
ORIGINAL RESEARCH
published: 21 October 2021

doi: 10.3389/fnins.2021.729937

Frontiers in Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 729937

Edited by:

Gopikrishna Deshpande,

Auburn University, United States

Reviewed by:

Niharika D’Souza,

Johns Hopkins University,

United States

Anubha Gupta,

Indraprastha Institute of Information

Technology Delhi, India

*Correspondence:

Fei Wang

fwang@scnu.edu.cn

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 24 June 2021

Accepted: 07 September 2021

Published: 21 October 2021

Citation:

Li J, Wang F, Pan J and Wen Z (2021)

Identification of Autism Spectrum

Disorder With Functional Graph

Discriminative Network.

Front. Neurosci. 15:729937.

doi: 10.3389/fnins.2021.729937

Identification of Autism Spectrum
Disorder With Functional Graph
Discriminative Network
Jingcong Li 1,2, Fei Wang 1,2*, Jiahui Pan 1,2 and Zhenfu Wen 3

1 School of Software, South China Normal University, Guangzhou, China, 2 Pazhou Lab, Guangzhou, China, 3Department of

Psychiatry, New York University School of Medicine, New York, NY, United States

Autism spectrum disorder (ASD) is a specific brain disease that causes communication

impairments and restricted interests. Functional connectivity analysis methodology is

widely used in neuroscience research and shows much potential in discriminating ASD

patients from healthy controls. However, due to heterogeneity of ASD patients, the

performance of conventional functional connectivity classification methods is relatively

poor. Graph neural network is an effective graph representation method to model

structured data like functional connectivity. In this paper, we proposed a functional

graph discriminative network (FGDN) for ASD classification. On the basis of pre-built

graph templates, the proposed FGDN is able to effectively distinguish ASD patient

from health controls. Moreover, we studied the size of training set for effective training,

inter-site predictions, and discriminative brain regions. Discriminative brain regions were

determined by the proposed model to investigate its applicability and biomarkers

for ASD identification. For functional connectivity classification and analysis, FGDN

is not only an effective tool for ASD identification but also a potential technique in

neuroscience research.

Keywords: autism spectrum disorder, ABIDE, graph neural network, functional graph, resting-state functional MRI

1. INTRODUCTION

Autism spectrum disorder (ASD) is a specific brain disease that causes social and communication
impairments, restricted interests, and repetitive behaviors (Lord et al., 2000; Yang et al., 2019). Early
diagnosis of ASD is significant for preparing treatment plan and conducting early intervention
for ASD. Human brain connectivity network aims to reveal structural and functional interactions
between brain regions, which were proven to be potential in identifying predictive biomarkers for
neurodevelopmental and neuropsychiatric disorders (Wu et al., 2006; Arslan et al., 2018).

The resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to study
functional connectivity between different brain regions with its high spatial resolution (Luca et al.,
2006; Aggarwal et al., 2017). Based on rs-fMRI and functional connectivity, it is possible to develop
a reliable and objective technique for early diagnosis of ASD (Abraham et al., 2017; Aggarwal and
Gupta, 2019b; Dadi et al., 2019). To facilitate techniques for ASD identification with rs-fMRI data, a
largemultisite dataset termedAutism Brain ImagingData Exchange (ABIDE) was released (Nielsen
et al., 2013). The ABIDE dataset consists of the rs-fMRI data of ASD patients and healthy controls
(HC) from different international acquisition sites and using different protocols. In the ABIDE
dataset, the challenging problems in identifying ASD patients lie in the individual differences of
functional connectivity as well as acquisition protocol differences.
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In the past few years, many machine learning approaches
were proposed for processing functional connectivity data and
identifying ASD. As a popular machine learningmethod, support
vector machine (SVM) was applied for ASD prediction based
on Pearson’s correlation functional connectivity (Nielsen et al.,
2013). In another significant research on ABIDE dataset, the
researchers investigated a few classifiers including random
forests, Gaussian naive Bayes, support vector classifier, and ridge
classifier (Abraham et al., 2017). The major contribution of this
research lies in finding best predicting pipelines for ABIDE
dataset, which were based on Multi Subject Dictionary Learning
(MSDL) atlas, tangent space embedding, and ℓ2-regularized
classifiers. Also evaluated on the ABIDE dataset, higher
performance (e.g., accuracy over 75%) could be obtained by
using extraneous information such as “multiple atlases” or
“non-physiological” (Karampasi et al., 2020, 2021; Epalle et al.,
2021). On the basis of correlation matrices computed from
rs-fMRI time-series data, a probabilistic neural network was
applied for ASD classification (Iidaka, 2015). A deep neural
network based on stacked autoencoder was proposed to identify
ASD patients from typical controls with T1-weighted MRI
images that it outperformed some state-of-the-art methods
(Kong et al., 2018). The deep learning technique also showed
potential in identifying ASD based on behavior data like
videos (Li et al., 2019). Compared with baseline methods, a
mathematical framework based on Riemannian geometry and
kernel methods achieved superior performance for functional
connectivity graphs classification (Dodero et al., 2015).

Recently, graph representation methodology was proven to
be a powerful tool in modeling structured data and achieved
significant performance in many applications (Linial et al., 1995;
Even, 2011; Aggarwal andGupta, 2019a). Functional connectivity
between brain regions in rs-fMRI data can be considered as
typical structured data (Stam et al., 2008). Graph representation
approaches also achieved impressive performance in dealing
with functional connectivity data (Bullmore and Bassett, 2011;
Sporns, 2011; Parisot et al., 2018). Accordingly, graph-based
brain network is able to uncover system-level changes of brain
regions (Wang et al., 2010). To predict progress of patients
with mild cognitive impairment to Alzheimer’s disease using
rs-fMRI, graph theory, and machine learning approach were
utilized (Hojjati et al., 2017). A graph convolutional network
termed MTGCN was proposed for learning multi-scale graph
representations of brain functional connectivity analysis with rs-
fMRI data (Yao et al., 2019). Graph-based network also showed its
potentials in ASD diagnosis that a siamese graph convolutional
neural network (s-GCN) was proposed and evaluated on ABIDE
dataset (Ktena et al., 2018). A graph convolutional neural
network was proposed to model phenotypic and demographic
information of subjects, and achieved significant improvements
in ASD classification accuracy on ABIDE dataset (Parisot et al.,
2018). However, due to individual differences and the unknown
patterns of functional connectivity, conventional graph-based
approaches perform poorly in some functional connectivity
classification problems.

In this paper, we propose a modified graph convolution
network for ASD classification and conduct a series of

experiments on the ABIDE dataset. The main contributions of
this paper can be summarized as follows:

1. An FGDN is proposed for ASD prediction based on resting-
state functional MRI.

2. The proposed FGDN is able to achieve a high ASD
classification performance on the ABIDE dataset.

3. Inter-site predictions and discriminative brain regions were
studied with the proposedmodel to investigate its applicability
and biomarkers for ASD identification.

The remainder of this paper is organized as follows. The proposed
FGDN is presented in section 2. In section 3, numerical ASD
classification experiments on the ABIDE dataset are carried out.
In addition, the performance of the benchmark methods and
the proposed methods are presented and compared. A general
discussion of the proposed model is presented in section 4.
Conclusions of this paper are given in section 5.

2. MATERIALS AND METHODS

The functional connectivity is based on the hypothesis that
different regions of interest (ROIs) could capture relevant
functional activities within the brain. The ROIs are defined by
brain structural atlases, such as Automated Anatomical Labeling
(AAL) (Tzourio-Mazoyer et al., 2002), Harvard Oxford (HO)
(Desikan et al., 2006), and Massive Online Dictionary Learning
(MODL) (Dadi et al., 2019). According to previous research
(Ktena et al., 2018; Dadi et al., 2019), functional connectivity is
a typical structured data, which is suitable to define on a graph.

2.1. Graph Construction
Generally, a graph model can be constructed as follows:

G = (V , E ,W)

V = {vi| i = 1, . . . ,N}

E =
{

eij
∣

∣ vi, vj ∈ V
}

W = {wij}

(1)

where V denotes the set of nodes (totally N nodes) in graph G, E
are connected edges between different nodes, and W ∈ R

N×N

is the adjacency matrix whose element wij denotes the weight
of connection between ith node and jth node. The element wij

of adjacency matrix W is usually determined by the distance
function and k-nearest neighbor rule. Gaussian kernel function
is a commonly used distance function as

wij =

{

exp(−
[dist(vi ,vj)]

2

2θ2
) dist(vi, vj) ≤ τ

0 otherwise
(2)

where dist(vi, vj) denotes the distance between ith node and jth
node, τ and θ are two fixed parameters that determined by K-
nearest neighbor (KNN) method for extracting k nearest nodes
in graph G (Ktena et al., 2018; Song et al., 2019).

As mentioned above, the functional connectivity is a typical
structured data that could be transformed into a graph (Ktena
et al., 2018; Parisot et al., 2018; Dadi et al., 2019). Usually, each
row vector of functional connectivity matrix is considered as one
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FIGURE 1 | Functional graph construction: (1) Estimate functional connectivity matrix for each resting-state functional magnetic resonance imaging (rs-fMRI). (2) Build

autism spectrum disorder/healthy controls (ASD/HC) template based on the mean functional connectivity matrix of ASD/HC samples. (3) Construct ASD and

HC graphs.

nodes in the graph. To model the connections between different
nodes of functional connectivity graph, we utilized a functional
graph construction technique (Ktena et al., 2018). Accordingly,
such kind of graph structure could reflect functional connection
weights between different regions from neuroscientific view.

The mean functional connectivity matrix and the
corresponding graph structure are calculated as follows:

F̄c =
1
Nc

∑Nc
i=1 Fic = [f1, . . . , fi . . . , fN]

T

VF̄c
=

{

fi
∣

∣ i = 1, . . . ,N
}

Tc = {E ,W} = KNN(VF̄c
)

(3)

where Fic denotes functional connectivity matrix of the ith
training rs-fMRI data, Nc is the number of training samples, and
c denotes the category of ASD (c = 0) or HC (c = 1); the row
vector fi of F̄c is considered as the ith node feature of VF̄c

; Tc

(termed graph template) denotes the connected edges E and their
weights W between different nodes, E and W are determined by
KNN method and Equations (1) and (2) with node features VF̄c

.
The output graph template could be considered as the typical
connections between nodes of ASD or HC samples.

Given the functional connectivity of a test rs-fMRI sample,
it could be transformed into two graphs with the ASD and HC
templates as shown in Figure 1. The interaction between the
functional connectivity with the ASD/HC template is as follows:

F = [f1, . . . , fi . . . , fN]
T

VF =
{

fi
∣

∣ i = 1, . . . ,N
}

Tc = {E ,W} = KNN(VF̄c
)

Gc = (V , E ,W) = (VF ,Tc)

(4)

where F is the input functional connectivity, the row vector fi
of F is the feature of the ith node in VF , Tc is graph template
mentioned in Equation (3), and Gc is the output graph of ASD
(c = 0) or HC (c = 1). For a test rs-fMRI sample, its output ASD
graph and HC graph will have the same node features while the
connections between their nodes are different.

As shown in Figure 1, we first estimate the functional
connectivity of each rs-fMRI sample. Second, we will build the
ASD/HC template based on the mean functional connectivity
matrix of ASD/HC data according to Equation (3). Third, the
functional connectivity will be combined with the ASD/HC
template to construct ASD/HC graph. For a test rs-fMRI sample,
we can obtain its node features (i.e., functional connectivity)
while the connections between nodes are unknown. So we feed
the node features into ASD graph template and HC template to
construct ASD graph and HC graph, and then let the model to
determine which graph matches the test sample. Therefore, we
would like to build a model for ASD graph identification in the
next section.

2.2. Proposed Graph Model
Generally, standard convolutional operations for regular data
are inappropriate for processing graph data due to its irregular
distribution of nodes (Krizhevsky et al., 2012). According to the
previous research, two approaches can be utilized for generalizing
convolution operations to graph data. First one is to rearrange all
of the graph nodes into a regular grid and then conduct standard
convolution operation (Niepert et al., 2016). However, the graph
structure will be seriously corrupted in this way. The second
approach is to apply spectral graph convolution (Bruna et al.,
2013). By using convolutions in spectral domains with graph
Fourier transform, spectral graph convolution can be feasibly
applied on graph data. In addition, there are some following-
up studies that the computational complexity of spectral graph
convolution can be reduced from O(n2) to linear (Defferrard
et al., 2016; Kipf and Welling, 2016).

According to previous research (Bruna et al., 2013; Yu et al.,
2017; Song et al., 2019), spectral graph convolution is to multiply
a signal x ∈ R

n with a graph convolution kernel 2 and a graph
convolution operator ∗G as,

2∗Gx = 2(L)x = 2(U3UT)x = U2(3)UTx (5)
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FIGURE 2 | The functional graph discriminative network (FGDN) model for autism spectrum disorder (ASD) classification. The model consists of five layers, i.e., the

functional graph construction layer, two graph convolutional layers, fully connected layer, and the output layer.

where graph Fourier basisU ∈ R
n×n is thematrix of eigenvectors

of the normalized graph Laplacian L = In − D−1/2WD−1/2 =

U3UT ∈ R
n×n (In is an identity matrix, D ∈ R

n×n is the
diagonal degree matrix with Dii =

∑

jWij, W ∈ R
N×N is

the adjacency matrix mentioned in equation (1)); 3 ∈ R
n×n

is the diagonal matrix of eigenvalues of L, and filter 2(3) is
also a diagonal matrix. By this definition, a graph signal x is
filtered by a kernel 2 with multiplication between 2 and graph
Fourier transformUTx (Shuman et al., 2013). The computational
complexity of spectral graph convolution is expensive due to
O(n2) multiplications with graph Fourier basis.

In order to reduce computational complexity of spectral graph
convolution, Chebyshev polynomials approximation technique
was proposed (Defferrard et al., 2016). To reduce the number of
parameters and localize the graph filter, the graph convolutional
kernel 2 is restricted to a Chebyshev polynomial form as

2(3)=

K−1
∑

k=0

θkTk

(

3̃

)

(6)

where θ ∈ R
K is the Chebyshev polynomial coefficients, K is the

size of graph convolutional kernel which determines maximum
convolutional range from central nodes, 3 is rescaled by 3̃ =

23/λmax − In (λmax denotes the largest eigenvalue of L, and
In is a N × N identity matrix). The Tk (x) could be recursively
calculated as

T0 (x) = 1,T1 (x) = x
Tk (x) = 2xTk−1 (x)−Tk−2 (x) , k ≥ 2

(7)

Then, the spectral graph convolution is rewritten as

2∗Gx = 2(L) x ≈

K−1
∑

k=0

θkTk

(

L̃
)

x (8)

where Tk

(

L̃
)

∈ R
n×n is k-order Chebyshev polynomial

estimation for the rescaled Laplacian L̃ = 2L/λmax −

In. Then the computational complexity of spectral graph
convolution by Equation (5) is reduced from O(n2) to O(K |ε|)
(Defferrard et al., 2016).

On the basis of functional graph construction and spectral
graph convolution techniques, we proposed an FGDN for ASD
classification. The framework of the proposed FGDN model is
illustrated in Figure 2, which consists of five layers, i.e., the
functional graph construction layer, two graph convolutional
layers, fully connected layer, and one output layer. Given the ASD
graph of an input sample, the corresponding output of the ASD
unit (ASD output) is obtained. Likewise, the corresponding HC
output is obtained by the HC graph of the same input sample.
If the ASD output value is larger than the HC output, the input
sample will be categorized as ASD. If not, it will be considered as
HC class.

In the first layer of FGDN, each input functional connectivity
data is transformed into ASD and HC graphs by Equations (1)–
(5) and Figure 1. The number of graph nodes is determined
by ROIs of the atlas, which were applied to model functional
brain regions. In the paper, we will investigate the atlas of AAL
(Tzourio-Mazoyer et al., 2002), Harvard Oxford (Desikan et al.,
2006), and MODL (Dadi et al., 2019), which consists of 116,
118, or 128 ROIs (nodes). Then, the ASD graph and HC graph
will be fed into the following network to obtain ASD and HC
output, respectively. In each spectral graph convolution layer,
there are 64 graph convolutional kernels. Moreover, we utilized
korder Chebyshev spectral graph convolutional operation and
applied k = 3 following the previous research (Ktena et al., 2018;
Parisot et al., 2018). With two concatenated graph convolution
layers, the graph features could be extracted hierarchically that
is similar to convolution operations on grid data. The output of
graph convolution layer is flatten to obtain the full connection
(FC) layer. Parametric rectified linear unit (PReLU) activation
function is applied in the two graph convolution layers as well
as FC layer. Fully connected to the FC layer, the output layer of
FGDN model consists of two units, i.e., the ASD and HC output
units with sigmoid activation function.
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Then, the proposed model can be trained by minimizing
cross-entropy error of its predictions and the ground truth. As
a result, the loss function is defined as

L = −
∑

i∈�

∑

c

yic log(pic)+ (1− yic) log(1− pic) (9)

where pic is the value of ASD output unit (c = 1) or HC output
unit (c = 2) of FGDN model with the input of the ith training
sample, pic can be considered as the model’s predicted probability
of ASD or HC class, yic is the corresponding ground truth, and �

denotes all of training samples.
In the next section, a series of experiments will be carried

out to evaluate the proposed FGDN model. In addition, the
corresponding experimental results of our method will be
presented and compared with the other methods.

3. RESULTS

In this section, the experimental procedure and results of the
proposed FGDN will be presented. In the experiments, the
proposed method and some other popular ASD classification
methods are evaluated by the common ABIDE dataset. For
ease of reproduction, the training procedure and the parameter
settings of the proposed model are illustrated in the paper.

In our experiments, the hardware and software configuration
of our system is a platform with Nvidia Titan Xp, Ubuntu
16.04, and Pytorch 1.2.0. The graph convolution operation of our
work are achieved under the support of Pytorch-geometric 1.3.2
(Fey and Lenssen, 2019).

3.1. ABIDE Data Preprocessing
The ABIDE dataset was built for investigating the neural basis
of autism and facilitating the development of ASD diagnosis
techniques (Martino et al., 2014). We use the ABIDE data that
were preprocessed by the previous researchers (Dadi et al.,
2019) to discriminate individuals with autism spectrum disorder
from healthy controls. In the preprocessed ABIDE dataset, there
are 402 ASD samples and 464 HC samples. Following the
pipeline of previous research (Dadi et al., 2019), we utilized
Ledoit–Wolf regularized shrinkage estimator (Ledoit and Wolf,
2004) to efficiently estimate functional connectivity. According
to previous research (Dadi et al., 2019), the tangent space
embedding technique for estimating functional connectivity
could effectively improve ASD classification performance.
Likewise, we utilized tangent space embedding method to
calculate the functional connectivity of each rs-fMRI samples.

Following the above instructions in Equations (1)–(5), ASD
andHC functional graphs could be obtained. Here, the number of
neighbors in KNN method was set to 20 for graph construction.
Consequently, functional connectivity of each rs-fMRI data is
transformed to be an ASD graph and an HC graph with the same
node signals, i.e., the row vectors of its functional connectivity
matrix. Each rs-fMRI signal will be transformed into ASD and
HC graphs, then fed into the FGDN model and obtained the
output values of ASD and HC units. Then the category of the
input rs-fMRI sample could be identified.

3.2. Experiments
Before the experiment, the ABIDE dataset with 866 samples
(402 ASD and 464 HC) is randomly split into five- or ten-folds
for cross-validation (CV). Note that five- and ten-fold cross-
validations were widely used in the previous studies. To evaluate
the performance of different models, we measure the averaged
CV accuracy and area under the curve (AUC) from the receiver
operating characteristics curve.

In order to train the proposed FGDNmodel, Adam optimizer
(Kingma and Ba, 2014) is applied for minimizing the model’s loss
function equation (9). The proposed model was trained by Adam
optimizer with a learning rate of 0.0001, a weight-decay rate of
0.0005, and mini-batch size of 16. Drop-out operation with a
rate of 0.1 was applied in the training procedure for randomly
blocking the output units of graph convolution layers. Before
the training procedure, we separated 10% training samples as
monitoring set. Once the model achieved the highest accuracy
on monitoring set, the training procedure was stopped to avoid
overfitting. Finally, the trained FGDNmodel could be applied for
ASD prediction.

Once the proposed FGDN model was trained, we could
evaluate it and compare with the other models. As shown in
Tables 1, 2, the experimental results of the proposed FGDN and
many other methods on the ABIDE dataset. For evaluation, k-
fold cross-validation strategy denoted as CV-n (n = 5 and 10) was
applied. The averaged accuracy (ACC) of CV-5 and CV-10 along
with standard deviation (SD) were presented. The corresponding
area under the receive operating characteristic curve (AUC)
results were also present. The used atlases, features, and number
of subjects of different methods were present for analysis.

Conventional classifiers like logistic regression with L2
regularization (Logistic-ℓ2) and support vector machine with ℓ1
regularization (SVM-ℓ1) were applied as benchmark methods
for ASD classification (Rane et al., 2017; Dadi et al., 2019).
The corresponding accuracies were 64.1(0.9) and 62.0(−) (−
indicated an unknown score), respectively. The Logistic-ℓ2 was
based on tangent feature of MODL atlas, while the SVM-
ℓ1 was based on raw voxel values of standard anatomical
space (MNI152). Support vector classifier (SVC) was applied to
model tangent feature on MSDL atlas that ACC of 66.9(2.7)
was achieved (Abraham et al., 2017). The baseline classifiers
such as Gaussian Naive Bayes (GaussianNB), Random Forest
(RandomF), Ridge regression (Ridge), and K-nearest neighbors
(KNN) were also evaluated in the experiments.

Deep neural networks (DNN) achieved impressive
performance in many areas. For ASD classification, a recurrent
neural networks with long short-term memory (LSTM) was
proposed to model time series on Craddock 200 (CC200) atlas
and achieved ACC of 68.5(5.5) (Dvornek et al., 2017). With
an ASD classification accuracy of 71.0, the invertible network
(InvNet) was proven to be both effective at classification and
finding interpretable biomarkers for ASD (Zhuang et al., 2019).
As a popular technique in many areas, a DNN model was
applied for ASD classification and achieved an ACC of 70.0
(Heinsfeld et al., 2018).

Recently, some studies indicated that graph convolutional
network could effectively deal with structured data like functional
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TABLE 1 | Five-fold cross-validation performance.

Method Atlas Feature Number of subjects ACC(SD)% AUC(SD)%

GaussianNB MODL Tangent 866 63.5 (3.1) 65.7 (5.4)

RandomF MODL Tangent 866 61.3 (1.8) 66.3 (4.7)

Logistic-L2 MODL Tangent 866 64.1 (0.9) 69.8 (3.4)

Ridge MODL Tangent 866 63.8 (4.4) 63.4 (5.6)

KNN MODL Tangent 866 65.9 (4.6) 68.1 (5.2)

SVM-L1 None Voxel 1,112 62.0 (-) - (-)

sGCN HO Correlation 871 69.0 (-) - (-)

ASD-SAENet CC200 Correlation 1,035 70.8 (-) - (-)

FGDN HO Correlation 866 65.7 (2.2) 67.8 (3.5)

FGDN HO Tangent 866 71.4 (4.2) 76.9 (3.6)

FGDN AAL Correlation 866 66.7 (5.2) 67.5 (3.8)

FGDN AAL Tangent 866 72.3 (3.0) 75.1 (4.5)

FGDN MODL Correlation 866 68.8 (2.6) 72.2 (1.9)

FGDN MODL Tangent 866 72.5 (5.3) 77.8 (4.5)

The bold values indicate the largest values.

TABLE 2 | Ten-fold cross-validation performance.

Method Atlas Feature Number of subjects ACC(SD)% AUC(SD)%

GaussianNB MODL Tangent 866 64.0 (5.7) 65.0 (6.7)

RandomF MODL Tangent 866 62.8 (3.3) 64.9 (5.5)

Logistic-L2 MODL Tangent 866 64.8 (3.6) 69.0 (5.3)

ridge MODL Tangent 866 67.9 (3.2) 70.0 (5.2)

KNN MODL Tangent 866 65.8 (6.2) 66.6 (5.9)

SVC MSDL Tangent 871 66.9 (2.7) - (-)

LSTM CC200 Time Series 1,112 68.5 (5.5) - (-)

InvNet CC200 Correlation 1,035 71.0 (-) - (-)

DNN CC200 Correlation 1,035 70.0 (-) - (-)

AttentionET CC200 Correlation 1,054 72.2 (-) - (-)

GCN HO Correlation 871 70.4 (3.9) 75.0 (4.6)

FGDN HO Correlation 866 67.9 (5.5) 69.5 (6.4)

FGDN HO Tangent 866 71.4 (4.3) 77.7 (5.3)

FGDN AAL Correlation 866 65.9 (3.5) 71.8 (5.1)

FGDN AAL Tangent 866 70.8 (5.2) 79.4 (5.0)

FGDN MODL Correlation 866 68.0 (3.4) 69.8 (5.2)

FGDN MODL Tangent 866 71.8 (4.5) 76.3 (5.6)

The bold values indicate the largest values.

FIGURE 3 | Loss(accuracy or AUC)-vs.-epochs curves in the 10-fold cross-validation (CV) training procedure.
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connectivity. A siamese graph convolutional neural network
(sGCN) was proposed for functional connectivity classification,
which utilized Harvard Oxford (HO) atlas and Pearson
correlation features (Ktena et al., 2018). The sGCN was evaluated
by CV-5 on 871 ABIDE subjects and achieved an accuracy of 69%.
Using the phenotypic information of subjects, a GCN method
was proposed to model the connections between subjects that
it achieved accuracy of 70.4(3.9) and AUC of 75.0(4.6) in CV-
10 experiments (Parisot et al., 2018). An attention mechanism
based on Extra-Trees algorithm (AttentionET) achieved an ACC
of 72.2, which was state-of-the-art performance on CV-10 of
ABIDE dataset (Liu et al., 2020). Based on sparse autoencoder,
the ASD-SAENet achieved an accuracy of 70.8 on CV-5 of 1,035
subjects in ABIDE dataset (Almuqhim and Saeed, 2021).

As shown in Tables 1, 2, each baseline method had two
validation setups, i.e., five-fold CV and 10-fold CV. The FGDN
reached a high performance with ACC of 72.5(5.3) and AUC
of 77.8(4.5) by five-fold cross-validation (CV-5), and ACC of
71.8(4.5) and AUC of 76.3(5.6) by 10-fold cross-validation (CV-
10). The corresponding sensitivity and specificity were 73.9(4.7)
and 65.2(5.4) on CV-5, and 74.6(7.0) and 67.8(7.7) on CV-10.
Compared to the AttentionET method with sensitivity of 68.8
and specificity of 75.4, the proposed FGDN model had higher
sensitivity and lower specificity in CV-10 experiments.

FIGURE 4 | Performance of functional graph discriminative network (FGDN) as

the increasing ratio of training set used. Boxplots denote the variant of

classification accuracy/area under the curve (AUC) across 10-fold

cross-validation.

In Tables 1, 2, many baseline methods and the proposed
FGDN model were evaluated on the same data subsets (866
samples) and the same input representations (AAL, HO,
and MODL atlases with correlation and tangent features).
The proposed FGDN achieved higher performance than the
GaussianNB, RandomF, Ridge, and KNN. But some of the
referenced methods used different atlases, different features,
and different number of subjects that we could not compare
them in a quantitative way. According to these results, the
high performance of the proposed FGDN may depend on the
MODL atlas and the tangent features. The combination ofMODL
and tangent feature was also proven to be most discriminative
features on ASD classification according to the previous
quantitative experiments (Dadi et al., 2019). Consequently,
the cross-validation performance of FGDN demonstrated its
effectiveness in ASD classification.

In the next section, we will discuss about the internal
properties of the proposed model. It may be significant for
further research.

4. DISCUSSION

In this section, the proposed model will be discussed in details.
According to the benchmark research on multiple publicly
available rest-fMRI datasets (Dadi et al., 2019), the MODL and
tangent features were proven to be the best features for rest-fMRI
classification. As many previous research (Parisot et al., 2018;
Dadi et al., 2019; Zhuang et al., 2019), the 10-fold cross-validation
settings was widely used for experiments. Therefore, we all used
MODL atlas and tangent features, and evaluated on the CV-10
experiments in the discussion section.

First of all, we present the loss-vs.-epochs curves of the
models in the 10-fold CV experiments. In addition, the curves
of accuracy and AUC scores were also present. Second, we
discuss about the improved performance of FGDN model as
the increasing size of training dataset. In the experiments, We
varied the number of training samples while keeping a fixed-
sized validation set. Third, we analyzed inter-site performance of

TABLE 3 | Leave-one-site-out autism spectrum disorder (ASD) classification

performance of functional graph discriminative network (FGDN) on the Autism

Brain Imaging Data Exchange (ABIDE) dataset.

Site ACC%/AUC% Site ACC%/AUC%

NYU 65.8/67.5 CALTECH 73.0/70.3

UM_1 66.9/67.8 SDSU 77.7/81.3

USM 67.3/69.7 OLIN 75.6/71.9

UCLA_1 70.5/80.2 UM_2 67.3/65.0

PITT 70.5/68.5 LEUVEN_2 64.7/68.1

MAX_MUN 63.3/64.3 SBL 65.5/74.7

YALE 75.7/85.7 LEUVEN_1 53.5/60.9

KKI 75.8/84.5 OHSU 64.9/80.6

TRINITY 65.4/63.3 UCLA_2 76.4/83.0

STANFORD 68.6/79.3 CMU 60.5/79.7
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FGDN model. Finally, the discriminative brain regions for ASD
classification will be extracted for analysis.

In the left subfigure of Figure 3, the
training(red)/validation(blue) loss-vs.-epochs curves of the

10 models in the CV-10 experiments are presented. During
the training procedure, the model was trained to minimize
its training loss. In the meanwhile, the validation loss were
also decreased. Likewise, the training/validation curves

FIGURE 5 | Five most discriminative brain regions and the classification averaged accuracy (ACC)/area under the curve (AUC) (±SD). The ∗[x%] of each region

indicates that its ACC/AUC is significantly higher than that of the rest x% regions (t-test p < 0.05).
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of accuracy and AUC scores are present in the middle
and right subfigures of Figure 3. The averaged training
curve (red) and validation curve (blue) of accuracy/AUC
in 10-fold CV experiments are presented. As the model
was optimized by the training samples, the validation
accuracy/AUC scores increased. In practice, we will separate
10% training samples as monitoring set to conduct early
stopping and avoid overfitting. These curves demonstrated the
effectiveness of the proposed method to model and discriminate
ASD data.

As the increasing ratio of training set used, the corresponding
performance of FGDN is presented in Figure 4. We changed
the number of samples used for training the model (from
10 to 100% of the training set in CV-10), while the size
of validation set (one-fold of CV-10) was unchanged. If the
proposed model could work well with a relative small training
set, it will be promising for application. With only 20% of
training set, the model can achieve a performance better
than chance level. With the increase in training samples,
the accuracy or AUC also increases. The positive slope
indicates that the addition of new training samples substantially
improves performance.

Inter-site classification performance is also significant for
the techniques in neuroscience (Dvornek et al., 2017; Dadi
et al., 2019). Likewise, one of the challenging problems in
identifying ASD patients lie in the individual differences
of functional connectivity as well as acquisition protocol
differences. In the experiment, leave-one-site-out strategy
was applied that the samples of the studied site were
used for testing while the samples of the rest sites were
applied for training. And we used MODL atlas and tangent
features for analysis. As shown in Table 3, we presented the
performance of FGDN for ASD classification of all 20 sites.
The proposed FGDN model achieved higher than chance
level performance on each site with accuracies from 53.5 to
77.7, AUCs from 60.9 to 85.7. These results demonstrated the
effectiveness of the proposed model to overcome different
MRI facilities and different MRI settings for inter-site
ASD classification.

According to our experiments and the previous research (Dadi
et al., 2019), the MODL atlas is promising for ASD classification
performance. As a result, we would like to study the most
discriminative brain region of MODL for ASD classification. In
theMODL atlas, there are totally 128 regions that are represented
by R i(i = 0 . . . 127) in the paper. In the experiments, only the
features of the studied region will be kept unchanged while the
features of the rest 127 regions were clamped to zeros. Then, we
fine-tuned the model which were already trained in the previous
CV-10 experiments. We considered that the averaged validation
accuracy of each MODL region was its discriminative weight for
ASD classification. As shown in Figure 5, the visualizations of
the five most discriminative MODL regions (R82, R8, R80, R56,
and R51) for ASD classification are presented. The classification
AUC/ACC and the standard deviation (SD) of each region are
presented as well. To study the differences in the discriminative
power between the individual MODL regions, we applied t-test
method to compare the ACC/AUC of different regions in CV-10

experiments. The t-test results of the five most discriminative
brain regions are also presented in Figure 5. The ∗[x%] of
each region indicates that its ACC/AUC is significantly higher
than that of the rest x% regions with t-test p < 0.05. For
example, the R82 region achieved an AUC of 66.3, which is
significantly higher than the rest 73% brain regions. According
to the R8, R80, and R82 regions, the superior temporal gyrus is
the most discriminative region. This is consistent with findings
from the neuroscience field that the cortical volume in several
subregions of the superior temporal gyrus are abnormal in
individuals with autism (Padmanabhan et al., 2017; Khosla
et al., 2018; Zhuang et al., 2019). Therefore, it is a possible
technique to determine the discriminative brain regions for
ASD identification.

The above experiments and analysis of the proposed
FGDN model are significant for studying the ASD. The
proposed model can be considered as a new tool for ASD
identification as well as the other neuroscience researches based
on functional connectivity.

5. CONCLUSION

In this paper, an FGDN was proposed for identifying autism
spectrum disorder. The FGDN model was built to discriminate
functional graphs of ASD patients and health controls.
The proposed model achieved a high ASD classification
performance on the ABIDE dataset. In addition, inter-
site predictions and discriminative brain regions for ASD
prediction were investigated with the proposed model. The
experiments and analysis demonstrated that the FGDN
model is not only an effective model for identify autism
patients but also a potential technique for neuroscience
research. In the future, we would like to build more efficient
networks to model functional connectivity and identify autism
patients. Moreover, some new emerging machine learning
techniques can also inspire the methodology in neuroscience like
autism identification.
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