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Closed-loop strategies for deep brain stimulation (DBS) are paving the way for
improving the efficacy of existing neuromodulation therapies across neurological
disorders. Unlike continuous DBS, closed-loop DBS approaches (cl-DBS) optimize the
delivery of stimulation in the temporal domain. However, clinical and neurophysiological
manifestations exhibit highly diverse temporal properties and evolve over multiple time-
constants. Moreover, throughout the day, patients are engaged in different activities
such as walking, talking, or sleeping that may require specific therapeutic adjustments.
This broad range of temporal properties, along with inter-dependencies affecting parallel
manifestations, need to be integrated in the development of therapies to achieve a
sustained, optimized control of multiple symptoms over time. This requires an extended
view on future cl-DBS design. Here we propose a conceptual framework to guide
the development of multi-objective therapies embedding parallel control loops. Its
modular organization allows to optimize the personalization of cl-DBS therapies to
heterogeneous patient profiles. We provide an overview of clinical states and symptoms,
as well as putative electrophysiological biomarkers that may be integrated within this
structure. This integrative framework may guide future developments and become an
integral part of next-generation precision medicine instruments.

Keywords: closed-loop DBS, local field potentials (LFP), basal ganglia, Parkinson’s disease, multi-objective
control

CLOSED-LOOP DEEP BRAIN STIMULATION: TOWARD
MULTI-OBJECTIVE CONTROL ALGORITHMS IN SPACE AND
TIME

Deep brain stimulation is an established treatment option for patients with movement disorders
[Parkinson’s disease (PD), Essential Tremor, and Dystonia], as demonstrated in randomized
controlled trials (Krack et al., 2019). Current therapies are based on a constant delivery of
stimulation with fixed parameters. Amplitude and contact selection are manually adjusted by
clinicians, and then usually remain unchanged until follow-up clinical visits. Albeit widely spread
and highly efficacious to alleviate predominant symptomatic traits, the static nature of this “one

Abbreviations: DBS, deep brain stimulation; PD, Parkinson’s disease; LFP, local field potentials; STN, subthalamic nucleus.
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fits all the time” approach cannot account for all symptom
fluctuations or manifestations that are episodic in nature
(Lozano et al., 2019).

Closed-loop strategies offer the possibility to optimize
DBS by automatically adjusting the timing and parameters
of stimulation in real time based on biomarkers (Bronte-
Stewart et al., 2020). The adaptability of these approaches
helps ensure a maximal clinical benefit, sustained over time,
while minimizing side-effects. In this loop, sensing (feedback)
and stimulation (actuation) components need to be tuned to
match the dynamical properties of the targeted manifestation.
A broad variety of stimulation strategies and biomarkers have
flourished over the past years to address the limitations of
constant stimulation, for instance by specifically controlling ON-
OFF fluctuations, reducing side-effects, and additionally to give
answer to symptoms that are not optimally addressed by standard
protocols, such as freezing of gait.

A putative limitation of current closed-loop strategies is
their restricted scope, in which biomarkers, controller design
and parameter choices are optimized to a unique symptom or
neural manifestation in isolation. However, clinical states are
dynamic, multi-faceted, and inter-connected. Some operate at the
millisecond range while others evolve over many hours. They
can occur independently or influence each other. Consequently,
even though aforementioned closed-loop approaches showed
improved efficacy over standard continuous DBS in well-
controlled research conditions, the question of whether a
satisfactory 24 h therapeutic coverage of multiple symptoms may
be achieved with such strategies is far from clear.

A global framework is critically missing to guide the
integration of all these developments into a clinically relevant
therapeutic portfolio that exploits recent advances in implantable
neurotechnologies (Cagnan et al., 2019; Gunduz et al., 2019;
Parastarfeizabadi et al., 2020). This integrative framework needs
to be modular, flexible, and easily adaptable by clinicians. It also
needs to offer the possibility to address multiple symptoms while
robustly dealing with dependencies that exist between clinical
states, or interferences between parallel therapies.

We suggest that the structure of clinical and
neurophysiological manifestations, segregated in time and
space over multiple layers (see section below), may be mirrored
by control strategies to steer the design of modular therapies
embedding parallel control loops. This principled framework
may guide future developments and become an integral part of
next generation closed loop DBS systems.

MYRIAD TEMPORAL SCALES OF
CLINICAL AND NEUROPHYSIOLOGICAL
MANIFESTATIONS

Clinical Manifestations
Motor and non-motor symptoms exhibit highly diverse temporal
properties. They emerge at different timepoints, progress
at various speeds over the course of the disease, and
diurnally fluctuate in intensity with according to their own

variable time-constants. These distinct temporal behaviors are
further intertwined since clinical manifestations can occur
simultaneously or influence each other, adding a layer of
complexity in the management of symptoms. For instance,
tremor oscillations (∼5 Hz, 5 oscillations per second) stand in
contrast to slow-changing states such as a dopaminergic wearing
off episodes, which affect the condition of patients in the range of
hours. Yet both states can be temporally related, as the likelihood
of tremor episodes in PD may increase during wearing OFF
dopaminergic states. Moreover, throughout the day, patients are
engaged in different physiological states such as walking, talking,
or sleeping, which may also continuously or intermittently be
affect by disease-specific symptoms.

Neurophysiological Manifestations
Signals to control DBS may be derived from neural recordings
in the brain, peripheral sensors, or a combination of sources.
Neural signals may encode various slow- or fast-changing states.
Even depending on the way they are analytically processed, a
same biomarker may be used to regulate control loops operating
at different time scales. For instance, the better explored closed-
loop DBS approaches for PD have employed beta oscillations in
subthalamic nucleus (STN), which correlate with bradykinesia
and rigidity (Brown et al., 2001; Neumann et al., 2016). Closed-
loop approaches targeted either fast transient states of excessive
synchrony (in the range of milliseconds) (Little et al., 2013;
Moraud et al., 2018; Velisar et al., 2019) or instead beta
activity fluctuations in the range of minutes to hours. These
examples highlight the capacity to exploit the same biological
signal via different temporal dynamics to address the same or
various clinical goals.

A comprehensive understanding of the temporal
properties governing different clinical manifestations
and neurophysiological signatures, along with their
interdependencies, is thus critical for the design of therapies
that can optimally address multiple states in parallel. We outline
a selection of different clinical and neurophysiological layers
relevant to closed-loop therapies.

TREMOR

Across disorders, tremor tends to appear episodically (lasting
from less than minutes up to hours), favored for instance by
insufficient pharmacological control or agitation (Louis and
Machado, 2015). Tremor occurrence is also influenced by motor
states, as for example in PD tremor occurs prominently during
rest, while in ET tremor is more pronounced during actions
(Thenganatt and Jankovic, 2016).

Biomarkers and closed-loop strategies: Approaches for closed-
loop DBS explored multiple control sources and control
paradigms. Some used peripheral sensors to measure the
amplitude of movements in the tremor frequency range
(Yamamoto et al., 2013; Malekmohammadi et al., 2016) or
delivered burst of stimulation locked to specific tremor phases
(Cagnan et al., 2013, 2014, 2017). Tremor could also be detected
from brain signals, either indexed by the lower frequency
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components (3–7 Hz) or more accurately by using machine-
learning techniques allowing to combine multiple features from
the whole-spectrum LFP (Hirschmann et al., 2017; Shah et al.,
2018). Additionally, the action-induced occurrence of tremor in
ET leveraged the development of closed-loop DBS algorithms
with voluntary movement related modulations in LFPs as triggers
for stimulation (Herron et al., 2017; Houston et al., 2017; Tan
et al., 2018; He et al., 2020, 2021). All approaches ended up being
tuned to operate in the range of milliseconds to multiple seconds.

GAIT AND GAIT DISTURBANCES

Gait and balance deficits are common in PD, and induce a broad
range of impairments including reduced arm swing and step
length, shuffling steps, festination, freezing of gait or lack of
postural control (Fasano et al., 2015). This phenomenological and
temporal diversity, which include both continuous and episodic
manifestations that are often interconnected, are difficult to
treat. The effect of DBS on gait deficits is variable and patient
specific spanning, from improvement to even worsening of gait
(Hausdorff et al., 2009; Pötter-Nerger and Volkmann, 2013; Barbe
et al., 2020).

Biomarkers and closed-loop strategies: During gait execution,
alternating right and left gait cycles (1–2 Hz) are accompanied
by periodic, time-locked modulations in the beta and gamma
band power in STN LFP (Fischer et al., 2018; Hell et al.,
2018). Recent work showed that alternating right and left
DBS patterns, delivered intermittently at similar frequencies,
could entrain stepping movements and increase gait regularity
(Fischer et al., 2020; Wang and Choi, 2020). Additionally, beta
modulations exhibit a degree of spectral segregation, with a
stronger modulation in the high-beta range during leg vs. arm
movements, (Fischer et al., 2018; Tinkhauser et al., 2019), which
helped discriminate walking vs. standing (Canessa et al., 2020).

In addition, how freezing of gait (FoG) episodes could be
delineated and targeted remains unanswered. In contrast to
the alternating neuronal activity patterns during locomotion,
FoG has been linked to the occurrence of prolonged bursts of
beta activity (Anidi et al., 2018) and first data show promising
results for beta-triggered cl-DBS to prevent FoG (Petrucci et al.,
2020). Interestingly, the increase in beta activity associated with
freezing of gait is more evident in the lower beta frequency
ranges (15–21 Hz) and is also accompanied by an increase in the
theta (5–8 Hz) activity (Chen C.-C. et al., 2019). Moreover, the
electrophysiological signatures for vulnerability of freezing may
be maintained >5 s and shows some degree of spatial segregation,
as the theta power increase is more evident in the ventral part of
the STN and in the substantia nigra. In line with this observation,
stimulation at lower frequencies, or through ventral electrodes,
has been suggested as option to reduce the occurrence of FoG
(Sidiropoulos et al., 2013; Valldeoriola, 2019).

Considering these multi-faceted manifestations, therapies
may need to flexibly combine (i) continuous adaptations in DBS
during gait execution, as well as (ii) actively switching settings to
improve and stabilize locomotion and prevent FoG (Fischer et al.,
2020; Wang and Choi, 2020).

SPEECH

Progressive speech impairments are common in various
neurological disorders. Both in PD and ET, DBS often leads
to further deterioration of speech performance which plays a
limiting factor in the optimization of DBS (Hariz et al., 2008).

Biomarkers and closed-loop strategies: Closed-loop DBS may
prevent speech deterioration, which is often encountered as a
side-product during continuous DBS (Little et al., 2016b). It
may do so by reducing the overall current spread to capsular
structures, as an indirect effect of closed-loop DBS targeting
other clinical manifestations (Little et al., 2016a,b). Speech could
also actively be integrated in stimulation control loops, for
instance by recognizing speech from brain signals or peripheral
sensors. Recent data suggest that the STN is involved in speech
processing, with articulator-specific information being spatially
and temporally organized within the target structure (Chrabaszcz
et al., 2019). In addition, and currently more easily, speech could
be recognized from peripheral sensors, that might also allow to
extract information of the clinical state and to help calibrate
stimulation parameters (Rusz et al., 2015; Akçay and Oğuz, 2020).

SYMPTOM FLUCTUATIONS IN
PARKINSON’S DISEASE

The later stages of PD are characterized by fluctuations of motor
and non-motor symptoms that are difficult to control with
standard therapies (Martínez-Fernández et al., 2016). ON/OFF
fluctuations evolve in the range of minutes to hours, with
transitions that become faster, more abrupt and less predictable
as the disease progresses.

Biomarkers and closed-loop strategies: Currently, beta activity
recorded from the basal ganglia (particularly the STN), represents
the best-characterized biomarker to inform about drug-induced
fluctuations, bradykinesia and rigidity (Brown et al., 2001; Kuhn
et al., 2006; Hammond et al., 2007; Tinkhauser et al., 2017b).
Different temporal scales may be considered to interact and
influence beta activity.

Fast Beta Modulations
Physiologically beta activity appears as short bursts (100 and
200 ms) (Feingold et al., 2015). However, in untreated PD
patients, beta bursts are prolonged (between 200 and 1,000 ms)
with higher amplitudes, both of which correlate with the level of
clinical impairment (bradykinesia and rigidity) (Tinkhauser et al.,
2017a,b, 2018; Duchet et al., 2021a). The direct impact of such
temporally refined bursting dynamics on motor performance
has been confirmed (Torrecillos et al., 2018; Khawaldeh et al.,
2020, 2021; Tinkhauser et al., 2020). Therapies need to operate
with a temporal resolution that matches the millisecond range,
in order to properly detect and react to such fast-changing
dynamics. One clinically successful approach computes beta
power over a moving average of 400 ms (Little et al., 2013)
and triggers stimulation whenever the windowed beta activity
would surpass a pre-defined threshold, which allows to selectively
trim pathologically long bursts (Tinkhauser et al., 2017a;
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Moraud et al., 2018). Another study processed the beta envelope
using a larger timescale (800 ms) (Velisar et al., 2019), which
might be at the limit to depict bursts. Importantly, during
exposure to dopaminergic medication (Kuhn et al., 2006), beta
bursts become shorter in duration and smaller in amplitude,
hence they become more alike physiological bursts (Tinkhauser
et al., 2017b). Closed-loop algorithms that track beta bursts would
allow to take medication-induced changes into account to avoid
cumulative (drug+ stim) effects (Little et al., 2016a).

Slow Beta Modulations
The temporal dynamics of beta activity can also be processed
at longer temporal scales, with time-constants in the range of
minutes. This processing does not capture beta burst dynamics,
but instead accounts for clinical OFF/ON fluctuations related
to medication intake. Adaptive DBS trials using this temporal
resolution have been successfully piloted with a smoothing time
constant of 50 s and a slow proportional controller that adapted
stimulation accordingly (Rosa et al., 2017; Arlotti et al., 2018).
A direct comparative study has demonstrated superiority of this
closed-loop DBS approach over continuous DBS in improving
motor UPDRS and reducing dyskinesias (Bocci et al., 2021).

Finely Tuned Gamma
60–90 Hz frequency activity detected in the electrocorticogram,
has been linked to the presence of dyskinesia in the ON
medication state, and represents a promising electrophysiological
biomarker to regulate DBS for such manifestations (Swann et al.,
2016). This approach has been tested with a time constant of
30 s on narrow band gamma activity followed by a 600 ms
decision window for stimulation control (Swann et al., 2018).
However, the full electrophysiological and clinical picture of
finely tuned gamma activity (FTG) still needs to be characterized,
as stimulation-induced FTG measured in the STN and coherent
to cortical activity, can also occur OFF medication and in the
absence of dyskinesia (Wiest et al., 2021). Similarly the FTG
frequency peak seems to differ in the OFF and ON medication
state (Swann et al., 2018; Muthuraman et al., 2020; Wiest et al.,
2021). Interestingly, the occurrence and duration of FTG can
outlast stimulation delivery by (on average) 20 s, or even appear
for the first time after stimulation (Wiest et al., 2021). The first
chronic recordings during varying medication and stimulation
states are now available and will help to refine the properties and
value of FTG as well as other biomarkers (Gilron et al., 2021).

Current knowledge already delineates how control algorithms
may need to follow and integrate different temporal dynamics of
distinct biomarkers.

CIRCADIAN RHYTHMICITY

Standard DBS therapies assume that the patient is in the same
clinical state throughout the whole 24-h cycle. However, PD
can be associated with different sleep problems such as REM-
sleep behavior disorders (RBD), which can range from seconds
to minutes, and alterations of sleep architecture. Several studies
reported that STN DBS has a deepening and consolidating impact

on nocturnal sleep (Baumann-Vogel et al., 2017; Zuzuárregui and
Ostrem, 2020).

Biomarkers and closed-loop strategies: It is not yet clear
how DBS should optimally act during sleep. Treatment goals
and stimulation parametrization are likely to be different than
those during daytime. Sleep therapies could potentially be
optimized by considering sleep architecture and pathological
sleep phenomena. An important prerequisite is the recognition
of sleep stages, so that therapies may adapt to their specific
requirements. NREM 1–3 and REM stages alternate cyclically, as
defined by standard 30-s epochs classification systems (AASM,
2020). Recordings from the STN during sleep show similar sleep
related oscillatory patterns as during polysomnography surface
EEG (Urrestarazu et al., 2009; Thompson et al., 2018). Sleep
stage information may be derived in real time with a high
prediction accuracy of 91% (Christensen et al., 2019). In this
latter work, the time-evolving spectra had a 15 s time constant
and 0.5 Hz frequency resolution, which was sufficient to detect
transitions. Shorter time-constants have also been proposed
(Chen Y. et al., 2019). Multi-layered closed-loop control that
differently reacts during wakefulness and sleep are becoming
necessary, as supported by the observation that STN beta activity
is high during REM sleep (similar as during wakefulness), but
decreases with deeper sleep stages (N1->N3) (Urrestarazu et al.,
2009). Hence, a closed-loop algorithm solely based on the daily
beta profile, is likely to decrease stimulation toward NREM 3 and
increase during REM sleep.

LEVERAGING TEMPORAL DYNAMICS
TO ENABLE MULTI-OBJECTIVE
CLOSED-LOOP DBS

Despite the heterogeneity of clinical manifestations and
neurophysiological signatures, the time-constants that govern
their individual behaviors may be categorized into discrete
temporal layers (Figure 1). This layered organization makes
it possible to simplify, cluster or distribute how multiple
manifestations are jointly monitored and addressed. For instance,
manifestations evolving in the millisecond range require sensing
and control loops to operate at fast time scales, using algorithms
that are computationally efficient and simple in complexity (e.g.,
PID or bang-bang control). Slower manifestations may instead
use model-based control approaches that additionally include
predictions in the control loops. Accounting for dependencies
between manifestations as well as interfaces between controllers
may be feasible.

Cross-layer interferences inevitably arise in multi-objective
control. They happen when one control loop (for instance,
regulating manifestation 1) induces (directly, or indirectly) a
change in manifestation 2, which in turn triggers a response in a
second control loop, and so on. If unaccounted for, interferences
may lead controllers to diverge. Importantly, interferences are
less likely to occur when controlled variables have different
time constants. This “temporal decoupling” allows to pause one
therapy, for instance a slow controller operating in the hour
range, and to temporarily deliver another one (a fast controller
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FIGURE 1 | Layered organization of control sources, segregated in time and space. Clinical and neural manifestations, both episodic and non-episodic, evolve
according to distinct time-constants that can be categorized into a range of temporal layers, from milliseconds (fastest layer, L5) to days (slowest layer, L1). An
additional layer (L0) could capture changes in manifestations related to discrete states, such as daily activities, and operate in parallel to the others. In this proposed
modular structure, layers may not be independent, since manifestations at different timescales can affect each other. Thus cross-layer interactions must also be
accounted for. On top of differences in their temporal properties, neural processes may also be spatially segregated, and picked up from different locations in the
brain or the periphery. Hence temporal and spatial layers may be combined to simplify, cluster, or distribute how symptoms are optimally monitored, detected, and
addressed. Overall, this representation establishes a conceptual framework by which the clinical state of a patient can be described as the modular superposition of
parallel, yet inter-dependent manifestations segregated in time and space. Closed-loop control approaches may mirror this layered organization in the design of
multi-objective therapies that can concurrently address multiple symptoms, while suitably dealing with dependencies. L, temporal layer; STN, subthalamic nucleus;
ON/OFF, with/without medication; FTG, finely tuned gamma oscillations.

reacting to an episodic event in the range of seconds), without
much impact on the earlier.

Overall, the complexity of developing therapies that can
address multiple manifestations may be distributed over three
hierarchical levels of operation (Figure 2): the lowest level
embeds closed-loop control algorithms that are optimized
for individual manifestations, each one operating at a single
temporal layer, regardless of other parallel ones. For instance,
one controller may monitor beta band modulations and trim
pathological beta bursts in the millisecond range, while another
may track gamma band activity and identify dyskinetic episodes
in the second to minute range. Most existing closed-loop DBS
strategies developed to date could be integrated within this level.
Second, a middle level manages the combined outcomes of low
level-controllers and accounts for cross-layer dependencies and
interferences that arise when two or more therapies operate
concurrently. This control level ensures that multiples objectives
are being respected. Finally, a higher-level encodes discrete
programs or activities, which activate (or de-activate) subsets
of low- and middle-level control loops. This higher level may
either be automatically or manually selected by patients or
clinicians, for instance to switch between day or night modes, or
for specific tasks.

We propose that this hierarchical organization may simplify
the design of multi-objective control therapies, while allowing
to easily integrate existing algorithmic strategies for closed-
loop DBS. In this integrative framework, control loops targeting

different temporal layers are combined in a modular manner
and operate in parallel (Figure 2). For a given patient, specific
modules may easily be activated, and their joint operations
managed to establish suitable therapeutic strategies that target all
required manifestations.

Low-Level Controllers: Targeting
Individual Manifestations
A variety of control strategies have been proposed for addressing
individual manifestations through closed-loop DBS. They relied
predominantly on fast control approaches, either bang-bang
controllers triggered by one (Little et al., 2013; Pina-Fuentes
et al., 2019) of two (Velisar et al., 2019) thresholds, or using
PID controllers (Rosa et al., 2017). These strategies relied
predominantly on neural feedback from local field potentials
(beta power from the STN (Little et al., 2013), gamma or
theta power from cortical signals (Swann et al., 2018; Johnson
et al., 2021) or movement measures (Cagnan et al., 2017). Few
feedforward components that use predictive models have been
included in real-life applications, even though biophysical or
data-driven black-box models may greatly improve accuracy
(Gorzelic et al., 2013; Su et al., 2019), especially for slowly
changing biomarkers. To date, modeling has predominantly
been used to better understand the dynamics of manifestations
(Holgado et al., 2010; Fleming et al., 2020a), the impact that
DBS may have on the circuits (Hahn and McIntyre, 2010;
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FIGURE 2 | Layered multi-objective control for closed-loop DBS. Multi-objective control approaches for closed-loop DBS may mirror the layered structure of clinical
and neural manifestations to optimize the control of multiple symptoms occurring concurrently or intermittently. Such a structure enables to distribute complexity
over three incremental levels: The low level is composed of parallel independent control loops, each one operating at a unique temporal layer. The design and tuning
of each controller (indicated as C1–C5) can thus be optimized for the specificities of a single manifestation, independently from changes that may arise from
dependencies with other layers. Examples of closed-loop DBS in the literature, such as beta burst-based control of pathological beta synchrony, or gamma-driven
control of dyskinesias, have been predominantly restricted to this layer. Second, cross-layer dependencies and interactions can be implemented in the middle level
to address multiple symptoms. These may use (1) state machine controllers for switching between low-level controllers, (2) unilateral dependencies that tune the
parameters of one layer using feedback from another, or (3) optimization controllers able to jointly tune various low-level control parameters based on a weighted
evaluation of various manifestations, side effects and interferences. Finally, the high-level control layer enables the automatic selection of programs, which fit the
discrete states occurring in layer L0. Each program will activate (or de-activate) a subset of low- and middle-level controllers, while specifying sensing channels and
stimulation parameters. For instance, the way controllers might need to respond during sleep may not be the same as during the day. Overall, with this organization,
multi-objective control therapies can easily be built, tuned, and combined in a modular way for each individual patient. All existing algorithmic approaches for
closed-loop control proposed over the past years would easily be integrated under such structure.

Weerasinghe et al., 2019; Fleming et al., 2020b) and to suggest
possible control strategies for closed-loop DBS (Holt et al., 2016;
Duchet et al., 2021b).

Examples from other neural engineering applications
highlight the benefits of data-driven predictive models in
closed-loop therapies. These used either movement sensor
data or neural signals (commonly intra-cortical signals, with
>100 channels) to control prostheses or robotic systems (Ethier
et al., 2012; Hochberg et al., 2012), spinal cord stimulation
for restoring movement (Wenger et al., 2014; Moraud et al.,
2016; Bonizzato et al., 2018) and hemodynamic instability
(Squair et al., 2021), or peripheral nerve stimulation for sensory
feedback (Raspopovic et al., 2014). Many of these approaches
may be easily integrated as low-level control loops within the
proposed framework.

Middle Control Level: Managing Multiple
Objectives
The variety of clinical and neurophysiological manifestations also
shapes the choice of middle-level control strategies to manage
the joint outcome of multiple objectives, and critically affects the

robustness and stability when addressing them concurrently. We
outline various approaches that may be used:

1. State machine controllers allow to switch between
independent states and make it possible to deliver various
therapies in an interleaved manner. This approach is
simple and easy to tune, as it only requires a few parameters
(transitions). However, state machines do not directly
manage interferences. They are thus most useful for
processes that operate at clearly distinct layers (Toth et al.,
2020). Examples in the literature using such approaches
have been proposed for addressing beta bursts and episodic
events such as FoG (Bronte-Stewart et al., 2020; Figure 3).

2. Unidirectional adaptations allow to tune the parameters
of one controller using feedback of another temporal
layer. This cross-layer interaction makes it possible to
link two (or more) temporal layers, regardless of how far
apart layers are. Examples include tuning the threshold
for detecting beta-bursts based on feedback of ON-OFF
fluctuations (Figure 3).

3. Optimization controllers employ a function of joint
dynamics and are thus able to intrinsically account for
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FIGURE 3 | Illustrative examples of multi-objective therapies. (A) Example of state machine controller, which transitions between two different low-level control loops
and interleaves two therapies for symptoms overlapping in time. This approach is suitable to combine clinical manifestations that exhibit markedly different temporal
time-constants, and which consequently suffer from minimal crosstalk. For instance, episodic events such as freezing of gait, which happen in the range of seconds
to minutes, may be easily interleaved with therapies that control ON-OFF fluctuations, which operate in the range of hours. In this configuration, each controller
independently monitors and responds to a biomarker, and delivers an output optimized for its individual manifestation. The middle level controller activates one or the
other, depending on the requirements over time. (B) Example of multi-objective therapy addressing manifestations on three temporal layers (namely, beta burst
activity patterns, ON-OFF fluctuations and dyskinesias). Unidirectional dependencies are used to tune the controller of one layer based on feedback from another, in
this case to set a threshold for detecting beta bursts (at the millisecond range) while accounting for fluctuations in beta power over the course of the day. In parallel, a
joint optimization controller computes optimal stimulation amplitudes to minimize episodic stimulation-induced dyskinesias, based on a weighted evaluation of the
need to trim pathologically long beta bursts while preventing side-effects. L, temporal layer; C, controller; w, weight; ON/OFF, with/without medication; FoG, freezing
of gait.

interactions between manifestations. They provide the best
way to deal with dependencies and are appropriate for
layers that have similar time-constants (i.e., manifestations
operating at similar dynamics and overlapping). However,
these strategies are complex and require building models
of the underlying processes and their responses to
stimulation. Models may use biophysical, population-
based or data-driven black box (machine learning)
approaches, and allow to include feedforward and
feedback control loops to more accurately control multiple
objectives (Neumann and Rodriguez-Oroz, 2021).

Overall for a specific patient, the implementation of a suitable
therapy capable of addressing multiple symptomatic traits would
involve (i) establishing the patient profile, his/her specific
therapeutic requirements and their time constants (similar to
a “system identification” step), (ii) establishing what low-level
controllers (modules) need to be activated to address each one
of these manifestations, (iii) defining the neuro-physiological
signatures or feedback signals that will drive each low-level
controller, along with the objective to be achieved by each
one of them, (iv) calibrating the individual parameters of each
controller, e.g., threshold values, control coefficients, adaptation
rates (optimized for each module in isolation), (v) defining
possible inter-dependencies and interferences, and the best way
to address them (choice of middle-level control type) based on
the number of low-level controllers, their expected crosstalk and
the relative importance of the manifestations that they monitor
(defining priorities), (vi) evaluate the stability of the combined
control strategy and establishing boundaries and safety measures
to prevent divergence. This process may be repeated separately
for each discrete program (high level control layer) e.g., one for
the day and one for the night.

Steps (i–vi) may need to be done iteratively, over multiple
sessions. Modularity would allow to incrementally refine
therapies, adding one low-level controller at a time and
tuning middle-layer control strategies accordingly to cope
with added modules.

To increase stability and robustness over time, each low-
level controller may include a self-adaptation term that tracks
changes occurring over time and slowly adapts (Zaknich, 2005).
Its implementation will strongly depend on the control type
and the temporal layer on which it operates: Controllers with
slow time-constants may exploit daily periodicity to track
changes occurring from day to day, and use a forgetting
factor that iteratively updates control parameters (e.g., daily
update based on an average biomarker value over the previous
day). Controllers that regulate episodic events such as freezing
of dyskinesia may iteratively update control parameters after
every few episodes.

TECHNOLOGICAL IMPLICATIONS

Beside the conceptual framework of multi layered control,
the technological requirements (hardware and software) to
implement such comprehensive closed-loop strategies should
not be left unmentioned. There are crucial technical capability
demands for neurostimulators in the future. For instance, devices
need to be able to monitor and differentially process multiple
electrophysiological brain biomarkers and integrate them in
the decision-making process (as outlined above). Such co-
processing capabilities to flexible handle multiple inputs have
been piloted (Stanslaski et al., 2018), and need to be refined
in the future. As aforementioned, brain biomarkers can come
from multiple sources (cortex, basal ganglia) including their
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corresponding somatotopic subdivisions, thus neurostimulators
must be capable to handle multiple independent signal sources.
Optimally, neurostimulator platforms need to process and
synchronized bio signals other than brain activity, derived from
sensors embedded in the neurostimulator itself (e.g., gyroscope)
or from peripheral sensors. In addition, the patient should be part
of the loop, as important feedback on treatment satisfaction could
be provided by interactive and patients suitable apps. Finally, the
multidimensionality of multi-objective control requires simple
and intuitive integrative platforms that can be efficiently handled
and adjusted by the medical personnel.

MULTI-LAYER CLOSED-LOOP DEEP
BRAIN STIMULATION: A PRECISION
MEDICINE APPROACH

For over 30 years, DBS therapies have been restricted to
continuous paradigms. Advances in implantable technology
now offer the possibility to monitor and control neural
signatures in chronically implanted patients, providing the
technical substrate to deploy truly personalized therapies. More
than ever, it is important to draw awareness on the multi-
faceted and dynamic nature of clinical and neurophysiological
manifestations. A conceptual framework is critical to steer the
development of therapies that can manage multiple dynamical
objectives in parallel and integrate existing closed-loop strategies
into a clinically relevant therapeutic portfolio. Modularity will
play a key role in rendering these approaches manageable,

allowing to easily select and tune therapies that operate
on multiple temporal layers, and linking them to patient-
specific electro-clinical profiles. While several technological
and neurophysiological advances are still needed to enable
nested multilayer control capabilities, hardware, software and
therapeutic developments will need to go hand in hand. The
proposed conceptual framework may thus represent an integral
part next generation precision medicine instruments.
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