in such a way that 8§ is stored (or represented) only once per
source neuron. Having an average connection probability of ~5%
(i.e., 50% synaptic input from the network) a typical node has
to represent more than ~0.94M synapses using ~43 Mbits of
synaptic information neglecting additional memory space which
is required for organizing data structures. On INC-3000, memory
is available both as low-latency BRAM and as high-capacity
DRAM (externally attached to every SOC) as well. Because a
77045 SoC comprises only 19.2 Mbit BRAM (Xilinx, 2018b), it
is not feasible to keep a local synaptic connection structure of a
sub-network in terms of (J,D,N) tuples in the BRAM.

In order to make use of the low-latency BRAM, a new
representation of synaptic connectivity is proposed which allows
for storing a full sub-network in it in a compressed way. The
proposed approach of representing (J,D,N) tuples exploits the
fact that the connectivity pattern in the microcircuit obeys a
random distribution. First, let’s consider a simple Xorshift PRNG
(Figure 4A). The PRNG is able to generate a sequence of
(almost) uniformly distributed states. This is in particular true
if the parameters a, b, and c are chosen such that the generator
produces a sequence of maximum length (Marsaglia, 2003a,b). If
the PRNG is deterministically initialized with a seed, the sequence
is deterministic as well, but looks random, nevertheless. The
initial seed - to some extent — represents the derived sequence in
a very memory-efficient way: for long sequences it requires more
bits to explicitly store the sequence compared to the option to
store the seed only.

The same principle applies to TBRNGs. If a particular seed is
used to initialize a TBRNG, the sequence of successive output
values is deterministic, and the observable distribution of the
output values follows the programmed discrete pmf. In that
sense, PRNGs are appropriate to generate (pseudo-) random local
addresses N to postsynaptic neurons, and TBRNGs can be used
to generate sequences of pseudo-random synaptic transmission
delays D as well as pseudo-random synaptic strengths J. An
incoming spike 3, is directly used to address so-called seed-
tables (Figures 3A,B). Individual seeds are selected and used
for the initialization of the MTBRNGs located in the RTR-
logic. Two additional parameters are read out which specify the
overall length of the sequence (parameter L) and a specifier
S which is used to select a particular set of (H,A,N)-tables
of the MTBRNGs. The parameter S represents the population
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FIGURE 4 | (A) Xorshift-based implementation of a simple PRNG (Marsaglia, 2003b). (B) TBRNG. The index k represents a table address. (C) Multidimensional
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membership of the spike 3,. By addressing a particular set
of (H,A,N)-tables, networks with population-specific statistical
properties can be maintained. The parameter L is (roughly)
equivalent to the number of synapses on a given (local) axon
and specifies the sequence length. A detailed strategy how to
define the parameter of the (H,A,N)-tables is explained in the
Supplementary Material (see section “Twin Numbers, Autapses,
and Multapses”).

In addition to spikes generated from the network, so-called
external spike trains contribute to the excitatory synaptic input
in (2). However, unlike in (3) where spikes can be delayed by
multiple time steps (which requires the CB to handle delayed
spikes), the synaptic strength is subject to variation, and the
synaptic multiplicity is random, the external spike train is
modeled much simpler: The external spike train acts purely
excitatory, the external neurons fire independently with identical
firing rates, and the synaptic strengths are identical for all
connections (all given a particular target neuron g). Eq. (3) gets
additively extended by the term,

>

k:(t—tr p) <At

~ g Mg - Zk:(tftk,p)<At6(t — tkp)

IS,q,e (t) = ]q : z

pEBy

B(t — tk,p)

(4)

In (4) J4 and M, describe the common synaptic strength of the
external input and the fan-in from other cortical areas to neuron
q. For a given average spike rate ), [spikes/s] and simulation step
size At, the term X, Xy 8(t-ty ,) obeys a Poisson (Mgx Atxhy)
distribution. Based on the given pmf, a TBRNG can be used
to generate the aggregated external spike input followed by
a multiplication (4). Equivalently, the pmf of I5 4. related to
the external spike train can be gathered in order to train the
(H,A,N)-tables of the TBRNG. One advantage of the latter case
is that the multiplication operation in (4) can be completely
avoided. The complete statistics of the target variable can be
stored in the tables.

The CsNNs Communication and Synchronization
Concept

The communication architecture has three objectives: the
synchronization of the compute nodes, the transmission
of spike packets, and setup, monitoring, and control of
the INC-3000 system. In CsNNs on INC-3000, a time-
driven simulation approach has been established which
requires a particular synchronization strategy. The INC-3000
system can be characterized (as almost all massively parallel
computing systems) as operating globally asynchronous and
locally synchronous (GALS): Individual nodes are driven by
unsynchronized clocks and finish their computations for given
time steps at different wall-clock times due to different temporal
load profiles (e.g., caused by the number of synapses per
incoming spike, etc.). In order to minimize possible spike losses,
the algorithmic simulation time steps are synchronized over the
whole GALS system by “barrier messaging,” (cf. e.g., Culler et al.,
1998; Parhami, 2002).

On INC-3000, the concept of barrier messages is used
to synchronize nodes: At some wall-clock time, within an
algorithmic time step, the ODE solver finishes its operation after
all state variables have been updated, and the detected spikes
are delivered to the communication system. At this point, the
CN can proceed to the next time step after all spikes from the
other nodes are received, the synaptic inputs are known, and the
circular buffer has been updated.

On INC-3000, a dedicated master node (configured as a RN)
is used to coordinate the compute node synchronization. In the
case that a particular CN has finished its computations for the
current algorithmic time step, it sends a barrier-message to the
master node, cf. Figure 5D. Once the barrier messages from all
active CNs are received by the master node, it broadcasts a so-
called sync-message to all nodes which allows them to proceed
with the next algorithmic time step. The cost in terms of latency
to establish a barrier-based synchronization method has been
experimentally evaluated. A cluster of nodes of the INC-3000
system was selected imitating active CNs, along with a MN,
spatially placed in the center of the cluster. This placement
minimizes the worst-case synchronization latency. All CNs
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next algorithmic time step.

were forced to immediately re-deliver barrier packets when a
sync-message was received. This results in a well-defined time
interval between adjacent sync messages, the synchronization
latency.

The results are shown in Figure 6C. The synchronization
latency depends on the cluster size, the node-to-node-latency,
and in particular on the Manhattan-distance between the
MN and the CNs located at the edges of the cluster
(Figure 6F). The maximum round-trip delay time turns out to
be 18 s for a cluster containing 305 CNs. A one-hop latency

(first-bit-to-first-bit) of ~1 s was measured for the transmission
of a single packet. For larger cluster sizes, the cluster diameter
grows smoothly with the cluster size. The synchronization
latency gives the minimum amount of wall-clock time to process
an algorithmic time step and hence yields a lower bound to
the achievable speedup factor. Here, the maximum achievable
speedup factor G approaches 5.6 assuming a simulation time step
size of At =100 ps.

Whenever a synchronization message is received by a CN, it
can leave the barrier and proceed to process the next algorithmic
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time step. However, there are two additional conditions to be
fulfilled: (i) All spikes submitted by other nodes were received,
and (ii) all received spikes were processed and the circular buffer
is updated, accordingly. Condition (ii) is sufficiently fulfilled
when the input FIFO (cf. Figure 5A) is empty and the RTR-unit
is in the IDLE-state. However, condition (i) does not depend on
any local state of a given node and hence needs to be fulfilled
implicitly when a synchronization message is received. While the
generation of a sync message by the MN guarantees that no node
has outstanding spikes to be submitted, it does not guarantee
that the last spike has been received prior to the reception of the
synchronization message.

A sufficient condition to fulfill (i) is to make sure that the
AER packets take the same (deterministic) route like the one
of the barrier packet and the spike packets take the same route
as the one the sync packet takes. For that reason it is useful to
have the MN not only to broadcast the sync packets but also
to broadcast the spike packets (cf. Figure 5C). CNs send spikes
as AER-packets to the MN using a unicast routing protocol, cf.
Figure 5B. On the MN, the AER-packet is converted to a spike-
packet and broadcasted to all CNs of the system. Thus, a spike
packet sent by a CN to the MN takes exactly the same route
as a barrier-message sent by the same CN to MN. On the MN,
AER-packets and barrier packets are received in-order. On the
CN’s receiver side, both the received sync packet and the received
spike packets are enqueued in the same input FIFO, cf. Figure 5A.

So, the sync-message is detected by the control logic after the last
spike packet has been fetched from the FIFO. Spikes which are
valid for the next algorithmic time step are allowed to enter the
FIFO before the control logic leaves the barrier and are processed
as soon as the sync message has been removed from the FIFO.

CsNNs Microarchitecture and Logic Design

In the following, the logic design methodology will be briefly
explained on the example of the ODE-solver unit (cf. section
“The CsNNs Compute Node and Simulation Flow”). A straight-
forward data flow implementation and memory organization
is shown in Figures 7A-C. There is quite some architectural
optimization potential by applying pipelining, parallelism and
multiplexing in time in order to improve efficiency in terms
of performance and hardware costs. However, the elaboration
and evaluation of (many) design variants based on register-
transfer-level (RTL) designs can be cumbersome and time
consuming. This holds especially in light of the need of
appropriate and non-obvious scheduling schemes, controlling
and multiplexing of individual data flows, and including the
overall design verification.

High-Level-Synthesis (HLS) appears to be an attractive design
methodology allowing to conduct fast design experiments.
Although, typically not the whole optimization potential can be
exploited by HLS, it offers a trade-off between design time and
efficiency, allowing for a quantitative design-space exploration.
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In HLS, the synthesis of behavioral descriptions are guided
by so-called synthesis directives, specifying, e.g., memory port
configurations, operand formats (i.e., single precision floating
point) and data structures, latency constraints, and initiation
intervals (II) in pipelined data paths (Xilinx, 2018a). The latter,
combined with an appropriate choice of the memory interface
configuration, directly impacts the degree of operator sharing.
In addition to the actual data path, the complete control
logic including standardized interfaces is provided by HLS.
This significantly facilitates the integration and replacement of
respective logic blocks in existing designs. Table 1 shows the
results of a design space exploration experiment for various ODE-
solver units and parameterizations based on a block processing
32 LIF neurons in a loop-type fashion (i.e., for 256 neurons per
CN, eight parallel blocks have to be provided). It clearly shows
available trade-offs between performance (in terms of latency and
throughput) and logic effort (in terms of instantiated operators):
Dependent on the given design goal (e.g., minimization of
latency, minimization of resource utilization, etc.) different
parameterizations emerge to be optimal. As an example, the
minimization of latency is discussed in the following under the
constraint of limited FPGA-resources.

Assume a block which is operated in a loop-type fashion and
used to update the state of N, neurons. The overall latency Ly
(in clock cycles), which is required to have all states updated
after the initiation of the block, is given by Ly, = IL + N, xIL
If N neurons are hosted in total on a CN and B blocks operate
in parallel, N, = [N/B] neurons can be assigned to each block.
If a particular hardware resource Re{LUT, FADD, FMUL, DSP,
BRAM} on a FPGA is limited to Mg units and a block with
initiation interval II requires My g units for its implementation,
the number B of implementable parallel blocks is B= | Mr/M r].
The optimization of latency then relies on the minimization of:

L=1IL+1I- [N/|Mg/Myr|] 5)

The iteration latency IL is almost independent from the choice
of the initiation interval IT (exemplarily cf. Table 1). IL is related

to the critical path of the underlying algorithm, while II is related
to operator sharing inside the block. The choice of larger values
for IT allows for assigning multiple algorithmic operations to an
implemented operator, which potentially saves logic resources.
However, for IT = 1 the number of implemented operators M r
and the number of algorithmic operations are necessarily on
par. For larger values of II the inequality My r > [My = 1,r/II
holds. Actually, the minimization of (5) requires the evaluation
of architectural variants based on extensive variations of II.
However, in many cases a good strategy is to make II as small
as possible, while the number of parallel blocks B has to be as
large as possible. In some cases, the choice II > 1 may break
the blocks into smaller pieces (i.e., instantiated operators) which
may better (i.e., closer) fit to the available amount of resources.
This is especially useful if a single block with II = 1 cannot
be implemented due to lack of resources. Based on the results
of the extensive design space exploration, an optimal solution
can be selected, which sufficiently fulfill performance demands
and resource requirements. A detailed performance evaluation
of various neuron models and ODE solvers is given in section
“Performance for Alternative Neuron Models and Ordinary
Differential Equation Solvers.”

CsNNs Network Generation

In order to evaluate the performance of CsNNs on INC-3000,
the microcircuit was implemented. The parameters for the
exact-exponential-integration ODE solver (initial states, factors,
thresholds, and setup of the delay buffer), parameters for the
on-node RTR unit (seeds for the TBRNGs, sequence lengths
L;), and parameters for the router setup were determined
off-line on the host PC. The host PC comprises an Intel
Xeon Gold 6130 CPU running at 2.1 GHz and has 48 GB
main memory clocked at 2,666 MHz. The starting point
of configuration is a NEST description of the microcircuit
(77,169 neurons, divided into eight populations, and 0.3 billion
synapses). This network is first translated into a list of one-to-
one connections between presynaptic neurons and postsynaptic
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TABLE 1 | Results of a simple design space exploration of the ODE solver for different variants of synaptic shapes and parameterizations assuming a LIF neuron.

Synapse type (2 lumped synapses) Matrix exponential and state vector # Operators foik = 150 MHz
FMUL FADD FCMP I IL Lo Tao[ms]
CUBA, exponential decay P11 P21 P31 2 1 1 1 5 40 197 1.31
0 p2 O e 2 2 1 4 36 161 1.07
0 0 pas i 2 2 1 3 39 133 0.89
3 3 1 4 36 99 0.66
5 5 1 1 36 69 0.46
CUBA, a/B-shape P11 P21 P31 Par Psi Ve 1 1 1 11 48 390 2.60
0 p2 pz 0 O le 2 1 1 10 44 356 2.37
0 0 pz 0 0O 11 Z 2 1 1 9 44 325 2.17
0 0 0 pu psa Iy 2 2 1 8 44 294 1.96
00 0 0 pss Z 2 2 1 7 45 264 176
2 2 1 6 46 234 1.56
3 2 1 5 44 201 1.34
3 3 1 4 44 169 113
4 3 1 3 43 137 0.91
6 5 1 2 43 106 0.71
11 9 1 1 43 75 0.50

A pipeline for operating 32 LIF neurons was specified for various synaptic kernels; ll, initiation interval; IL, iteration latency; Lso/Tso, overall latency in clock cycles/js to

operate 32 neurons.

neurons comprising individual values for the synaptic strength
J, the synaptic delay D, presynaptic neuron index 8, and
postsynaptic neuron index N. The set of neurons is partitioned
in accordance to the population membership and uniformly
distributed amongst a set of 305 CNs. Based on the particular
assignment of neurons to nodes, specific sub-networks are
extracted from the list-based network description. The individual
statistics for the distribution of synaptic strength, the distribution
of synaptic multiplicity, and the delay distribution were extracted
from the sub-networks and algorithmically transformed into a
parameterization for the MTBRNGs of the RTR units. Based
on the MTBRNG parameterization appropriate sequence lengths
L; . were algorithmically optimized for any possible presynaptic
neuron 3, and for any possible compute node k. Then, initial
conditions were randomly set to the state memory of the ODE
solver and the delay buffer of the RTR unit. Parameters for
the TBRNGs representing the external input were derived based
on a Poisson-distribution, population specific firing rates, and
synaptic fan-in. Here, the TBRNGs are capable of representing
32 distinct output values which is equivalent to a maximum
spike count of 31 input spikes per neuron and time step. For
each node, the complete parameterization requires a memory
amount of approximately 1.14 MB, while the whole network
representation sums up to approximately 348 MB. The initial
network representation would require more than 2.5 GB of
memory, but the MTBRNG-representation of the network
achieves an effective compression factor of 7. The TBRNG-
based representation not only speeds up the on-node routing,
it also speeds up the configuration of the INC-3000 system.
While the generation of the configuration data on the host PC
takes approximately 115 s wall-clock time, the upload of the
configuration to INC-3000 sums up to less than 96 s, only.

RESULTS

Breakdown of FPGA-Resources

Figures 8A,B shows the resource breakdown of the implemented
circuit referring to Figure 3A. After synthesis and Place-and-
Route 49% of the lookup-tables, 27% of the flip-flops, 74% of
the BRAMs, and 12% of the DSPs were used for the realization
of the CsNN architecture. While the CsNN architecture covers
only a small fraction of the logic resources (LUTs and FFs), a large
portion of the available block-RAM is allocated. Figure 8B reveals
that most of the BRAM memory is integrated in the network
generation unit (RTR) which in particular holds the seed tables
representing the on-node network architecture. Even though the
MTBRNG-based approach provides a significant reduction of
required memory space for representing random networks the
memory still remains (now resource-wisely) the critical element
in the architecture.

The CsNN-architecture features eight parallel pipelines for
implementing the ODE solvers and the Poisson spike generators
(each serving up to 32 target neurons) and one pipeline for the
RTR unit. The resources for each pipeline appear to be almost
evenly distributed. Note that a very simple ODE-system has to be
solved on one hand and the simple CB has been implemented
in the RTR-unit. As it will be shown in section “Performance
for Alternative Neuron Models and ODE Solvers,” the relative
breakdown will change when complex neuro-synaptic models
will be implemented.

Performance
In order to validate the CsNNs network-implementation
approach and to simultaneously determine its performance on
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INC-3000, the system was configured to simulate 15 min. of
biological real time (9,000,000 time steps of At = 100 ps).
Each node was configured to store the locally generated spikes
in the attached DDR3-memory (cf. Figure 3A). Several cycle
counters were integrated and attached to the node logic which
records the elapsed cycles between consecutive logical time
steps. Figure 6D shows the result for the overall INC-3000
performance. The distribution of elapsed clock cycles shows a
more or less narrow course. The number of synapses per axon is
subject to variation (reflected by the L-parameters), which is also
confirmed by Figure 6E showing the elapsed number of cycles
to unroll the synaptic connection structure. On average, 3,695
clock cycles elapse between successive algorithmical time steps,
or equivalently 24.63 ps (at 150 MHz clock frequency). Since
an algorithmic time step represents At = 100 ps the proposed
hardware achieves a speed up factor of more than 4.06 which
is - to the best of our knowledge - significantly larger than that
of presently available digital hardware platforms (Knight and
Nowotny, 2018; van Albada et al., 2018; Kurth et al., 2020; Rhodes
et al., 2020).

Figure 8C shows the breakdowns of elapsed clock cycles
between consecutive time steps under three different conditions.
In Figure 8C (synchronization-only) a condition is shown

in which none of the compute nodes has delivered a spike.
Consequently, the RTR-unit is inactive in this time step.
The time step latency is determined by the external stimulus
generator, the latency of the ODE-unit, and the synchronization
latency. Clearly, this condition represents the best case condition
comprising the minimum time step latency. On the contrary,
in Figure 8C (worst-case) a condition is shown which is
characterized by a high spike occurrence. Then, on each node, the
local RTR units create the node-local interconnect structure for
each incoming spike event. Here, the cycle latency is determined
by the particular node for which the elapsed cycles of the RTR
unit accumulate to the maximum number. Compared to the
average case (Figure 8C, average-spike-load) the observed worst
case requires x1.75 clock cycles to finish a simulation time step.
This, however, illustrates the advantage of implementing a means
for node synchronization. In a system with fixed wall clock time
for stepping from one time step to the next a kind of worst case
condition has to be predefined. While this particular worst case
condition could be hard to determine in advance, a certain chance
exists that this condition is underestimated which has the direct
consequence of a potential spike loss. An overestimation, in turn,
results in performance loss. On INC-3000, the proposed barrier-
based node synchronization guarantees communication without
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spike loss and allows for a performance with average time step
latency. This finally results in a speed-up factor of at least x 1.75
compared to an approach with a fixed wall clock.

Performance for Alternative Neuron Models and
Ordinary Differential Equation Solvers

In the following, as an add-on to the performance evaluation
of the standard LIF-model, the minimization of latency was
elaborated for various linear and non-linear neuro-synaptic
models and elaborated ODE-solver strategies.

While for purely linear models [LIF and MAT2 (Yamauchi
et al., 2011), both with CUBA-based synaptic coupling], the
method of exact integration (Rotter and Diesmann, 1999) can
be applied, but non-linear ODEs require particular numeric
strategies. Here, the method of Parker-Sochacki (PS) (Stewart
and Bair, 2009) was implemented to solve a non-linear ODE
system. PS-q evaluates the exact coeflicients of the Maclaurin
series of the sought solution up to a predefined order g. For the
evaluation of PS-q the range of g was set to 1 < g < 6. A standard-
Runge-Kutta integrator of order 4 (RK4) was implemented
for comparison to PS-4 which shows up to perform slightly
worse. The modified-Euler integrator (RK2) and the standard
forward-Euler integrator (RK1) were finally compared against
PS-2 and PS-1, respectively. Three types of non-linearities were
considered: conductance-based synaptic coupling (COBA), the
membrane dynamics of neurons defined by Izhikevich (2003),
and the membrane dynamics of neurons defined by the adaptive
exponential IAF model (Brette and Gerstner, 2005). For the
synapses, d-shape, exponential decay, and o/B-shaped kernels
were used (two lumped synapses: excitatory and inhibitory) in
order to evaluate ODE-systems with different number of coupled
dynamic variables.

For the subsequent evaluation of models and solver strategies,
My and Mpgp (cf. section “CsNNs Network Generation”) were
specified which define the upper limit of permissible resources
for the implementation of a given ODE-system and neuro-
synaptic model, respectively. Within the chosen set of ODE-
systems and applied solvers (cf. Supplementary Tables 1-3) the
most resource-demanding neuro-synaptic model was given by
a LIF-neuron with COBA-coupled a/B-shaped-synaptic kernels
handled by PS-6. Here, a single implemented pipeline with IT = 1
consumes 17% of the LUT-resources (M yr = 37,073 units) of the
FPGA and 58.22% of the available DSP-units (Mpgp = 524 units)
for the implementation of floating-point operators. Note that, by
this particular choice, in any case enough FPGA resources were
left for the additional implementation of the router logic and the
communication system. Also note that the implemented ODE-
units contain the complete logic for spike-detection, handling of
refractory periods, and unit-configuration.

For a particular ODE-system i, the minimization of the
latency was carried out such that both Miyr > Mryr,; and
Mpsp > Mpsp,; was kept under variation of the initiation interval
I1. However, the choice II = 1 always lead to the shortest latency
for all examined cases. For the more complex cases (i.e., non-
linear ODE-systems and high-order solver) both Myt and Mpsp
equally defined the resource limitations which indicates that
the ratio Mryr,i/Mpsp,;i approaches a constant here. On the

contrary, simpler ODE-systems and/or low-order solvers require
more LUT-resources in proportion to the DSP-resources which
is mainly caused by the overhead for the attached logic used for
spike-detection, setup, and control.

Based the experimental performance results (Figure 6) and
synthesis results (Supplementary Tables 1-3, parameter T»s¢)
a particular speedup factor Gpgr is obtained for the various
analyzed ODE units. The projection is valid on the assumption
that the first-order spike statistics is invariant with respect to
the underlying neuro-synaptic model (which requires a dedicated
parameterization), the execution of the ODE-unit is in the critical
path (which is given for the current implementation), and the
ODE-unit is executed only once within the time-step At ~
0.1 ms (i.e., there is no time-step subdivision). However, for
some ODE-solver such as PS-1 sub-stepping to smaller values of
At may be necessary in order to keep numerical errors within
tolerable bounds. Sub-stepping is excluded from the discussion.
The results show that the performance of the INC-3000 system
varies about 7% even under the assumption of relatively complex
neuro-synaptic models: the latency for updating the complete
set of state variables significantly falls below the synchronization
latency in the communication system. Although the ODE-solver
participates in the critical path of the overall simulation loop,
its impact can be almost neglected compared to the impact
of communication.

Correctness
Neural network models and their simulations are critical targets
for verification and validation, particularly when implemented
on specialized hardware architectures. Implementation-sensitive
details, such as the numerical precision of mathematical
operations carried out on the hardware, the choice of algorithms
(e.g., the choice of an ODE solver method) as well as simulation
and model parameters have an effect on the correctness of the
simulation outcome. Inappropriately implemented or chosen,
they finally can induce deviations in network dynamics and
change the characteristics of population-wide neural network
activity. Even for domain experts it can become difficult to judge
the correctness of the simulation results. This is all the more
true in the absence of experimental validation data, such as
biological data from electrophysiological recordings to define
the ground truth.

In the following we describe the verification and validation
approach used to demonstrate the correctness of the microcircuit
implementation on the IBM INC-3000 Neural Supercomputer.

Methods

Both the correctness of the technical implementation, i.e., that
each component does what it is supposed to do, and the
consistency of the predictive simulation outcome with a defined
ground truth are crucial aspects. The processes of ensuring
this are referred to as verification' and validation®. Together

"Werification describes the process of ensuring that the mathematical model is
appropriately represented by the executable model, and improving this fit.

>The validation process evaluates the consistency of the predictive simulation
outcome with the system of interest. It aims at the agreement between experimental
data that defines the ground truth and the simulation outcomes.
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they accumulate evidence of a model’s correctness or accuracy
(Thacker et al., 2004; Gutzen et al., 2018; Trensch et al., 2018).

In order to describe the characteristics of a neural network’s
behavior, specific statistics are calculated to quantitatively capture
features of the network activity. These measures also provide
the tools for a systematic validation process. In the following
we outline three measures of increasing complexity whose
distributions were used for validating the simulation outcome of
the microcircuit implementation.

Average firing rate: The average firing rate defines a measure to
characterize the level of the network activity

nsp
FR= —, 6
T (6)
where ngp is the number of spike events during time interval T.

Coefficient of variation: The measure analyzes the variability of
the inter-spike intervals

cv \/ﬁ i (ST — IST)?
- oI

1<
IS =t —t; , ISI= ZZ;ISIi’ 7)
P

where n is the number of inter-spike intervals ISI;. In (7), t;
denote the ordered spike times of a neuron and ISI is the mean
ISI (Shinomoto et al., 2003).

Pearson’s correlation coefficient: The pairwise Pearson’s
correlation coefficient defines a measure that quantifies the
temporal correlation of two binned spike trains (4, j) at the desired
bin size. It is defined by the equation

< b — i, by —pj >
V< bi— i, b —p >

Cli,j| = ,
[11] <bi — i, bj—pj >

8)
where <.,.> is the scalar product of two vectors. b; and b; denote
the binned spike trains, and j1; and |; are their respective means
(Gruen and Rotter, 2010).

In order to quantify the temporal correlation of all spike trains
within a population the N x N matrix of the pairwise Pearson’s
correlation coeflicients between all combinations of N binned
spike trains is calculated.

Verification

To achieve sufficient numerical accuracy on the CNs of the
IBM INC-3000, the following design decisions have been made:
(a) all calculations are performed in 32-bit single precision,
(b) for the ODE solver method an exact integration scheme
was implemented, and (c) the time resolution of the grid-
based neural network simulation was set to 0.1 ms, which
corresponds to the smallest connection delay in the microcircuit
model. These design decisions are consistent with microcircuit
model implementations using well-established neural network
simulation tools such as NEST (Gewaltig and Diesmann, 2007) or
the SpiNNaker neuromorphic system (Rhodes et al., 2020). Note,
that SpiNNaker uses a 32-bit fixed-point format for representing
state variables.

The high-level synthesis (HLS) logic design methodology
allows the description of the microcircuit model in the
C language, which is briefly described in section “CsNNs
Microarchitecture and Logic Design.” HLS abstracts from the
register-transfer level (RTL) design methodology, hiding complex
and difficult to verify hardware implementation details. Quality
and correctness of the HLS compiler output depends on this
C implementation. For a source code verification (confirming
that the functionality it implements works as intended) as well
as a calculation verification (identify and remove errors in
numerical simulations) of the implementation, simulation and
testing on the C-level are therefore sufficient and were carried
out accordingly.

Validation

Due to the lack of experimental data we defined as a reliable
ground truth the results obtained from a simulation of the cortical
microcircuit using NEST simulator published in van Albada et al.
(2018). In order to judge the correctness of the microcircuit
implementation on the IBM INC-3000 Neural Supercomputer
and quantify the accuracy of the simulation outcome we
compared the results obtained from the NEST simulation with
the results obtained from the IBM INC-3000 implementation.
This methodology where a model implementation is compared
with a reliable reference implementation of the same model was
termed substantiation® in Gutzen et al. (2018); Trensch et al.
(2018).

The cortical microcircuit model simulation produces a
transient phenomenon exhibiting higher network activity in
the first 1,000 ms of the simulated time. Therefore, for both
simulations, the 15 min. of network activity data used for analysis
was captured after this transient to ensure the networks being
in a stable state.

Comparison

We compared the distribution probabilities of three characteristic
measures, the firing rates (FR), the coefhicients of variation (CV),
and the Pearson’s correlation coefficients (CC) calculated from
15 min. simulated time. The results are shown in Figure 9.
For the calculation of Pearson’s correlation coefficient the spike
trains were binned at 2 ms, i.e., much larger than the 100 ps
quantization induced by the grid-based simulation. All measures
for all populations of the cortical microcircuit are in close
agreement and show statistical equivalence.

DISCUSSION

The INC-3000 neural supercomputer from IBM consists of
16 INC cards, each comprising 27 field-reconfigurable SoCs
from Xilinx. Each SoC is connected to 1 GB of SDRAM
and features both, a programmable logic system (PL, 218,600
lookup-tables, 437,200 flip-flops, 19.2 Mb memory) and an
ARM A9-based processing system (PS, 2 ARM cores) as well.
Additionally, each SoC comprises 16 serial transceivers with up

3Substantiation describes the process of evaluating and quantifying the level of
agreement of two executable models.
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FIGURE 9 | Substantiation assessment: Quantitative comparison of three characteristic measures from 15 min. network activity obtained from simulations of the
cortical microcircuit on the IBM INC-3000 Neural Supercomputer and the NEST simulator. Probability distributions from left to right: average firing rate (FR),
coefficient of variation (CV), and Pearson’s correlation coefficient (CC), spike trains are binned on a fine temporal scale of 2 ms. All measures for all layers of the
cortical microcircuit are in close agreement.

to 12.5 Gbit/s data rate. Using these transceivers, the nodes of
an INC-3000 machine are interconnected by a 12 x 12 x 3
mesh network topology. For the simulation of the cortical
microcircuit only the programmable part (PL) of the SoC
nodes was used. The arithmetic units (addition, multiplication,
and comparison) are consistently implemented with single-float
precision. A design implementation strategy based on high-
level-synthesis (HLS) has been applied which allows for a fast
design space exploration of various design parameterizations
(e.g., the number of pipelines, degree of resource sharing, and
memory interface configuration) and model/solver equations.
First, the original cortical microcircuit comprising LIF neurons
and CUBA-based exponential decay synapses was simulated with
a speed-up of 4.06 with respect to biological real time using exact
exponential integration. Here, a particular critical operation of
the simulator architecture was given by the synapse-parameter
look-up in the memory. Here, a novel network representation
based on pseudo-random-number sequences was elaborated and
implemented. Seeds for random number generators are used
to represent small localized connectivity to target neurons, the
associated individual weights, the synaptic delays, and synaptic
multiplicity (also known as multapses). For each parameter
(delay, weight, and multiplicity) almost arbitrary distribution
functions can be preserved. In particular, continuous distribution
functions were discretized using a variant of Walker’s method.
The proposed method effectively results in a significantly reduced
size of the data set required to setup the simulator by a factor
of more than 7 while the setup time could be also significantly
reduced to few minutes for a 306-node architecture. Note that the
proposed method is not limited to static networks. In particular,

in order to account for synaptic plasticity, the concept could
be extended to be operated in a hybrid fashion - as already
mentioned by Roth et al. (1997) - e.g., by storing synaptic weight
values in the external RAM while the network connectivity and
the dendritic delays are generated in parallel by procedural PRNG
based operators, which could reduce the traffic to and from the
memory system to the synaptic weights only. The validity of the
proposed approach was successfully verified by a comparison
with reference simulation results obtained from NEST. In
order to verify the flexibility of the FPGA-based simulation
architecture, networks with non-linear neuron models and
conductance-based synaptic coupling were synthesized using
the HLS-approach and evaluated with respect to performance
and resource demands. Both, the Izhikevich neuron model and
AdEx model in combination with exponential-decay, alpha-
function shaped and beta-function shaped synaptic coupling
were examined. In all cases, the simulation-time speed-up factor
did not decrease by more than few percent. In particular, it
turns out that latency constraints of the communication system
of the IBM-INC machine limit the overall speed-up factor.
The interconnect architecture of the INC-3000 system has been
organized as a 3D-mesh comprising 12 x 12 x 3 nodes. The
worst-case packet latency grows in proportion to the diameter of
the underlying cuboid which includes the set of active compute
nodes. While in highly structured networks the cruising range
of a spike packet could be limited in the average case, the
microcircuit effectively features almost-full-connection for all
realizable ways of network decomposition. Therefore, any spike
packet generated somewhere in the system has to be received
by all other nodes as well. Fortunately, the spike packet latency
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depends on the spatial position of the packet-initiating node
(nodes located in the center of the cuboid have shorter
worst-case paths than nodes located at the edges). The
situation appears to be different for the barrier-based node-
synchronization. Here, each node has to submit a packet
containing a barrier message to the MN (located in the
center of the cuboid), and the MN broadcasts a SYNC-
message back to all nodes. Therefore, the latency for the
node synchronization appears to be equivalent to the worst-
case latency given by the longest distance between nodes
located in the corners of the cuboid. Nevertheless, it has been
shown that the node-synchronization approach based on barrier
messages has significant advantages. Node synchronization
results in a further performance improvement by a factor of
at least x1.75 (average variable wall-clock timing compared to
worst-case fixed wall-clock timing eventually including spike
loss). Finally, the FPGA-based node architecture has great
advantages for the implementation of advanced numerical
strategies for solving complex ODE-systems. Restrictions mainly
result from the limited amount of available BRAM-based
local memory.
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