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In recent years, myoelectric interfaces using surface electromyogram (EMG) signals
have been developed for assisting people with physical disabilities. Especially, in the
myoelectric interfaces for robotic hands or arms, decoding the user’s upper-limb
movement intentions is cardinal to properly control the prosthesis. However, because
previous experiments were implemented with only healthy subjects, the possibility of
classifying reaching-to-grasping based on the EMG signals from the residual limb
without the below-elbow muscles was not investigated yet. Therefore, we aimed to
investigate the possibility of classifying reaching-to-grasping tasks using the EMG from
the upper arm and upper body without considering wrist muscles for prosthetic users.
In our study, seven healthy subjects, one trans-radial amputee, and one wrist amputee
were participated and performed 10 repeatable 12 reaching-to-grasping tasks based on
the Southampton Hand Assessment Procedure (SHAP) with 12 different weighted (light
and heavy) objects. The acquired EMG was processed using the principal component
analysis (PCA) and convolutional neural network (CNN) to decode the tasks. The
PCA-CNN method showed that the average accuracies of the healthy subjects were
69.4 £ 11.4%, using only the EMG signals by the upper arm and upper body. The
result with the PCA-CNN method showed 8% significantly higher accuracies than the
result with the widely used time domain and auto-regressive-support vector machine
(TDAR-SVM) method as 61.6 + 13.7%. However, in the cases of the amputees, the
PCA-CNN showed slightly lower performance. In addition, in the aspects of assistant
daily living, because grip force is also important when grasping an object after reaching,
the possibility of classifying the two light and heavy objects in each reaching-to-
grasping task was also investigated. Consequently, the PCA-CNN method showed
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higher accuracy at 70.1 + 9.8%. Based on our results, the PCA-CNN method can
help to improve the performance of classifying reaching-to-grasping tasks without wrist
EMG signals. Our findings and decoding method can be implemented to further develop
a practical human-machine interface using EMG signals.

Keywords: myoelectric interfaces, reaching-to-grasping tasks, Southampton Hand Assessment Procedure,
convolutional neural network, electromyogram

INTRODUCTION

Nowadays, the myoelectric interfaces based on electromyogram
(EMG) have been developed for supporting the daily living of
amputees. Especially, due to its ease of use and non-invasiveness
for supporting daily living by interacting with external devices,
the myoelectric interfaces have become a useful technology
(Hargrove et al., 2007; Castellini et al, 2009). Examples of
the myoelectric interfaces include prosthetic arm and hand
(Peerdeman et al., 2011; Scheme and Englehart, 2011; Fougner
et al., 2012; Chowdhury et al,, 2013; Ison and Artemiadis, 2014;
Kim et al., 2014), teleoperation robotic devices (Fukuda et al.,
2003; Shenoy et al., 2008; Wolf et al., 2013), and gaming interfaces
(Saponas et al., 2010).

The overview of the representative myoelectric interface for
an external device is illustrated in Figure 1. The EMG signals are
acquired from the user’s movement execution resulting from the
user’s movement intentions. Then, suitable features are extracted
and classified via advanced pattern recognition and machine
learning algorithms. So far, the time and frequency domains-
based various characteristics, as well as numerous optimal
classifiers, have been studied in detail to improve the performance
of the classification of the movement intent with varying degrees
of success (Zardoshti-Kermani et al.,, 1995; Chu et al., 2007;
Phinyomark et al., 2013; Ameri et al., 2014; Park et al., 2015; Kim
etal., 2019). Finally, the classified user’s intentions are decoded as
control commands for interfacing with external devices.

The human’s upper-limb movement for grasping an object is a
complex task, and various experiments and researches have been
implemented (Fligge et al., 2013). Especially, the differentiated
control of all fingers is difficult to achieve because of the high
dimensionality of the degrees of freedom (DOFs) of the hand
(Batzianoulis et al., 2017). The human hand has 21 DOFs
controlled by 29 muscles (Jones and Lederman, 2006). This
means that humans can control the large number of DOFs of their
hands skillfully via a multidimensional reduction in the central
nervous system-controlled variables (Batzianoulis et al., 2017).
This multidimensional reduction, i.e., substantial reduction of
DOFs during grasping objects, may be accomplished through the
use of postural synergies (Santello et al., 1998) associated with
many hand postures during grasping objects (Batzianoulis et al.,
2017). In this context, several works studied a mapping between
hand postures and upper-limb EMG signals (Smith et al., 2008;
Dalley et al., 2011; Ouyang et al., 2013; Sapsanis et al., 2013) as a
strategy to control a large number of the hand’s movement. These
studies investigated grasping when the hand had already reached
the final configuration. In these studies, subjects were asked
to perform the appropriate grasp while the upper-arm stalled.

However, in the case of reaching-to-grasping movement, the
configuration of the hand changes simultaneously with the arm’s
motion, including the upper arm and forearm, because the hand’s
pre-shape is defined before reaching their final configuration
following the characteristics of the object, such as the shape,
weight, etc. For example, humeral rotation is closely related to
object orientation (Marotta et al., 2003), and transportation time
and peak speed can be affected by object size at the same time
(Marteniuk et al., 1987).

Recently, Brochier et al. (2004) validated that the upper arm
and shoulder muscles in monkeys contain valuable information
to discriminate grip types and object locations. In this case,
the long flexor muscles and the intrinsic muscles appear to be
involved only while the phase related to the generation of force,
whereas all other muscles of the upper and lower extremities
were active during all different phases and showed a significant
interdependency between the actions performed during reach-to-
grasp. This means that, for the classification of different grasping
tasks, it may not require to record activities at more distal
muscles, such as the wrist muscles.

In this context, Martelloni et al. (2008) showed that the
development of a pattern recognition method could discriminate
EMG signals recorded at the proximal muscles (the deltoideus
pars anterior, trapezius pars ascendens, pectoralis major pars
clavicularis, triceps brachii caput longum, biceps brachii caput
longum, extensor carpi radialis, and flexor carpi radialis) during
grasping different objects placed within the different positions.
The experiments were implemented with healthy subjects, and
the subjects performed reaching and grasping for the three types
of objects (a tennis ball, a tin, and a key), which were placed
in three different table positions (Martelloni et al., 2008). As a
result, the experimental results showed the ability to distinguish
between different handles (i.e., palmar, side, or pinch grip)
with objects based on EMG signals (Martelloni et al., 2008).
However, due to the experiments were implemented with only
healthy subjects, an additional experiment is required to be
implemented for considering the various types of users, such as
the transradial amputees.

In the cases of most trans-radial amputees, because they have
the EMG signals from the lower-arm muscles such as the flexor
carpi radialis, and extensor carpi radialis, classification strategies
for the healthy subjects can be applied. Indeed, numerous
studies have been conducted to classify upper-limb movements
in transradial patients using the muscles, which close to the wrist,
activation patterns (Chu et al., 2007; Batzianoulis et al., 2017; Kim
et al.,, 2019). However, there are cases of transradial amputees
who do not have the muscles below-elbow or have difficulty
controlling the muscles due to deficits in muscle strength and
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FIGURE 1 | Overview of myoelectric interfaces. (A) Movement excution. (B)
EMG signals acquisition. (C) Intentions decoding. (D) Extra device control.

control that could happen due to accidents at very young ages. For
these cases, a few studies were conducted for classifying the finger,
wrist, and elbow movements using upper-limb muscles, such as
triceps and biceps (Young et al., 2012; Jarrassé et al., 2016; Gaudet
et al,, 2018) until now. Young et al. (2012) showed the possibility
of classifying the hand open/close and wrist flexion/extension
using the EMG signals with EMG signals based on biceps and
triceps. Furthermore, Jarrassé et al. (2016) showed that the
individual phantom finger movements (flexion/extension), as
well as the wrist and elbow, can be classified using only EMG
signals extracted at the upper arm. Moreover, Gaudet et al.
(2018) showed the possibility of classifying between the upper-
limb phantom movements (elbow flexion/extension, forearm
pronation/supination, etc.) and a no-movement, using the EMG
from site exclusively on the amputee stump. In the studies
mentioned earlier (Young et al., 2012; Jarrassé et al., 20165
Gaudet et al.,, 2018), the time-domain features, such as the mean
absolute value (MAV), slope sign changes (SSC), zero-crossing
(ZC), waveform length (WL), root mean square, autoregressive
coefficients (AR), etc., were extracted and classified using the
linear discriminant analysis (Young et al., 2012; Jarrassé et al.,
2016) and multi-layer perceptron (Gaudet et al., 2018).

In the studies mentioned earlier (Young et al., 2012; Jarrassé
et al,, 2016; Gaudet et al., 2018), simple upper-limb movements,
such as flexion or extension, were classified to investigate the
possibility. However, in the aspects of the myoelectric interface
for control the prosthetic hand, further study to investigate
the possibility of the complex upper-limb movements, such as
reaching-to-grasping, will be required to assist the daily living of
the upper amputees who may not have or have weak below-elbow
muscle activities. To the author’s best knowledge, the possibility
of classifying reaching-to-grasping based on the EMG signals
from the residual limb without the below-elbow muscles was not
investigated yet.

Moreover, in the aspects of assisting daily living, the handgrip
force is significant to grasp various types of objects. However,

relatively few applications of pattern recognition using force
classification are found (Khan et al.,, 2021). A recent study by
Jitaree and Phukpattaranont (2019) classified different levels
of forces during pinch grasp for EMG signals within healthy
subjects. Al-Timemy et al. (2015) classified three broadly divided
levels of grip forces using EMG signals from the trans-radial
amputees. However, in these studies, the EMG signals from the
forearm were mainly used, and the muscles of the residual limb
above the elbow of patients were not considered yet.

Thus, this study aims to investigate the possibility of
classifying the reaching-to-grasping tasks using the EMG signals
from upper-body muscles above the elbow for considering
the upper-limb amputees who may not have or have weak
below-elbow muscle activities. We also investigated the effect
of object weights on the possibility of classifying the reaching-
to-grasping tasks. The main hypothesis is that if the EMG can
be activated at proximal muscles during reaching-to-grasping
tasks, the pattern recognition or machine learning techniques
may classify reaching-to-grasping tasks using the EMG signals
from the upper body.

The main contributions of this study can be summarized as
follows. First, we investigated the possibility of classifying the
six reaching-to-grasping tasks using the EMG signals from six
upper-body muscles above the elbow. Second, the convolutional
neural network (CNN) was applied to data processing for
classifying the tasks, and the performances were compared
with the traditional feature, such as MAV, SSC, ZC, and WL,
root mean square, etc. Last, we also investigated the possibility
of classifying reaching-to-grasping tasks for different weighted
(light and heavy) objects. Consequently, we tried to investigate
the possibility of developing a novel myoelectric interface that
can control prosthetics based on recognizing the complex upper-
limb movements. The feasibility of the algorithm was tested from
the trans-radial amputee and one wrist amputee, who have weak
muscle activities, and then use the six muscles for classifying
reaching-to-grasping tasks.

In the remainder of this article, Materials and Methods
presents the data collection and details the proposed method.
Experimental Results presents the results of comparisons among
the previous methods and the proposed method. Then, the results
are discussed in Discussion. Finally, our conclusion and future
work are presented in Conclusion.

MATERIALS AND METHODS
Subjects and Prosthetic Hand

Seven healthy subjects, one frans-radial amputee, and one wrist
amputee participated in our experiments (Table 1). All healthy
subjects were male and right-handed. All patients wore the same
type of myoelectric hand prosthesis, bebionic hand (Ottobock,
Germany), and had experienced in hand motion control. Their
sockets were well-fitted before the experiment. The bebionic hand
controlled the hand flexion by activating the wrist flexor and
hand extension by activating the wrist extensor. Thereby, EMG
activities of wrist extensor and flexor were not able to collect from
this study, as those signals were not able to be accessed for data

Frontiers in Neuroscience | www.frontiersin.org

October 2021 | Volume 15 | Article 733359


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Kim et al.

Upper-Limb EMG Classification

TABLE 1 | Subjects’ information.

Info. Healthy (S1-S7) Amputee (S8) Amputee (S9)
Age (years) 25.3+ 3.3 25 24
Height (cm) 1745+ 8.2 178.5 178.5
Mass (kg) 73.7+115 7.7 101.1
Dominant side Right - Right
Tested side Right Right Right
Amputation level - Wrist Trans-radial
Amputation years - 24 5

collection. Furthermore, by changing control modes through
clicking a button on the back of the bebionic hand and controlling
the flexor and extensor activities, there were eight different
control modes that subjects could use, namely, tripod grip, power
grip, active index, pinch group, key grip, finger point, column,
and mouse grip. The prosthetic hand that subjects used in our
study did not include the wrist rotation, but the thumb could
be manually moved in two modes allowing changes in thumb
location either in the neutral position and in the flexion position
for an opposite grip. All subjects provided written informed
consent approved by the Institutional Review Board of the Korea
Institute of Science and Technology before the experiment.

Electromyogram Data Acquisition

For the data acquisition, the surface electrodes (Bagnoli, Delsys,
Inc., Natick, MA, United States) were placed on six major upper
body muscles. Three electrodes were attached at the upper arm
(deltoid middle, biceps, and triceps), and three electrodes were
attached at the trunk muscles (latissimus dorsi, trapezius, and
pectoralis). In the cases of the healthy subjects, the two additional
electrodes were attached at the forearm (flexor carpi radialis and
extensor carpi radialis) (Figure 2). Because of the socket, those
forearm muscle activities from the subjects wearing the prosthetic
hand were not able to obtain. The EMG signals were recorded by
a customized LabVIEW program (National Instruments, Austin,
TX, United States). The sampling rate was 1,000 Hz.

Southampton Hand Assessment

Procedure Protocol

For reaching-to-grasping tasks, we used the Southampton Hand
Assessment Procedures (SHAP) related to the abstract object
(Kyberd et al., 2009). The abstract objects are shaped as six
standard prehensile patterns (tip, lateral, tripod, spherical, power,
and extension) (Napier, 1956; Kamakura et al., 1980; MacKenzie
and Iberall, 1994) and of two different (light/heavy) weights to
test the subject’s ability to form more powerful grips (Table 2).
For the SHAP, self-timed tasks (the subject starting and stopping
the timer with the tested hand) and a form-board were used
for our experiment. This aims to eliminate the assessor’s error
(Mcsp and Dipcot, 2003).

In our experiments, the subject was seated at a table with the
shoulders relaxed; the elbow joint angles were 90° (Figure 3). The
form board was positioned at the front of the table with the object
to be moved with the subject’s midline. The board was moved
for each task. The timer was slotted on the center of the form

board. Each task was conducted with the subject’s pushing the
timer button for starting and reaching the object, moving the
object to the front slot from the rear slot of the form board, and
pushing the timer button for ending. The subjects performed 10
times in each task repeatedly (six reaching-to-grasping tasks for
the six standard prehensile patterns with two different weights).

Data Processing

Recently, CNN has arisen as one of the significant approaches in
machine learning. Following the advances of computing power
achieved through the development of graphics processors, CNN
has now been applied to user intention recognition (MacKenzie
and Iberall, 1994; Mcsp and Dipcot, 2003; Atzori et al.,, 2016).
In the previous studies, principal component analysis (PCA) and
CNN showed better performance for classifying the EMG signals
from hand movements. Therefore, the PCA was used to extract
spectrogram features from the EMG signals, and simple CNN was
designed and used as a classifier in our experiments.

For a fair comparison between subjects and across trials, the
acquired EMG data of each channel were normalized using the
difference between maximum and minimum values for each
muscle across all trials. The normalized data were segmented for
time normalization from 0% (initiation of the task) to 100% of the
trial completion based on triceps EMG activities as a movement
onset, as the triceps muscle was activated when the button of
each SHAP task was pushed. The grasping timing was 40% for
healthy subjects and 49% for prosthetic hand users on average.
Because the classification was needed to control the prosthetic
hand just before grasping, 0-40% (healthy subject, S1-S7) and
0-49% (trans-radial and wrist amputees, S8 and S9) from the
front of each segmented data were used for the data processing
to investigate EMG classification algorithm during the duration
of reaching-to-grasp.

The segmented data were sectioned into 400 samples with
a 50-sample moving window. Then, each segment of each
channel was processed independently for the extraction of the
spectrogram and normalization. The spectrogram was extracted
from each segment using a fast Fourier transform and a
Hamming window (Zhai et al., 2017). Therefore, the spectrogram
was derived from 129 different frequencies with three-time bins.
Also, the first 95 frequencies were used (Zhai et al., 2017). The
size of the spectrogram was 95 x 3 x 6 or 8 (frequency x time
bins x channels). The spectrograms were converted into a range
of 0-1 through maximum-minimum normalization. Then, the
normalized spectrograms were vectorized at the channel for
improving computational efficiency and performance. The PCA
was applied to reduce the dimensionality while maintaining the
useful information from the EMG signals. The PCA was only
calculated on all the segments across all the classes in the training
set. Because the 100-500 principal components (PCs) were
enough to perform well (Zhai et al., 2016), only the results of the
25 PCs in each channel were used as input data. Consequently,
each spectrogram was reduced to a dimension 25 x 6 or 8
(PCs x channels).

For CNN input, the resulting matrices (25 PCs) were first
rearranged to 5 x 5 matrices for each channel (Zhai et al,
2017). To optimize the use of CNN, the PCs were rearranged
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TABLE 2 | Objects’ weights.

Grips Light (g) Heavy (g)
Spherical 26 530
Tripod 1 21
Power 18 540
Lateral 17 222
Tip 1 69
Extension 2 138

where the score of the most significant (Figure 4) was at
the center. In this way, the most important PCs can be
captured by the most convolution filters, which maximize their
contribution to the network.

The proposed simple CNN architecture is shown in Figure 4.
CNN consisted of four layers. The first convolutional layer was
a with 400 filters of size 4 x 4. The second layer was a rectified
linear unit, which is a non-linear activation function. To avoid
the vanishing gradient problem, the rectified linear unit was
used. The third layer contained one fully connected with a size
of 400 (dropout rate of 0.5). The fourth layer was a softmax
loss for classification. The softmax loss layer calculated the cost
function via the normalized exponential function. It also printed
out the probabilities of all types of movement considered in
the current forecast. After several tests, the CNN was trained
based on a stochastic gradient descent with a learning rate of
0.001, and the batch size was fixed at 32 and a momentum
of 0.9. A MatConvNet, an open-source MATLAB toolbox, was
used to implement the CNN structure (Vedaldi and Lenc, 2015).
Consequently, the PCA-CNN method was followed by the
previous study (Zhai et al., 2017) except for some parameters,
such as the number of channels (previous study: 12, our study:
6 or 8), filters (previous study: 800, our study: 400), and iteration
(previous study: 300, our study: 100).

Performance Evaluation
To validate the effectiveness of the PCA-CNN method, we
conducted an offline simulation using 10-fold cross-validation

with the previous time domain and auto-regressive (TDAR)
feature extraction and the support vector machine (SVM)
(Englehart and Hudgins, 2003; Park et al., 2015). For the TDAR
feature, the MAV, ZC, SSC, WL, and AR were extracted and
concatenated. Then, the SVM was used as a classifier. In 10-
fold cross-validation, the segmented EMG data were divided
into 10-fold randomly without any overlap. Also, ninefold was
used for training, and the remaining onefold was used for
testing. The testing fold was changed in chronological order.
Consequently, the results were averaged to measure the accuracy
in the PCA-CNN and TDAR-SVM methods. To obtain a better
quantitative comparison between the PCA-CNN and TDAR-
SVM methods, we performed the Kolmogorov-Smirnov test
to check the normality of data first, and then, we performed
the two-way repeated-measures analysis of variance (ANOVA)
with post hoc tests. Furthermore, Bonferroni correction was also
done for multiple comparisons. The p-value < 0.05 indicates a
statistical significance.

EXPERIMENTAL RESULTS

Classification of Reaching-to-Grasping
Tasks

Figure 5 presents the 10-fold cross-validation results of the
TDAR-SVM and PCA-CNN method within the (A) healthy
subjects and (B) trans-radial and wrist amputees for classifying
reaching-to-grasping tasks. In Figure 5A, the PCA-CNN method
shows higher accuracy than the TDAR-SVM method, using
the EMG from six electrodes, as well as eight electrodes, in all
subjects. As the averaged accuracies of the healthy subjects were
80.1 & 7.8 and 83.6 + 5.7%, 61.6 & 13.7, and 69.4 £ 11.4%. In
general, the PCA-CNN method showed approximately 3 and 8%
higher accuracies than the TDAR-SVM method in the eight and
six electrodes, respectively.

Furthermore, the two-way repeated-measures ANOVA
showed a significant effect for classifier factor [F(1,6) = 14.33,
p = 0.009], a significant effect for the number of channels
factors [F(1,6) = 40.33, p = 0.001], and a significant interaction
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- 80
- 70
- 60 ]
g
- z 50
g
g
8
4 < %
- 30
I TDAR-SVM ) — 2
PCA-CNN (8ch)
[ TPARSYM e - 10 O ARS VM (ely
[ PCACNN (6eh) [ ]PCA-CNN(ieh)
0 A 1 [T
6 s7 Mean 8 59 Mean

Amputees

[F(1,6) = 8.84, p = 0.025)]. As the interaction effect was
significant, we performed multiple pairwise comparisons with
Bonferroni p-value adjustment. The significant differences were
revealed between the “TDAR-SVM (8ch)” and the “TDAR-SVM
(6ch)” (t = 7.22, p = 0.002), between the “PCA-CNN (8ch)”

and the “TDAR-SVM (6¢h)” (t = -6.02, p = 0.006), between
the “PCA-CNN (8ch)” and the “PCA-CNN (6¢ch)” (t = 5.12,
p =0.013), between the “TDAR-SVM (8ch)” and the “PCA-CNN
(6¢h)” (t =5.10, p = 0.013), and between the “TDAR-SVM (6ch)”
and the “PCA-CNN (6¢h)” (t = -4.86, p = 0.017). There was no
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significant difference between the “TDAR-SVM (8ch)” and the
“PCA-CNN (8ch)” method (t = -2.08, p = 0.497). Consequently,
although both algorithms performed better when the number of
electrodes was eight, statistically better classification ability of the
PCA-CNN method was observed only when six electrodes were
used for the classification.

On the other hand, in Figure 5B, the TDAR-SVM method
showed better performance than the PCA-CNN method within
trans-radial and wrist amputees as the averaged accuracies of
62.0 &= 9.8% and 58.6 = 8.3%. Following the statistical analysis, a
significant difference was also revealed between the “TDAR-SVM
(6¢ch)” and the “PCA-CNN (6¢h)” methods, as p < 0.05.

Confusion Matrices for
Reaching-To-Grasping Task

To make it clear in regard to the comparison of the TDAR-
SVM and PCA-CNN method for the healthy subjects and
trans-radial and wrist amputees, we calculated the confusion
matrix within the six EMG channels. Figure 6 shows that the
calculated confusion matrix from the 10-fold cross-validation for
all subjects. In Figure 6, the y-axis means the true labels, and the
x-axis means the predicted labels from the classifier (the TDAR-
SVM and PCA-CNN, respectively) in each subject. The color of
the confusion matrix presents the classification accuracy of each
task. In general, the PCA-NN method showed higher accuracies
in each reaching-to-grasping task. Especially, in the case of $4,
the PCA-CNN method was shown higher accuracy at all tasks. In
the case of S2, S4, and S6, the PCA-CNN method was also shown
higher accuracy at the 5 (tip) and 6 (extension) tasks. However, in
the cases of the 5 and 6 tasks for trans-radial and wrist amputees
(S8 and S9), both the PCA-CNN and the TDAR-SVM method
showed very lower accuracy.

Classification of the Different Weights
Within the Same Task

Figure 7 presents the 10-fold cross-validation results of the
TDAR-SVM and the PCA-CNN for classifying the different
weighted (light/heavy) objects within each reaching-to-grasping
task (spherical, tripod, power, lateral, tip, and extension). In
Figure 7, the EMG data from the six channels were used for
calculating each accuracy. The averaged accuracies of the TDAR-
SVM and PCA-CNN (binary classification) were calculated as
56.5 + 23.4% and 75.0 & 22.2% for the spherical, 51.3 £ 27.0%
and 68.4 £ 30.7% for the tripod, 53.9 = 25.0% and 71.2 &+ 22.9%
for the power, 52.4 £ 25.0% and 71.8 & 17.5% for the lateral,
51.3 + 27.8% and 66.8 & 27.1% for the tip, and 45.3 & 27.1% and
67.8 + 21.6% for the extension. In all subjects, the PCA-CNN
method showed a substantial-high accuracy, 15% more than the
TDAR-SVM method, as the average accuracies (2-classes) were
51.8 & 13.2% and 70.1 £ 9.8%, respectively.

Furthermore, the main factor of ANOVA was showed p < 0.01
in each classification accuracies of all reaching-to-grasping
tasks. This means that statistically significant differences existed
between the TDAR-SVM and PCA-CNN for classifying the
reaching-to-grasping tasks. Based on these experimental results,
we can confirm that the PCA-CNN can improve the accuracy of
classifying reaching-to-grasping tasks for light and heavy objects.

DISCUSSION

In this study, the PCA-CNN method was applied to classify
reaching-to-grasping tasks using the EMG signals from only the
upper arm and upper body without wrist muscles. To the authors’
best knowledge, reaching-to-grasping tasks were classified using
the EMG signals from only the upper arm and upper body for
considering the upper limb amputees who may not have or have
weak below-elbow muscle activities for the first time. In the
previous study classifying reaching-to-grasping tasks (Martelloni
et al., 2008), three healthy subjects performed reaching-to-
grasping three different objects (a key, a tennis ball, and a tin)
placed in three directions (30° in the contralateral hemisphere,
0 and 30° in the lateral hemisphere). For grasping these objects,
each subject performed a lateral, a spherical, and a palmar grip,
respectively, Martelloni et al. (2008). The MAV features were
extracted from acquired EMG signals, and the SVM was used as a
classifier (Martelloni et al., 2008). Consequently, each reaching-
to-grasping for three objects was classified with accuracies of
55.6% (a key), 66.7% (a ball), and 59.3% (a tin) (Martelloni
et al.,, 2008). The EMG was acquired from seven electrodes at
the deltoideus pars anterior, trapezius pars ascendens, pectoralis
major pars clavicularis, triceps brachii caput longum, biceps
brachii caput longum, extensor carpi radialis, and flexor carpi
radialis (Martelloni et al., 2008). The accuracies were derived,
including the EMG signals from two electrodes at the forearm
(Martelloni et al., 2008). In our experimental results (Figure 5),
the averaged classification result was 69.4 £ 11.4% (PCA-CNN
with six channels) despite using the EMG signals from only the
upper arm and upper body. Therefore, the PCA-CNN method
can be suitable for classifying reaching-to-grasping tasks based
on the EMG signals from the upper arm and upper body.
Overall, the PCA-CNN method showed better performance
for classifying reaching-to-grasping than the TDAR-SVM
method. However, the PCA-CNN did not show better
performance in all subjects. Interestingly, in the trans-radial
and wrist amputees (S8 and S9), the previous TDAR-SVM
method showed better performances. It is possible that due
to more variation in EMG signals in the amputees compared
with healthy individuals, more data from the amputees may
be needed to train the CNN classifier (especially the tip and
extension). Following the previous study about deep learning
(Vedaldi and Lenc, 2015), the traditional machine learning
approaches can be shown better performance for lesser amounts
of input data (Alom et al., 2019). As the amount of data increases
beyond a certain number, then the deep learning approach can
increase the classification accuracy (Alom et al., 2019). Based
on our approach and methods, additional experiments with
more trials and a large population may be needed to further
investigate the effectiveness of the PCA-CNN method on the
classification of reaching-to-grasping in amputees. Furthermore,
in the case of the S3, classification accuracy was lower than
other subjects (Figures 5, 6). It can be interpreted that the
TDAR-SVM and PCA-CNN methods were not suitable to
classify for reaching-to-grasping tasks of the S3. Therefore,
various approaches will be performed as further research. First
of all, as the possible combination of feature extraction and
classifier, the TDAR-CNN and PCA-SVM will be applied to
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classifying the reaching-to-grasping tasks. In the previous study
(Zhai et al., 2016), the PCA and the root mean square, as one of
TDAR, were compared. In the study, the PCA showed a better
performance in classifying hand movements (Zhai et al., 2016)
among only healthy subjects; thus, indeed, more studies are
required to validate the effectiveness of PCA. Furthermore, more
advanced machine learning techniques, such as the recurrent
neural networks, could be applied and compared for our further
study for considering a case like the S3.

In our study, the PCA-CNN and the TDAR-SVM methods
classified the tip and extension grip with low performances
(Figure 6). As seen in Figure 3, the tip and extension grip showed
similar hand posture while performing the tasks. More advanced
machine learning techniques may be required to improve
accuracy in classifying the cases of tip and extension. Therefore,
we have a plan to analyze the EMG signals using advanced
techniques such as the generative adversarial networks and
conduct additional experiments for performance comparison.
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To the authors’ best knowledge, reaching-to-grasping with
the light and heavy objects were classified using the EMG
signals from only the upper arm and upper body for the first
time. Therefore, it is difficult to compare our averaged accuracy
with previous studies (Martelloni et al., 2008). However, a
comparison of classification accuracies between the TDAR-SVM,
which was widely used, and the PCA-CNN method could be
made. The classification accuracies of the PCA-CNN method
shown much higher, 15% over, than the TDAR-SVM method
(Figure 7). Following these results, the PCA-CNN can classify
the differences mentioned earlier in the amplitudes of EMG
signals with higher accuracies than the TDAR-SVM method.
In future work, additional experiments with an object with
more than three weights will be implemented to make it clearer
regarding the possibility of classifying the weights.

CONCLUSION

In this article, we investigated the possibility of classifying
reaching-to-grasping tasks using the EMG signals from the upper
arm and upper body. Furthermore, the TDAR-SVM and the
PCA-CNN methods were compared for decoding the reaching-
to-grasping tasks using only upper-limb EMG signals. Our
experimental results showed that the PCA-CNN method could
classify not only the six reaching-to-grasping but also different
weighted (light and heavy) objects with better performance than
the TDAR-SVM method. However, in the cases of trans-radial
and wrist amputees, additional experiments with more trials and
other types of amputee patients are required for the validation of
the effectiveness of the PCA-CNN method.

Furthermore, the classification accuracy depends on various
subject-specific factors such as concentration level, tiredness,
etc. Therefore, these factors also require additional investigation
with a large population to determine how they could affect the
EMG-based upper-limb movements.

In further investigation, to make it clearer in regards to
the effectiveness of the PCA-CNN method, the real-time
myoelectric interfaces will be constructed, and external robotic
devices, such as a robotic arm or hand, control experiments
will be implemented.
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