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Diabetes with high blood glucose levels may damage the brain nerves and thus increase
the risk of dementia. Previous studies have shown that dementia can be reflected in
altered brain structure, facilitating computer-aided diagnosis of brain diseases based on
structural magnetic resonance imaging (MRI). However, type 2 diabetes mellitus (T2DM)-
mediated changes in the brain structures have not yet been studied, and only a few
studies have focused on the use of brain MRI for automated diagnosis of T2DM. Hence,
identifying MRI biomarkers is essential to evaluate the association between changes in
brain structure and T2DM as well as cognitive impairment (Cl). The present study aims to
investigate four methods to extract features from MRI, characterize imaging biomarkers,
as well as identify subjects with T2DM and Cl.

Keywords: type 2 diabetes mellitus, cognitive impairment, machine learning, medical image, structural MRI

INTRODUCTION

As a general disease with high blood glucose, diabetes is the seventh leading cause of disability
worldwide (Novoselova et al,, 2014; Khan et al., 2020). Glucose requires the help of insulin,
produced by the pancreas, to enter into the cells and be used for energy. If insulin is not sufficient
or not well-used, glucose will remain in the blood and not reach the cells. Health problems may
arise with excessive glucose in the blood over time. Typically, type 2 diabetes mellitus (T2DM) is
the most common type of diabetes and accounts for 90-95% of diabetes cases.

As a heterogeneous disorder characterized by insulin resistance and hyperglycemia, T2DM
affected 463 million people worldwide in 2017 (Karamzad et al., 2020). According to the Diabetes
Atlas 7th Edition, T2DM is expected to reach 642 million by 2040 (Atlas et al., 2015). T2DM
patients may undergo a gradual progression from normal glucose metabolism to impaired glucose
metabolism and become T2DM. Several studies have shown that T2DM with high blood glucose
level over a long period may damage the brain nerves and thus increase the risk of cognitive
impairment (CI) and dementia (Vieira et al., 2018; Biessels and Whitmer, 2020; Sharma et al.,
20205 Srikanth et al., 2020). Currently, the occurrence of ClI is an irreversible process and has little
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effective cure. Thus, preventive treatments are needed in the early
stages of dementia. An accurate and objective method to help to
identify T2DM and CI is an urgent requirement.

Brain imaging is a vital tool for exploring the mechanisms
linking T2DM and CI. Non-invasive structural magnetic
resonance imaging (MRI) is one of the most common brain
imaging modalities used in brain research. Scattered reports have
demonstrated that glucose alterations are related to regional brain
changes and CI. Some studies favor the hypothesis that the brain
structural changes in T2DM encompass both gray matter (GM)
and white matter (WM) alterations (Mankovsky et al., 2018).
Other studies revealed that patients with T2DM had CI and
structural brain alterations (Biessels and Despa, 2018), such as in
the hippocampus (Gold et al., 2007; Li et al., 2020). In addition,
patients with T2DM showed brain atrophy, including low total
and regional white and gray matter volumes (Moran et al,
2013; Garc'1a-Casares et al., 2014; Mehta et al., 2014; Wu et al,,
2017). Furthermore, the volume of white matter hyperintensities
also appeared to be modestly increased in people with T2DM
rather than those without T2DM (Moran et al., 2017). These
brain abnormalities might be potential imaging biomarkers for
T2DM or T2DM with cognitive impairment (T2DM-CI). Some
reports discovered that the topological structure of the white
matter network was altered in T2DM patients, and this abnormal
network structure was related to the executive dysfunction
(Zhang J. et al., 2011), while others mentioned that T2DM
disturbed the overall topological features of gray matter networks
(Cao et al,, 2019). However, the pathophysiological mechanisms
underlying T2DM or T2DM-CI are yet to be clarified.

Machine learning methods are utilized to detect brain
activity in neuroimaging and assess brain structure or function
to discriminate between groups or conditions. It would be
interesting to understand whether machine learning methods
can differentiate patients from healthy controls using MRI. Our
previous study performed classification tasks between T2DM-CI
and healthy controls (HC), as well as T2DM without cognitive
impairment (T2DM-noCI) and HC using a high-order brain
network construction method (dHOFC) (Chen et al., 2021).
A few studies also utilized the machine learning method as the
classifier for the diagnosis of diabetes. Pima Indians Diabetes
Database (PIDD), including personal data (age and number
of times pregnant) and results of medical examination (blood
pressure, body mass index, and plasma glucose concentration),
was used for diagnosis. El-Baz et al. (2016) used committees
of neural network-based classifiers to detect T2DM using
combined multi-layer perceptron and combined cascade-forward
backpropagation network classifiers. Yue et al. (2008) combined
Quantum Particle Swarm Optimization and weighted least
squares support vector machine (SVM) to diagnose T2DM.
However, limited classification is available using structure-based
machine learning to identify T2DM from individuals without
T2DM (NT) and CI from people with normal cognition (NC).

Therefore, we utilized four feature extraction methods,
including a volume-of-regions (VOR) method, a patch-based
morphometry (PBM) method, a local energy pattern (LEP)
method, and a deep transfer learning (DTL) method based on
a pre-trained network (Pan et al, 2019a) to characterize the

imaging biomarkers in T2DM and CI. Also, it is imperative
to study computer-aided T2DM and CI diagnosis based on
brain structure.

MATERIALS AND METHODS

Participants

A total of 123 subjects (with 58 T2DM subjects and 65 NT
subjects) from October 2018 to December 2020. This study was
approved by the Ethics Committee of The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou,
China. All participants provided written informed consent.
Among the T2DM subjects, 25 subjects had CI, and the remaining
33 subjects had NC. Among the NT subjects, 15 had CI and
50 had NC. CI was defined as either T2DM or NT subjects
with a Montreal Cognitive Assessment (MoCA) score <26
(Nasreddine et al., 2005). NC was defined as a T2DM or NT
subject with a MoCA score >26. The T2DM patients were
diagnosed by experienced endocrinologists at The First Affiliated
Hospital of Guangzhou University of Chinese Medicine. The
diagnostic criterion was either fasting plasma glucose (FPG) level
>7.0 mmol/L or 2-h oral glucose tolerance test (OGTT) glucose
level >11.1 mmol/L (Association, 2014). Participants with severe
head injury, intracranial organic diseases (such as tumors,
infections, cerebrovascular accidents, congenital brain dysplasia,
and obvious variations), brain surgery, positive neurological
symptoms, alcohol abuse, level-3 hypertension, or heart attack
were excluded from the study.

Magnetic Resonance Image Acquisition

All participants underwent scanning on a 3.0-T GE scanner
(SIGNA EXCITE GE Medical Systems, United States) with
an 8-channel head coil at the imaging department of The
First Affiliated Hospital of Guangzhou University of Chinese
Medicine. The scan time was within 1 week after enrollment.
Structural images were acquired using a three-dimensional
(3D) magnetization-prepared rapid-acquisition gradient echo
sequence with the following parameters: repetition time
(TR) = 8.15 ms, echo time (TE) = 3.17 ms, flip angle = 12°,
slice thickness = 1 mm, slice gap = 0 mm, number of excitations
(NEX) = 1, field of view (FOV) = 256 mm X 256 mm, matrix
size = 256 x 256, sagittal slices = 188, and total scanning
time = 250s. To minimize head movement, we used foam pads
to fix the head before scanning. Participants were asked to lie
in a supine position, keep their eyes closed, not fall asleep,
and avoid ideological activities. Two experienced radiologists
monitored the image quality and participants during the scan
and terminated the acquisition if the images were abnormal or
participants were uncomfortable.

Image Processing

All magnetic resonance (MR) images were first subjected to
a Non-parametric Non-uniform intensity Normalization (N3)
correction, and then pre-processed by Statistical Parametric
Mapping (SPM) toolbox using MATLAB in three steps as
follows: (1) Each brain volume was segmented into GM, WM,
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cerebrospinal fluid (CSF), skull, scalp, and background; (2)
The GM, WM, and CSF were conjuncted with a hole-filling
morphological operation to create a brain mask that would
facilitate the classification algorithm to focus on the brain region;
(3) Each volume was spatially normalized to the Montreal
Neurological Institute (MNI) space using SPM. After pre-
processing, all the brain MR images were found to have the same
size (181 x 217 x 181) as the MNI template. Four cases with
similar education years are visualized in Figure 1: (a) a T2DM
with CI subject, (b) a T2DM with NC subject, (c) a NT with
CI subject, and (d) a NT with NC subject. These methods were
conducted on processed data for optimal comparison, i.e., all
features were extracted from the normalized space.

Method

MRI biomarkers measure the difference between T2DM subjects
and NT subjects, and hence, should be identified. Thus, the
present study aimed to investigate the effectiveness of four
feature extraction methods, including (1) a VOR method, (2)
a PBM method, (3) a LEP method, and (4) a DTL method, to
characterize the imaging biomarkers in brain MRI data. The
feature dimensions of VOR, PBM, LEP, and DTL were 116, 864,
93,312, and 7,680, respectively. A general flowchart of the initially
extracted features is shown in Figure 1.

(1) VOR first extracts the volume of GM tissue in 116 regions
of interest (ROIs) defined by the anatomical automatic labeling
(AAL) atlas and then normalizes to the total GM volume of each
brain. Based on previous studies (Walhovd et al., 2010; Cuingnet
etal, 2011; Zhang D. et al., 2011) we extracted the VOR features
that were first aligned to the AAL atlas (Tzourio-Mazoyer et al.,
2002) to the native space of each subject using SPM12 (Friston
et al., 2007). Then, the GM inside those ROIs in each MRI scan
was extracted and normalized to the total GM volume of each
brain, followed by a linear SVM using default parameters (i.e.,
C =1) for brain disease classification.

(2) PBM first crops each brain image to 144 x 192 x 128
to remove the non-brain regions and the partitions it to 9 X
12 x 8 patches with size of 16 x 16 x 16. Then, the volumes
of GM tissue were extracted from those patches, followed by
normalization to the total GM volume. Following the protocols
of Liu et al. (2012, 2014), the PBM method partitions each brain
image into small 3D patches and combines the features extracted
from selected patches at the classifier level. In this work, each
brain image is partitioned into multiple 16 x 16 x 16 patches, and
the feature representation of each brain is extracted from these
patches. Next, we extracted the volumes of GM tissue inside these
patches from MRI scans similar to the ROI representation. The
dimension of the extracted feature is 864, where each dimension
corresponds to a patch. The MRI-based features are normalized
by the total volume and fed to a linear SVM for classification.

(3) LEP extracts the local energy patterns from a several
locations centered at grid patches (size is 16 x 16 x 16) and then
concatenates these features from multiple locations to represent
each brain. This method extracts the local energy patterns (Zhang
et al., 2013), which represent the response of sever filters, from
a local patch centered at each grid patch. The majority of the
local energy patterns are histogram-like statistical features of
local patches, such as the local binary pattern, Gabor filters,

Histograms of Oriented Gradients (HOG), and other steerable
filters. In this study, we directly used HOG to represent a local
patch. Since the patches from the brain images are 3D, we
calculated HOG in each slice and each of the three views, i.e.,
the axial, coronal, and sagittal views, and considered the average
of the features of each patch. Then, these features from multiple
patches were concatenated, followed by a z-score normalization
(Jain et al., 2005) process. As the dimension of HOG is 36, the
total dimension of the LEP representation of an image is 36 x
3 x 864 = 93312. Finally, the derived features represent each
subject, followed by a linear SVM model for classification.

(4) DTL applies a convolutional neural network (CNN) to our
collection and extracts the feature map of the last convolutional
layer to represent each image. Pan et al. (2019a) used CNN to
employ the structural parameters of the diagnosis model that
were pre-trained on the ADNI1 dataset with baseline MRI of
845 subjects. These ADNI images were also subjected to N3
correction similar to our study, which aligned the processed
ADNI and our images to have same intensity range. As the
output of the feature extraction part of this pre-trained CNN was
5 X6 X4 X 64,thedimension of the final DTL feature of an
image was 7,680. Finally, the derived DTL features of each MRI
scan were used to represent each subject, followed by the linear
SVM model for classification.

Herein, we used a cheap calibration technique to address
poor probability estimation from SVMs, as described previously
(Lin et al, 2017; Pan et al., 2019b). The cheap calibration
technique maps the predicted output in an injective monotonic
manner, facilitating maximum gain of SVMs (with margin
maximizing) from calibration. The evaluation metrics were
unaffected by calibration, while the probability metrics were
improved. Therefore, we used a cheap calibration technique
rather than manually selected optimal parameters for SVMs.

EXPERIMENTS AND RESULTS

Information and Comparison of Clinical

Characteristics

The information and comparison of clinical data of the 123
subjects are summarized in Table 1, and the characteristics
showing significant group differences (P < 0.05) were marked
with *. Statistical comparisons between T2DM and NT did not
reveal any significant differences in age, gender, or education
level, while the statistical comparisons between CI and NC
showed no significant differences in age. However, some
clinical characteristics such as MoCA scores indicated significant
differences between T2DM and NT, as well as between CI and NC.
Gender and education level also exhibited significant differences
between CI and NC.

Classification Performance

We performed experiments on two tasks: (1) distinguishing
CI subjects from NC subjects and (2) distinguishing T2DM
subjects from NT subjects. A leave-one-out cross-validation
strategy was applied to evaluate the performance of four feature
representations. Specifically, in each fold, one subject was used
for test data, while the remaining were used for training data to
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T2DM&CI

NT&CI

FIGURE 1 | Four cases in our dataset. From (A-D) are a T2DM with CI (T2DM&CI) subject, a T2DM with NC (T2DM&NC) subject, a NT with CI (NT&CI) subject, and

a NT with NC (NT&NC) subject.

T2DM&NC

NT&NC

TABLE 1 | Comparison of clinical characteristics between two groups.

T2DM (n = 58) NT (n = 65) P value Cl (n = 40) NC (n = 83) P value
Age (years) 51.17 £9.28 48.34 £7.39 0.062 51.00 £ 9.15 49.04 +8.03 0.23
Gender (M/F) 34/24 31/34 0.28 15/25 50/33 0.021*
Education (years) 9.83 +£4.32 9.94 +3.90 0.88 7.30(0, 15) 11.13 (2, 19) 0.0001*
MoCA 25.12 (16, 30) 26.75 (20, 30) 0.016* 22.43 (16, 25) 27.70 (26, 30) 0.0001*

T2DM, type 2 diabetes mellitus; NT, individuals without T2DM,; CI, cognitive impairment; NC, normal cognition; M, male; F, female; MoCA, Montreal cognitive assessment.
The characteristics showing significant group differences (P < 0.05) were marked with *.

learn a linear SVM classifier (with the default parameter C = 1).
Six metrics were used for performance evaluation, including
accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-Score
(F1S), receiver operating characteristic (ROC) curve, and area
under the ROC curve (AUC).

The classification results of four methods in two tasks
were shown in Figure 2. We observed that DTL achieves the
best performance in both CI vs. NC, as well as T2DM vs.
NT classification tasks. The ROC curves of these methods
were also shown in Figure 3, indicating that DTL achieves
a higher true-positive rate compared to other methods. This
phenomenon suggested that DTL can detect the abnormality
of brain structure. In addition, the best AUC values achieved
by DTL for CI vs. NC and T2DM vs. NT classification are
0.6438 and 0.6392, respectively, which are not promising. This
could be attributed to DTL training and that it is applied
on two datasets with different data distributions (i.e., with
MRIs acquired from Asian and American brains, respectively).
Interestingly, data adaptation/harmonization is essential to boost
identification performance.

We further selected CI subjects to classify T2DM vs. NT, the
AUC values are 0.5857, 0.6286, 0.5771, and 0.6186, respectively,
for VOR, PBM, LEP, and DTL. Such results are similar to that
with using all subjects and have verified the challenge to classify
T2DM vs. NT. More convincing results should be achieved in our
future work by collecting more data and redoing the experiments.

DISCUSSION

To the best of our knowledge, this is the first classification
study between T2DM and NT, as well as CI and NC based on
brain structure using four feature extraction methods. The results
indicated that DTL achieves the best performance in both CI vs.
NC and T2DM vs. NT classification tasks. As neural network
generally needs a large training dataset, it may not be stable
to train a neural network from scratch. As an alternative, pre-
train in a large dataset to extract features is a good choice. As
ADNI is the largest dataset for cognition study, it may be the
most suitable choice to train a network to extract features on
our data. Meanwhile, using the features extracted by this pre-
trained network can outperform the other handcraft features,
which verified the advantage of pre-trained network.
Nevertheless, the present study has several limitations that
should be considered during the interpretation of the findings.
First, our sample size is relatively small. Thus, enrolling more
participants to perform machine learning in the future is
essential. As most of our features are high-dimensional, it may
not be suitable to use non-linear SVM. We have tried non-
linear SVM, the results may be a little higher if selected good
parameters. However, since this may hurt the objectivity, we
did not report the results of non-linear SVM. As we follow a
unique pre-processing, we thought this may not be the issue. The
reason for the low performance may lie into the data content, for
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Clvs. NC

0.8
0.7
0.6
0.5
0.4
03
0.2
0.1
0

AUC ACC SEN SPE F1S

EVOR 05735 0.4839 0.4615 0.4941 0.36

mPBM  0.5995 0.5887 0.641 0.5647 0.495

W LEP 0.5508 0.5242 0.4615 0.5529 0.3789

DTL  0.6392 0.6048 0.6667 0.5765 0.5149

FIGURE 2 | Performance of four different feature extraction methods in both the tasks of discriminating cognitive impairment (Cl) subjects from normal cognition (NC)
subjects (left), as well as type 2 diabetes mellitus (T2DM) subjects from individuals without T2DM (NT) (right).
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FIGURE 3 | The ROC curve of four different feature extraction methods in both discriminating the cognitive impairment (Cl) subjects from normal cognition (NC)
subjects (left), as well as type 2 diabetes mellitus (T2DM) subjects from individuals without T2DM (NT) (right).
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which, we will collect more data to verify that in our future work.
Second, a significant difference was observed between T2DM
and NT in MoCA scores. The classification results might be
affected by subjects with CI. Third, we did not match gender or
education level between CI and NC subjects. The education level
might influence cognitive ability. Therefore, in future studies,
we would consider subjects with different education levels to
avoid putative bias.

CONCLUSION

This study investigated four feature extraction methods to
characterize the potential abnormalities in the brain structure
caused by T2DM in brain MRI data. Experimental results indicate
that DTL is possible to achieve a better performance than others,
which helps to analyze CI caused by T2DM.
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