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Background: Resting state beta band (13–30 Hz) oscillations represent pathological
neural activity in Parkinson’s disease (PD). It is unknown how the peak frequency or
dynamics of beta oscillations may change among fine, limb, and axial movements and
different disease phenotypes. This will be critical for the development of personalized
closed loop deep brain stimulation (DBS) algorithms during different activity states.

Methods: Subthalamic (STN) and local field potentials (LFPs) were recorded from a
sensing neurostimulator (Activa R© PC + S, Medtronic PLC.) in fourteen PD participants
(six tremor-dominant and eight akinetic-rigid) off medication/off STN DBS during 30 s
of repetitive alternating finger tapping, wrist-flexion extension, stepping in place, and
free walking. Beta power peaks and beta burst dynamics were identified by custom
algorithms and were compared among movement tasks and between tremor-dominant
and akinetic-rigid groups.

Results: Beta power peaks were evident during fine, limb, and axial movements in 98%
of movement trials; the peak frequencies were similar during each type of movement.
Burst power and duration were significantly larger in the high beta band, but not in the
low beta band, in the akinetic-rigid group compared to the tremor-dominant group.

Conclusion: The conservation of beta peak frequency during different activity states
supports the feasibility of patient-specific closed loop DBS algorithms driven by the
dynamics of the same beta band during different activities. Akinetic-rigid participants
had greater power and longer burst durations in the high beta band than tremor-
dominant participants during movement, which may relate to the difference in underlying
pathophysiology between phenotypes.

Keywords: beta oscillations, Parkinson’s disease (PD), local field potentials (LFP), subthalamic nucleus (STN),
deep brain stimulation (DBS), beta bursts, akinetic rigid, tremor dominant
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INTRODUCTION

Exaggerated resting state beta band (13–30 Hz) oscillations and
synchrony are pathophysiological markers of hypokinetic aspects
of Parkinson’s disease (PD). When averaged over time, these
oscillations appear as elevated portions of the local field potential
(LFP) power spectral density (PSD) above the broadband 1/f
spectrum (He, 2014; Shreve et al., 2017). Beta band power is
attenuated on dopaminergic medication and during subthalamic
(STN) deep brain stimulation (DBS); the degree of attenuation
has been correlated to the degree of improvement in bradykinesia
and rigidity, whereas averaged resting state beta band power is
less robustly correlated with PD motor signs (Brown et al., 2001;
Cassidy et al., 2002; Levy et al., 2002; Williams et al., 2002; Priori
et al., 2004; Kühn et al., 2006, 2008, 2009; Weinberger et al., 2006;
Ray et al., 2008; Bronte-Stewart et al., 2009; Eusebio et al., 2011;
Whitmer et al., 2012; Quinn et al., 2015; Kehnemouyi et al., 2021).

Recently, it has been shown that physiological resting state
beta oscillations are represented by short duration fluctuations
in power (beta bursts) in the striatum and cortex of healthy
non-human primates (Feingold et al., 2015). These authors
suggested that the precise temporal dynamics of beta bursts may
be more reliable markers of PD than averaging beta activity
over periods of time. Burst dynamics in PD have been studied
during rest (Tinkhauser et al., 2017; Anderson et al., 2020),
but less is known about real time beta burst dynamics during
movement and whether beta burst dynamics differ during fine
motor or limb movements and/or during gait and freezing of
gait (FOG) (Anidi et al., 2018; Lofredi et al., 2019; Kehnemouyi
et al., 2021). The duration of beta bursts is a relevant neural
control variable for closed loop DBS systems, which can precisely
target (shorten) the duration of beta bursts, but it is not known
how this variable may change among movements which may
necessitate a different response from a closed-loop algorithm
(Petrucci et al., 2020a).

In addition to differences among tasks, it is unclear how
beta burst dynamics may differ between sub bands of beta or
between Parkinson’s disease phenotypes. Previous studies that
have evaluated phenotype differences primarily focused on high
(20–35 Hz) and low (10–20 Hz) beta band power in the operating
room or perioperative state (i.e., the week after implantation).
Differences in high beta band power were demonstrated between
tremor-dominant (TD) and akinetic-rigid (AR) phenotypes at
rest, but not during movement in an elbow-flexion task in the
operating room (Godinho et al., 2021). Furthermore, within
band differences between rest and movement were observed for
each phenotype (low beta for tremor-dominant and high beta
for akinetic-rigid). Differences in resting state high beta power
have also been reported in the immediate post-operative period
between people with and without FOG, as assessed off medication
in the pre-operative period (Toledo et al., 2014). To date, no study
has compared burst durations within sub bands of beta, between
disease phenotypes, and during different movements using a
chronically implanted device. In this study, we investigated
whether beta band peak frequencies were conserved or were
different during fine, limb, and/or axial movements in people
with PD, and whether there were differences in beta band and

sub band power and burst dynamics between the akinetic-rigid
and tremor-dominant phenotypes.

MATERIALS AND METHODS

Human Participants
Fourteen participants (10 male) with clinically established
PD underwent bilateral implantation of DBS leads (model
3389, Medtronic PLC., Minneapolis, MN, United States) in
the sensorimotor region of the subthalamic nucleus (STN)
using a standard functional frameless stereotactic technique and
microelectrode recording (MER) (Brontë-Stewart et al., 2010;
Quinn et al., 2015). Long-acting dopaminergic medication was
withdrawn over 24 h (72 h for extended-release dopamine
agonists) and short-acting medication was withdrawn for
over 12 h before surgery and before each study visit. One
participant took an extra short-acting carbidopa/levodopa tablet
5 h before the experiments and was included as their resting
state LFP spectra were similar 6.25 and 8.5 h later, suggesting
resolution of an attenuating effect of medication on beta power
(Trager et al., 2016). The preoperative selection criteria and
assessment of participants have been previously described (Taylor
Tavares et al., 2005; Bronte-Stewart et al., 2009; de Solages
et al., 2010). The dorsal and ventral borders of each STN
were determined using MER, and the base of electrode 0
of the Medtronic 3389 lead was placed at the MER defined
ventral border of the STN (Marceglia et al., 2006; de Solages
et al., 2010, 2011). The DBS leads were located in the STN
(Figure 1A). All participants signed a written consent and the
study was approved by the Food and Drug Administration,
Investigational Device Exemption and the Stanford School of
Medicine Institutional Review Board. Each participant was
classified as TD or AR phenotype based on previously described
criteria (Quinn et al., 2015; Trager et al., 2016; Shreve et al.,
2017) and the more and less affected sides were determined
by unilateral Unified Parkinson’s Disease Rating Scale (UPDRS)
part III sub-scores.

Experimental Protocol
All experiments were performed within 2 months after DBS
lead placement in the off medication/off DBS state. Recordings
were collected in the Stanford Human Motor Control and
Neuromodulation Laboratory. Experiments started with a resting
state recording, during which each participant sat still for 30 s.
Participants completed four different movement tasks (Figure 2):
(1) quantitative digitography (QDG) on an engineered keyboard
(Bronte-Stewart et al., 2000; Taylor Tavares et al., 2005; Trager
et al., 2015) (2) instrumented repetitive wrist-flexion extension
(WFE) (Koop et al., 2006, 2008; Louie et al., 2009), (3) stepping in
place (SIP) on dual force plates (Nantel et al., 2011), and (4) free
walking (FW). During the QDG task, participants were seated
with their elbow flexed at approximately 90◦ and the wrist was
supported by a pad alongside a customized engineered keyboard.
Visual and auditory feedback was minimized, as the participants
had their eyes closed and wore headphones that played white
noise to limit auditory feedback from the key tapping. With the
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FIGURE 1 | Method for determining burst durations (A) PSD diagrams of 30 s during a Parkinsonian resting state (red) versus pink noise (gray), which can be
considered simulated 1/f baseline activity in the brain. The yellow, shaded area represents the 6 Hz band centered on the peak of the PSD. The green-dashed lines
display the area where there is no elevation of the resting state PSD above the pink noise simulated 1/f activity. (B) Consecutive, 6 Hz envelopes of the filtered and
squared resting state LFP during the resting state within the non-pathological, high frequency range. The red lines signify the median power of the troughs from each
envelope. (C) The envelope of a 6 Hz band within the elevated area of the PSD diagram. The threshold for determining burst durations, represented by the red line,
was calculated by multiplying the average median trough powers within the high frequency range by a factor of four.

index and middle fingers placed on individual keys, participants
were instructed to tap each key in an alternating pattern as
fast and regularly as possible for 30 s. For the instrumented
rWFE task, participants were seated with their elbow flexed at
approximately 90◦ and the hand in the mid-pronated-supinated
position before they were asked to flex and extend their wrists
as fast as possible for 30 s. During the SIP task, participants
were instructed to perform alternating stepping on dual force
plates for 100 s. For the FW task, all participants walked for
approximately 1 min within a lab space that consisted of circular
and straight paths (two participants only walked within the
straight path) with interspersed 90–180◦ turns. All movements
were self-paced.

Data Acquisition and Analysis
Local field potentials (LFPs) from the STN were recorded from
the electrode pair of the DBS lead that had the greatest resting
state beta band peak power and the least artifact (electrode
pairs 0–2 or 1–3 of the Medtronic 3389 lead; Supplementary
Table 1). The pre-amplified LFP was high-pass filtered at 2.5 Hz
and low-pass filtered at 100 Hz. LFP data was sampled at
a rate of 422 Hz (10-bit resolution). The gains used for the

experiments were set at 2,000, and since these experiments
were off stimulation, we set the center frequency of the Activa R©

PC + S neurostimulator to the lowest frequency setting of
2.5 Hz (Blumenfeld et al., 2017). The uncompressed LFP data
were extracted via telemetry using the Activa R© PC + S tablet
programmer and then transferred to a computer for offline
analysis in MATLAB (version 9.5, The MathWorks Inc., Natick,
MA, United States). LFP data used for analysis was from the first
30 s of movement or from the maximum length of continuous
movement without cueing. The power spectra were estimated
using Welch’s method, which used a 1-s Hanning window with
50% overlap (Welch, 1967). The peak frequency in the beta
band was detected using a peak detection algorithm (de Solages
et al., 2010). The peak detection algorithm runs through each
point in the PSD under 40 Hz and labels a peak when both
the central and lower frequency, adjacent bin are greater than
the mean of the 3rd to 5th bins in the direction of lower
frequency and the central and higher frequency, adjacent bin are
greater than the mean of the 3rd to 6th bins in the direction of
higher frequency. The chosen peak was then verified by visual
inspection. If more than one peak was detected, the peak with
the greatest power was chosen. In two movement episodes,
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FIGURE 2 | The (A) quantitative digitography (QDG), (B) instrumented repetitive wrist-flexion extension (WFE), (C) stepping in place (SIP), and (D) forward walking
(FW) tasks.

the algorithm failed to detect a peak, which was evident on
visual inspection.

Local Field Potential Burst Dynamics
Determination
The method for determining the burst dynamics was adopted
from Anderson et al. (2020; Figure 1), which uses a baseline
threshold calculated from a portion of the PD LFP spectrum that
corresponds to the power and burst dynamics of a simulated,
physiological 1/f spectrum. The baseline method captures a
broader range of beta burst durations than high power burst
detection methods. The LFP within the band of interest was
first filtered using a 6-Hz bandwidth, zero-phase 8th order
Butterworth filter, and then squared. An envelope was formed
by interpolating between the consecutive peaks of the filtered,
squared signal, Figure 1C. The threshold for characterizing
individual bursts is calculated by averaging the median trough
amplitudes from 5 consecutive overlapping 6 Hz bands in the 45–
63 Hz PD gamma spectrum and multiplying the median trough
power by a factor of four, Figures 1B,C. The 5 overlapping bands
used to define the threshold were set to the following frequencies:
45–51 Hz, 48–54 Hz, 51–57 Hz, 54–60 Hz, and 57–63 Hz. In
contrast to the elevated, beta frequency band of the PD spectrum,
the higher frequency band (45–63 Hz) is not elevated above

the physiological LFP activity or 1/f signal, and contains burst
dynamics resembled that of physiological neural activity (He,
2014; Anderson et al., 2020). Burst duration was calculated as
the time between consecutive crossings of the envelope across
the baseline threshold. The average power of each burst was also
calculated (mean burst power) by averaging the power envelope
between consecutive crossings across the baseline threshold.

Statistics
The primary outcome variables were peak frequency during
movement, power, mean burst power, and mean burst duration.
Power, mean burst power, and mean burst duration were
calculated separately for low beta (14–20 Hz) and high beta
(22–28 Hz) frequency bands. We used 6 Hz bands to allow for
equal comparison of burst durations between bands (Anderson
et al., 2020). Normalization of all power values was completed
through division by the average power of the squared signal in
the 45–63 Hz frequency band during the resting state; this high
frequency band overlaps with the physiological 1/f curve and is
clear of elevated, Parkinsonian beta activity (Anidi et al., 2018).
Independent t-tests were used to compare age, disease duration,
and pre-operative UPDRS scores between the TD and AR
phenotypes. One-way repeated measures ANOVAs compared
peak frequencies in the PSDs and variation in power and burst
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FIGURE 3 | (A) The lead placements for all participants for the left and right STNs. (B) The normalized grand average power spectral density plots for the four tasks.
The power spectra were normalized to the average power in 45–63 Hz. The grand average PSD for each task was generated using the averaged data across all
STNs during 30 s of movement. (C,D) The beta frequency peaks for each task by participant in the more and less affected STNs.

metrics among the different movement tasks in high and low
beta with each STN treated individually and PD phenotype as
a between-subjects factor. Analyses were corrected for multiple
comparisons using Bonferroni correction. In the presence of a
violation of Mauchly’s test of sphericity, the Greenhouse–Geisser
correction was applied. There was one trial per movement task
for each participant.

RESULTS

Of the 14 participants, six were classified as TD and eight
were classified as AR. The age of the group (mean ± SD) was
57.0 ± 10.2 years (TD 60.4 ± 10.8 years; AR 54.4 ± 9.5 years),
and the disease duration from symptom onset was 7.7± 3.7 years
(TD 8.7 ± 4.3 years; AR 7.0 ± 3.2 years). UPDRS III scores
(mean ± SD) in the pre-operative off- and on-medication state
were 39.2 ± 14.8 (TD 44.7 ± 12.3; AR 37.6 ± 16.1) and
23.2 ± 14.1 (TD 19.2 ± 7.7; AR 25.4 ± 16.5), respectively. There
were no significant differences in age, disease duration, or pre-
operative UPDRS scores between participants classified as TD

and AR (p > 0.05). The DBS leads were well placed within the
STN, Figure 3A.

Peak Frequency Was Conserved Across
Different Movements
Among the cohort of 24 STNs (8 TD and 16 AR) for
whom peaks could be detected, peaks of elevated beta power
were detected in 98% (94/96) of all movement episodes
during the different tasks across all STNs, demonstrating that
exaggerated beta band oscillations and synchrony were present
during fine motor, limb and axial movements. In two TD
participants, no peak was detected in either hemisphere, so
they were excluded from this analysis. Beta peaks across
the four movement tasks is depicted in the grand average
PSDs in Figure 3B. The peak frequency did not differ
across the movement tasks [F(1.62,35.53) = 0.58, p = 0.53,
partial η2 = 0.026) or between phenotypes [F(1,22) = 0.39,
p = 0.54, partial η2 = 0.017), and there was no interaction
between task and phenotype [F(1.62,35.53) = 2.93, p = 0.076,
partial η2 = 0.12) on peak frequency. Peak frequency across
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FIGURE 4 | Grand average normalized power spectral density plots for each phenotype in the (A) QDG, (B) WFE, (C) SIP, and (D) FW tasks. There were significant
differences (p < 0.05) between phenotypes in the high beta band.

movements was similar in the more (Figure 3C) and less affected
(Figure 3D) STNs.

Differences in Power Between
Tremor-Dominant and Akinetic-Rigid
Groups in the High Beta Band
Normalized power was analyzed across movement tasks and
between the TD and AR groups in high and low beta for the
full cohort of 28 STNs (Figure 4). In high beta, there was a
significant effect of phenotype [F(1,26) = 8.84, p = 0.006, partial
η2 = 0.25], but not of task [F(1.33,34.62) = 2.93, p = 0.085,
partial η2 = 0.10] (Figure 4). Normalized high beta power was
greater for the AR group compared to the TD group across all
movements (Figure 5A). In low beta, there were no differences in
normalized power between phenotypes [F(1,26) = 1.27, p = 0.270,
partial η2 = 0.047] or across tasks [F(1.39,36.18) = 0.88, p = 0.39,
partial η2 = 0.033]. There was also no interaction between task
and PD phenotype for normalized power in either low beta
[F(1.39,36.18) = 0.088, p = 0.85, partial η2 = 0.003] or high beta
[F(1.33,34.62) = 0.59, p = 0.49, partial η2 = 0.022].

Differences Between the Akinetic-Rigid
and Tremor-Dominant Groups and
Across Tasks in the High Beta Band
Mean burst duration was analyzed across movement tasks and
between the TD and AR groups in high and low beta for 27
STNs (11 TD and 16 AR) (Figure 5B). Burst data for one STN
of a TD patient was excluded because burst duration in low
beta during the FW task was identified as a statistical outlier
(greater than 3 SD from the mean). In high beta, there was both
a significant effect of phenotype [F(1,25) = 8.92, p = 0.006, partial
η2 = 0.26] and of task [F(1.75,43.67) = 4.48, p = 0.021, partial
η2 = 0.15]. High beta mean burst duration was greater for the AR
phenotype compared to the TD phenotype across all movements
(Figure 5B). Pairwise comparisons between movement tasks
did not reveal significant differences between specific tasks with
the Bonferroni correction (p > 0.05). In low beta, there were
no differences in mean burst duration between phenotypes
[F(1,25) = 2.34, p = 0.14), partial η2 = 0.085] or across tasks
[F(1.36,33.87) = 0.18, p = 0.75, partial η2 = 0.007]. There was
no interaction between task and PD phenotype for mean burst
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FIGURE 5 | (A) Normalized high beta peak power and (B) high beta burst
durations by task and phenotype. Note, a significant main effect was
observed between groups (p < 0.05) but not task, and there was no
significant interaction effect.

duration for either low beta [F(1.36,33.87) = 0.44, p = 0.57, partial
η2 = 0.017] or high beta [F(1.75,43.67) = 0.43, p = 0.63, partial
η2 = 0.017].

Differences in Mean Burst Power
Between Parkinson’s Disease
Phenotypes, but Not Across Tasks, in
High Beta
Mean burst power was analyzed across movement tasks and
between PD phenotypes in high and low beta (Figure 5A).
In high beta, there was a significant effect of phenotype
[F(1,25) = 9.06, p = 0.006, partial η2 = 0.266], but no effect
of task [F(1.34,33.50) = 0.41, p = 0.59, partial η2 = 0.016].
High beta mean burst power was greater for the AR phenotype
compared to the TD phenotype across all movements. In low
beta, there were no differences in mean burst power between
phenotypes [F(1,25) = 3.12, p = 0.090, partial η2 = 0.11] or across
tasks [F(1.30,32.52) = 0.24, p = 0.69, partial η2 = 0.010]. There
was no interaction between task and PD phenotype for mean
burst power in both low [F(1.30,32.52) = 0.084, p = 0.84, partial
η2 = 0.003] and high [F(1.34,33.50) = 0.040, p = 0.90, partial
η2 = 0.002] beta.

DISCUSSION

The results of this study demonstrate that pathological beta
oscillations and synchrony are present during ongoing
movement and that the frequencies of the beta band peak
were similar among fine, limb and axial movements. However,
people with PD classified as akinetic-rigid showed greater high
beta power and high beta burst duration and burst power across
all tasks compared to those classified as tremor-dominant.
This difference may point to an important difference in
pathophysiology between phenotypes.

The Clinical Significance of the
Conservation of Beta Band Peak
Frequency Across Movements
Several studies have demonstrated that beta power decreased
before, at the onset of, and during movement in human
participants with PD and in non-human primates (Kühn et al.,
2004; Litvak et al., 2011; Joundi et al., 2013; Johnson et al., 2016;
Blumenfeld et al., 2017; Syrkin-Nikolau et al., 2017; Anidi et al.,
2018; Fischer et al., 2018; Hell et al., 2018; Lofredi et al., 2019).
This has led to a frequent generalization in the literature that beta
power “goes away” during movement. The results of this study
demonstrate that beta peaks were still evident during movement,
and that the peak frequencies were conserved among fine motor
and limb movements and during gait. This may alleviate concerns
regarding the implementation of closed loop DBS in freely
moving people. Up to now, closed loop DBS classifier algorithms
have used estimates of resting state beta band power as the control
variable (Little et al., 2013, 2016a,b; Rosa et al., 2015, 2017; Piña-
Fuentes et al., 2017, 2019; Afzal et al., 2019; Velisar et al., 2019;
Petrucci et al., 2020b). Such algorithms require knowledge of the
peak frequency of the band of interest and until now it was not
known whether the same beta band could be used to drive closed
loop DBS when the person is working at their computer, eating,
dressing, or when walking. Although others have seen that there
was a slight shift in peak frequency between different motor states
(Canessa et al., 2020), we observed no significant difference across
four different tasks. The conservation of the choice of the band
of interest (determined by the peak frequency) among fine, limb,
and axial movements suggests that the same classifier algorithms
will be appropriate across movement states. Additionally, even if
small differences are observed in peak frequencies, most current
methods for tracking beta band look across a bandwidth of
6±Hz and therefore are robust against shifts in peak frequencies
that still fall within these bandwidths (Afzal et al., 2019; Velisar
et al., 2019; Petrucci et al., 2020a).

Differences in Pathophysiology Between
Motor Phenotypes
Our results demonstrate that the AR group shows greater high
beta power and burst metrics across tasks compared to the
TD group. This is the first study to show neural oscillatory
differences in the STN between PD phenotypes across different
movement states. High beta oscillations in the STN have been
posited to relate to STN-cortical connections in PD, whereas
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low beta oscillations relate to intrinsic pathophysiology within
the basal ganglia (Oswal et al., 2020). Specifically, coupling
in high beta between the STN and supplementary motor area
(SMA) correlates with fiber density between those two regions.
Furthermore, improvement in rigidity with DBS has been shown
to be related to connectivity to the SMA (Akram et al., 2017).
The differences observed in our study between AR and TD
may reflect differences in these STN-cortical interactions. This is
further supported by the previous work demonstrating greater
high beta power in freezers compared to non-freezers (Toledo
et al., 2014) and tremor-dominant vs. akinetic-rigid (Godinho
et al., 2021) at rest. Together, these results point to a pathological
low beta oscillation that is consistent across phenotypes and
then a potentially separate high beta oscillation that may be
more specific to akinetic-rigid symptoms regardless of task.
These differences could be utilized to improve patient-specific
closed-loop loop algorithms due to recent advances in technology
(SummitTM RC + S, Medtronic PLC.) that can track multiple
bands simultaneously.

LIMITATIONS

Due to the limited number of investigative devices (Activa R©

PC + S, Medtronic PLC., Minneapolis, MN, United States)
allocated to centers, the sample size was small but comparable
to previous studies (Quinn et al., 2015; Blumenfeld et al., 2017;
Syrkin-Nikolau et al., 2017; Anidi et al., 2018). Additionally,
the tremor-dominant cohort displayed a mix of presence versus
absence of tremor across the tasks and therefore it is difficult to
say with certainty that the observed differences in high beta are a
phenological difference between phenotypes or that the action of
the tremor itself is specific to high beta. We did confirm in at least
2 participants that there was not an appreciable difference in high
beta during the tremor and non-tremor periods when tremor
arose in the middle of the trial (see Supplementary Figures 1–8).
A larger cohort of tremor-dominant participants is needed to
confirm these findings.

CONCLUSION

The results of this study demonstrated that exaggerated beta
power was evident during fine motor, limb and axial movements
and that the peaks of the frequency band of elevated power were
similar during such different movements. Furthermore, there
were significant differences in beta power and burst durations
between the akinetic-rigid and tremor-dominant phenotypes in
the high beta, but not low beta. These findings are critical for
future closed loop DBS systems, which will require an input that
is both indicative of the disease state as well as robust through the
patient’s activities of daily living.
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