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Assessment of Neuronal Damage in
Brain Slice Cultures Using Machine
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Urszula Hohmann, Faramarz Dehghani and Tim Hohmann*

Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

Neuronal damage presents a major health issue necessitating extensive research to
identify mechanisms of neuronal cell death and potential therapeutic targets. Commonly
used models are slice cultures out of different brain regions extracted from mice or
rats, excitotoxically, ischemic, or traumatically lesioned and subsequently treated with
potential neuroprotective agents. Thereby cell death is regularly assessed by measuring
the propidium iodide (PI) uptake or counting of PI-positive nuclei. The applied methods
have a limited applicability, either in terms of objectivity and time consumption or
regarding its applicability. Consequently, new tools for analysis are needed. Here, we
present a framework to mimic manual counting using machine learning algorithms as
tools for semantic segmentation of PI-positive dead cells in hippocampal slice cultures.
Therefore, we trained a support vector machine (SVM) to classify images into either
“high” or “low” neuronal damage and used naïve Bayes, discriminant analysis, random
forest, and a multilayer perceptron (MLP) as classifiers for segmentation of dead cells.
In our final models, pixel-wise accuracies of up to 0.97 were achieved using the
MLP classifier. Furthermore, a SVM-based post-processing step was introduced to
differentiate between false-positive and false-negative detections using morphological
features. As only very few false-positive objects and thus training data remained when
using the final model, this approach only mildly improved the results. A final object
splitting step using Hough transformations was used to account for overlap, leading to a
recall of up to 97.6% of the manually assigned PI-positive dead cells. Taken together, we
present an analysis tool that can help to objectively and reproducibly analyze neuronal
damage in brain-derived slice cultures, taking advantage of the morphology of pycnotic
cells for segmentation, object splitting, and identification of false positives.

Keywords: machine learning, neuronal damage, slice culture, neural network, propidium iodide, image analysis

INTRODUCTION

Neurological disorders and traumata of the central nervous system are considered major public
health issues. Currently, more than 2 million people are affected by traumatic brain injuries per
year (Majdan et al., 2016). Based on this number, the taken efforts become comprehensible to better
understand the molecular courses and to develop potential therapeutic strategies to limit neuronal
damage after injury (Ladak et al., 2019).
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Slice cultures are frequently used as model and represent
the complex composition of neuronal tissue in a near in vivo
manner. They can be prepared from different brain regions,
but mostly the hippocampus is used (Thomas et al., 2007;
Ebrahimi et al., 2010; Kim et al., 2014; Di Pietro et al.,
2015; Li et al., 2016; Masuch et al., 2016a; Hohmann et al.,
2019). In hippocampal slices, the neuronal cytoarchitecture
and connections are well preserved, and from a single animal,
up to six slice cultures can be obtained (Bahr, 1995; Dailey
et al., 2013). The lack of spontaneous degeneration and simple
accessibility are further arguments for the frequent use of this
model to study neuronal damage (Dehghani et al., 2003; Hailer
et al., 2005; Ebrahimi et al., 2010; Lee et al., 2011; Won
et al., 2011; Pérez-Gómez and Tasker, 2012; Kim et al., 2014;
Di Pietro et al., 2015; Masuch et al., 2016a,b; Grabiec et al.,
2017, 2019; Grüßer et al., 2019; Hohmann et al., 2019). To
assess the amount of neuronal damage, propidium iodide (PI)
is used, in order to mark cellular death (Dehghani et al., 2003;
Hailer et al., 2005; Ebrahimi et al., 2010; Lee et al., 2011; Su
et al., 2011; Pérez-Gómez and Tasker, 2012; Kim et al., 2013,
2014; Di Pietro et al., 2015; Happ and Tasker, 2016; Masuch
et al., 2016a; Grabiec et al., 2017, 2019; Grüßer et al., 2019;
Hohmann et al., 2019). The evaluation of cell death in these
cases is performed either by manually counting dead cells
(Sun et al., 2009; Grabiec et al., 2017; Hohmann et al., 2019)
or by cumulative intensity measures. Intensity measurements
are performed in specified anatomical regions or via global
thresholding and subsequently calculating the covered area or
segmenting objects based on size and intensity (Hailer et al.,
2005; Lee et al., 2011; Won et al., 2011; Pérez-Gómez and
Tasker, 2012; Kim et al., 2013, 2014; Di Pietro et al., 2015;
Happ and Tasker, 2016; Grüßer et al., 2019). Thresholding
and cumulative intensity measurements suffer from very similar
limitations in that they are poor metrics in noisy images.
Furthermore, both methods intrinsically assume a very high
specificity of the PI signal, which is often not given. The
limited correlation of PI intensity and actual dead cells has
been reported before (Ebrahimi et al., 2010). Additionally, when
global thresholds were used, no algorithm was given on how
to set this threshold, making it highly subjective and hard to
reproduce. Manual counting on the other hand can adjust to
noisy images, but lacks objectivity (limited inter-rater reliability)
and is very time consuming. Consequently, more robust and
evaluated analysis strategies are needed to evaluate neuronal
damage in such conditions.

Here, we systematically tested four different machine learning
classifiers, a naïve Bayes (NB) classifier, a discriminant analysis
(DA) classifier, a random forest (RF) classifier, and a multilayer
perceptron (MLP) classifier, to assess neuronal damage in
hippocampal slice cultures. For the presented approach, we
used spatial features that take advantage of the shape of
PI-positive, degenerated nuclei. The results demonstrated
that manual counting can very well be reproduced by the
presented analysis scheme (maximal accuracy: 0.97) and thus
is feasible for analyzing the extent of neuronal damage before
and after specified interventions in form of the number of
degenerated neurons.

MATERIALS AND METHODS

Preparation and Labeling of Organotypic
Hippocampal Slice Cultures
All animal experiments were performed in accordance with
the Policy on Ethics and the Policy on the Use of Animals in
Neuroscience Research as indicated in the directive 2010/63/EU
of the European Parliament and of the Council of the European
Union on the protection of animals used for scientific purposes
and were approved by the local authorities for care and
use of laboratory animals (State of Saxony-Anhalt, Germany,
permission number: I11M18, date: 01.12.2012).

To prepare Organotypic Hippocampal Slice Cultures (OHSC),
5-day-old Bl6/J mice (Charles River, Sulzfeld, Germany) were
decapitated and brains were dissected under aseptic conditions.
After removal of the cerebellum and the frontal pole, the brains
were placed in minimal essential medium (MEM, Invitrogen,
Carlsbad, CA, United States), containing 1% (v/v) glutamine
(Invitrogen) at 4◦C. The brains were cut into 350-µm-thick
slices with a sliding vibratome (Leica VT 1200 S, Leica
Microsystems AG, Wetzlar, Germany). Three to five OHSC
were obtained from each brain and immediately transferred
into cell culture inserts (pore size 0.4 µm, Sarstedt, Nümbrecht,
Germany). The cell culture inserts were then placed in six-well
culture dishes (Greiner, Kremsmünster, Austria) containing 1-
ml culture medium per well. The culture medium consisted
of 50% (v/v) MEM, 25% (v/v) Hanks’ balanced salt solution
(Invitrogen), 25% (v/v) normal horse serum (Invitrogen),
1% (v/v) glutamine (Invitrogen), 1.2 mg/ml glucose (Braun,
Melsungen, Germany), and 1% (v/v) streptomycin/penicillin
(Invitrogen) with a pH of 7.3. The OHSC in the culture
dishes were incubated at 35◦C in a fully humidified atmosphere
with 5% CO2, and the cell culture medium was changed
every second day.

On day 13, OHSC were lesioned with N-methyl-D-
aspartic acid (NMDA, 10 µM, Sigma-Aldrich, St. Louis,
MO, United States) for 4 h or left untreated. Slices of both groups
were kept in culture medium for another 3 days.

Staining and Imaging of Organotypic
Hippocampal Slice Cultures
Two hours prior to fixation with 4% paraformaldehyde (Sigma-
Aldrich), PI (5 µg/ml, Merck Millipore) was added to the culture
medium. The OHSC were removed from the cell culture inserts,
washed with phosphate buffered saline (PBS) containing 0.03%
(v/v) Triton X-100 (Applichem, Darmstadt, Germany; PBS-T)
for 10 min, following 5 min with Aqua dest, and mounted
with DAKO fluorescent mounting medium (DAKO Diagnostika
GmbH, Hamburg, Germany). Further analyses were performed
with a CLSM (LSM 710 Meta, Zeiss). For detection of PI-labeled
degenerating neurons, monochromatic light with a wavelength of
543 nm and an emission band pass filter for a wavelength of 585–
615 nm were used. The dentate gyrus of the hippocampus was
visualized with a 20× objective, as a z-stack with a step width of
2 µm. Resulting images had a resolution of 1024× 1024 pixel and
a pixel size of 0.52 µm.
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Semantic Classification of Neuronal
Damage
All models and source codes were generated under Windows 10
using MATLAB R2021a with python’s sklearn and are available
in the Supplementary Material and via GitHub: https://github.
com/Herodot1/NeuronalDamage.git. The main output of the
given framework is the number of degenerated, pycnotic nuclei
in a given image stack. More detailed dependencies and how to
use the framework are described in the manual supplied together
with the source code.

The following steps were conducted for acquisition and
processing of data. A summary of the image analysis scheme is
shown in Figure 1.

Acquisition of Training Data
An expert marked PI-positive (dead) cells. An h-maximum
transform was then used to match manually marked positions to
local maxima. True negative signals were defined using manually
marked polygonal regions. Overall, 117 OHSC were classified this
way, yielding 728,818 true-positive and 1,695,534 true-negative
pixels. Notably, the expert marked not all positive nuclei. The
classified OHSC were taken from a previously published study
(Grabiec et al., 2019).

Generation of Features Space
For quantification of neuronal damage with machine
learning models, it was necessary to use features with strong

FIGURE 1 | Scheme for image analysis. (A) As a first step, images were
classified as either showing “high” or “low” neuronal damage using a support
vector machine (SVM). Afterward, images are rescaled for reproducibility and
features are generated. Depending on the type of image (“high” or “low”
damage), the appropriate trained classifier is chosen and images are
analyzed. As a last step, image post-processing is performed, including the
removal of small (<30 pixels) and dim objects (<0.1 × maximal intensity).
Furthermore, false-positive objects are identified by a trained SVM and
removed as a consequence. (B) Shows an alternative way of image analysis
that is almost identical to (A) without any differentiation between “high” and
“low” damage images.

discriminative power. As degenerated cells in our models were
represented as comparably bright, circular structures, while
background signals are more diffusely shaped with varying
intensity, we used different spatial features highlighting this
specific aspect.

Before feature generation, each image stack was normalized
to the interval [0, 1] for comparability. Afterward, Gaussian
derivatives were generated with a standard deviation σ of 1, 3, and
6 pixels and corresponding filter sizes depending on the order of
the derivative as follows:

Size = σ∗

(
3+ 0.25∗order −

2.5
(order − 6)2 + (order − 9)2

)
We used the first and second derivative in x, y, or z direction

and the first and second derivative in x and y direction and x, y,
and z direction. Additionally, Laguerre Gaussian functions (LGF)
were used. LGF are defined as:

rLGFpl (x) = exp
(
−(ps)2/q

)
∗ (ps)l/q∗

[
cos

(
l∗

{
θ +

2rπ
max

(
2l, 1

)}) ∗Lpl (ps ∗ arctan (ps))

]3−q

With the Laguerre polynomials L. Here, we choose s = 0.5,
q = 2, r = 0, p = 0, 1, 2, and l = 0, 1, 2. Notably, r = 0 was chosen as
signals were point symmetrical and thus additional rotations of
the LGF did not add significant information but would strongly
increase the dimensionality of the feature space. Furthermore,
Gaussian derivatives in the x and y direction or in the z direction
of all LGFs were used as features. Additionally, LGF were applied
to the coherency image. The coherency image C was obtained
for each pixel using the eigenvalues λ of the structure tensor
(Weichsel et al., 2010; Hohmann et al., 2020a):

C =
(

λ1 − λ2

λ1 + λ2

)2

Further features were generated using top-hat transforms with
sizes of 3, 4, 5, 7, 9, 13, 15, and 18 pixels and entropy filters of
size 3, 5, 7, 9, 13, and 17 pixels. The filter size was set in such
a way that the typical size of pycnotic nuclei, ranging from 5 to
15 pixels, was covered, including a small, additional margin at
the lower and upper end. Taken together, 116 different features
were generated. As some features were likely correlated, e.g., top-
hat transforms of different sizes, a principal component analysis
(PCA) was performed to de-correlate features and additionally
reduce feature space. For all further steps, PCA components were
used as features.

Feature Selection and Model Training and Testing
To reduce computational complexity, we first identified
important features using a Wilcoxon rank sum test on the
PCA components for true-negative against true-positive data.
Afterward, features were sorted according to their p-value in
ascending order. To test the importance of each feature, a
10-fold cross-validation was used with 30% of true-positive and
true-negative data reserved for testing. The cross-validation was
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performed for all numbers of features, and the classification
accuracy on the test set was evaluated to choose the optimal
feature number. For analysis, four different types of machine
learning algorithms were employed: NB, DA, RF, and MLP
classifier. For the NB, a Gaussian distribution was used to model
the data, and for the DA model, a quadratic discriminator
was utilized. The RF classifier was trained with the following
settings: 100 decision trees and a minimal leaf size of 100, and
the interaction-curvature method was used to select the best
split predictor. For the MLP model, a batch size of 5000, an
adaptive learning rate with an initial learning rate of 0.1, and a L2
penalty (alpha) of 0.0001 were set. Model testing was performed
in a leave-one-OHSC-out manner, training the models on the
training data of all but one OHSC and classifying the remaining
OHSC. For each OHSC, the number of true-positive, true-
negative, false-positive, and false-negative pixels was recorded
and used to calculate the classification accuracy.

Classification Into “High” and “Low” Neuronal
Damage
As our training set contained a high variance in terms of neuronal
damage and background levels, we additionally classified all
images manually into either “high” or “low” damage and trained
a support vector machine (SVM) to classify images using a bag
of visual words as features. For assessing the goodness of this
approach, a cross-validation step containing 70% of images for
training and 30% for testing was performed, with 200 random
divisions performed in such a way that the ratio of images
with “high” damage to those with “low” damage was preserved.
This step was performed in order to reduce variation between
individual OHSC and improve classification. Both groups were
otherwise handled as described before.

To test the hypothesis that splitting the data into “high” or
“low” damage benefits classification accuracy, machine learning
models were also trained on the whole image set for comparison.

Image Post-processing
To further reduce the number of false positives, several post-
processing steps were included after the final prediction: First,
all pixels with intensity lower than 0.1 times the maximal
intensity of the current image were set as negatives; afterward,
a morphological closing was performed and small objects (<30
pixels) were removed.

As a last step, another SVM was trained to differentiate
between objects that are true and false positives, based on
morphological features of each identified object. To identify
objects as true or false positives, each object in the test set was
associated with the manually assigned true-positive and true-
negative objects. If the center of a predicted object was closer than
10 pixels to the center of an object that was manually marked
as true-positive signal, the predicted object was considered true
positive. In an identical fashion, false positives were identified.
Predicted objects that did not match any of these criteria
were discarded for training of the SVM, as they could not
clearly be identified as true positives or false positives. From
the objects identified this way, morphological parameters (area,
convex area, eccentricity, equivalent diameter, extent, major axis

length, minor axis length, perimeter, solidity, and circularity)
were calculated and used as features for training. As model,
a SVM with a radial base function as kernel and an assumed
outlier fraction of 0.05 was used. For validation and estimation
of prediction accuracy, a cross-validation with 30% of the objects
used as test data was performed, with 200 random divisions
performed in such a way that the ratio of true positives to
false positives was preserved. These data were used to estimate
the accuracy of differentiating between true- and false-positive
objects in an image.

As a last post-processing step, the circular Hough
transformation was applied to adjust for overlap of nuclei,
taking advantage of the circular geometry of pycnotic nuclei,
as reported before (Hohmann et al., 2018, 2020b). Therefore,
each identified center point of the circles detected with
the Hough transformation was matched with all manually
assigned true-positive objects. If an object was closer than
10 pixels, it was assigned a true positive. To check whether
this step improves the classification goodness, the number
of true positives before and after Hough transformation was
calculated to acquire a more accurate estimate of dead neurons.
As not all true positives were labeled by the expert, only
the recall was assessed (percent of correctly identified true
positive objects).

Statistics
Statistics was performed using a Wilcoxon rank sum test or a one-
way ANOVA test with Tukey’s post-test. Significance was defined
for p< 0.05.

RESULTS

Feature Selection
First, the optimal number of features for each model was
evaluated (Figure 2A). Thereby, for the NB classifier, an optimal
value of four features was found, and afterward, the in-sample
classification accuracy declined steadily. For the DA, an optimal
value of 98 features was identified, while for the RF and MLP, a
plateau was reached when using 20 or 85 features, respectively.
Notably, the classification accuracy was high for all models
(>0.82). As the test data used for this step was in part also from
the images used for training, it is likely overestimated (in-sample
classification error). Thus, typical different feature numbers,
based on the explained variance by the PCA components, were
used in addition. Therefore, 4 features were used for NB, 98
for DA, and additionally 43, 64, and 86 features for all model
types. These feature numbers correspond to the number of
features necessary to explain 95, 99, or 99.9% of the variance
of the data in terms of the PCA. For the RF and MLP, no
further optimal feature number was selected, as the feature
numbers taken via PCA represent an almost uniform sampling
along the plateau.

Model Testing
Using the abovementioned feature numbers, model
accuracy was evaluated with a leave-one-OHSC-out
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FIGURE 2 | Training results. (A) Graph of the classification accuracy as a function of the defined features for the naïve Bayes, discriminant analysis, random forest,
and multilayer perceptron classifier. Data points marked in black correspond to the optimal feature numbers for the naïve Bayes or discriminant analysis classifier. At
the x-axis, the number of features necessary to explain 95, 99, and 99.9% of the variance in the feature data using principal components is marked. (B) Box plot of
the classification accuracy of all models. The addition of “Selection” to the model name refers to the optimal feature number as extracted from (A), while 95.0, 99.0,
and 99.9% PCA refer to the feature number corresponding to the explained variance by the PCA components as marked in (A). (C) Box plot of the classification
accuracy when model training is performed on subsets of images corresponding to “low” and “high” neuronal damage. The “Merged” group corresponds to the
merged data of the “low” and “high” neuronal damage classification results. Red lines in the box plot correspond to the median, blue boxes correspond to the 25th
and 75th percentile, whiskers show the range of non-outlier values, and red “+” symbols show outliers. Stars depict statistically significant results with p < 0.05.

strategy on all OHSC (Figure 2B). It thereby became
apparent that classification results of the NB classifier
were significantly inferior (median accuracies: 0.79–0.83)
to the other three classifiers (median accuracies: 0.87–
0.96, p < 0.05). Furthermore, the DA classifier using 86
or 98 features performed significantly better than the DA
classifier using only 43 features (p < 0.05). For the RF
classifier, no significant differences were observed when
different numbers of features were compared. Notably, the
MLP models using 86 features (median accuracy: 0.96)
performed significantly better than any other non-MLP
model (median accuracies: 0.79–0.92). Nevertheless, it
has to be denoted that all models gave good to very good
results, but some outliers with very low classification accuracy
were found as well.

Based on the previous findings, only the DA classifier using
86 (99.9% PCA) and 98 (Selection) features, as well as the
RF and MLP classifier using 86 (99.9% PCA) features were
used for the next testing strategy. Based on the experts’ rating,
OHSC were manually classified as either “high” (52 images)
or “low” (65 images) damage. To automatize this step, a SVM
was trained to differentiate between both classes. Using cross-
validation, a median accuracy of 0.82 (standard deviation:
0.05) was estimated. Misclassifications mostly occurred on
images of “intermediate” damage that could also not easily be
classified by the expert.

Using these two subsets, the leave-one-OHSC-out test strategy
was repeated using the selected models (Figure 2C). For
the “high” damage subset, the RF (median accuracy: 0.97)
and MLP model (median accuracy: 0.98) gave significantly
better results than the DA models (median accuracies: 0.92–
0.93; p < 0.05), while no statistically significant differences
were found for the remaining groups. Furthermore, if the
results of the “low” and “high” damage group are pooled
together, the results using the RF classification (median
accuracy: 0.95) approach significantly improved compared to

the initial model trained on all OHSC (median accuracy: 0.92,
p< 0.05).

Identification of False-Positive Signals
and Object Splitting
To further analyze the classification accuracy of the proposed
models, the DA, RF, and MLP classifiers were applied on the
whole image set, instead of the manual classified subset of pixels
(Figures 3, 4), as they performed best. Thereby, the DA was found
to show over-segmentation for both the “high” and “low” damage
classes (Figures 3C, 4C). This effect was significantly lower for
the RF and MLP classifier trained on either the “high” or “low”
damage subset of images or on all images (Figures 3D,E,G,H,
4D,E,G,H). From these images, it became apparent that some
structures were incorrectly labeled as positives, especially for the
DA classifier. Thus, the DA model was not analyzed further.

As the expert labeled both true-positive and true-negative
signals, the opportunity was taken to match predicted objects
in the final image with the ones manually classified. A total
of 12,654 objects were considered as true positive and 178 as
false positive when the RF model trained on all images was
employed. On this basis, an SVM was trained on morphological
features to differentiate between both classes to identify and
remove false-positive objects. Using cross-validation, a median
accuracy of 0.986 (standard deviation: 0.002) was calculated for
differentiating between true and false positives. As the number
of true-positive objects was approximately 71 times higher than
those for false-positive objects, the sensitivity (correctly classified
true positives) and specificity (correctly classified false positives)
were additionally calculated. A median sensitivity of 0.9997
(standard deviation: 0.0007) and a median specificity of 0.055
(standard deviation: 0.021) were found.

For the MLP model, 12,504 true-positive and 274 false-
positive objects were identified. Performing the same analysis, an
accuracy of 0.978 (standard deviation: 0.002) was found for the
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FIGURE 3 | Example image of manual and automatic classification for images of the “high” damage class. (A) Original image, (B) manual classification, (C)
discriminant analysis classifier trained on either “high” damage image subset, (D) random forest classifier trained on the “high” damage image subset, (E) the
random forest classifier trained on all images, and (F) the identified objects, matched to the manually classified objects, (G) multilayer perceptron classifier trained on
the “high” damage image subset, (H) the multilayer perceptron classifier trained on all images, and (I) the identified objects, matched to the manually classified
objects for the multilayer perceptron classifier. Inlets depict magnifications of the corresponding image. (B) Yellow color corresponds to pixels classified as positive
signals and purple corresponds to true negative signals. Green circles surround the points the expert clicked on. (C–E,G,H) Yellow color corresponds to pixels
classified as positive signals. (F,I) Yellow corresponds to the manual classification, magenta to the automatic classification, white to an overlap of both, and green
circles surround single objects, as identified by the Hough transformation that had a counterpart in the manual classification.

SVM for discrimination between true and false positives with a
sensitivity of 0.9989 (standard deviation: 0.0013) and specificity
of 0.098 (standard deviation: 0.025).

Thus, while almost all true positives were correctly re-
identified, only a small subset of false positives was found.

Presumably, the very low number of false positives and thus
training data mostly caused the low discriminative power, as
the initial classification was already providing very good results.
Nevertheless, the removal of false positives applying the trained
SVM does provide small improvements.
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FIGURE 4 | Example image of manual and automatic classification for images of the “low” damage class. (A) Original image, (B) manual classification, (C)
discriminant analysis classifier trained on either “low” damage image subset, (D) random forest classifier trained on the “low” damage image subset, (E) the random
forest classifier trained on all images and (F) the identified objects, matched to the manually classified objects, (G) multilayer perceptron classifier trained on the “low”
damage image subset, (H) the multilayer perceptron classifier trained on all images, and (I) the identified objects, matched to the manually classified objects for the
multilayer perceptron classifier. Inlets depict magnifications of the corresponding image. (B) Yellow color corresponds to pixels classified as positive signals and
purple corresponds to true negative signals. Green circles surround the points the expert clicked on. (C–E,G,H) Yellow color corresponds to pixels classified as
positive signals. (F,I) Yellow corresponds to the manual classification, magenta to the automatic classification, white to an overlap of both, and green circles surround
single objects, as identified by the Hough transformation that had a counterpart in the manual classification.

As a last step, the Hough transformation was employed
to separate overlapping pycnotic nuclei (Figures 3F,I, 4F,I).
The application of the Hough transformation improved the
classification clearly. Whereas initially 12,654 of 15,602 (81.1%)

true-positive objects were correctly identified by using the RF
model trained on all images, the value increased to 13,895 (89.1%)
correctly classified objects after Hough transformation. For the
MLP model, the recall of true-positive objects increased from
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12,504 (80.1%) to 15,223 of 15,602 (97.6%) objects. While these
numbers appear to strongly favor the MLP over the RF model, it
has to be denoted that the MLP model also caused slightly more
false-positive signals, as is, e.g., visible in Figures 3, 4.

DISCUSSION

The present study was conducted to develop a method and
framework for the automatic assessment of neuronal damage in
slice cultures. PI is frequently used to visualize the degenerating
neurons and assess the extent of neuronal injury. Since
measurement of PI fluorescence intensity did not show a positive
correlation with the degree of neuronal damage when compared
to methods counting dead neurons in dentate gyrus or cornu
ammonis, new analysis approaches are needed (Ebrahimi et al.,
2010). For assessing the validity of the here-introduced analysis
scheme, we compared manual with automatic classification for
different machine learning models. In general, the used models
were found to provide good to very good results, with median
pixel-wise accuracies up to 0.97 and an object recall of up to
97.6%, demonstrating the applicability of the presented approach.

Interestingly, the MLP and RF models were both performing
very well, with slightly higher accuracies found for the MLP
model. An exhaustive evaluation of different machine learning
models found that, in general, RF models perform better than
neuronal networks, including MLP (Fernández-Delgado et al.,
2014). Yet, the authors of that study noted that neuronal networks
tended to perform better for more complex data structures,
making it tempting to speculate that this was the reason for
the slightly higher accuracies observed for the MLP. Due to the
complexity of both models (RF: 100 trees and MLP: 100 hidden
layers), it cannot easily be concluded which parameters have been
weighted in what way to explain the occurring differences.

Comparison to Other Detection
Approaches
Although several other automatic analysis approaches for the
assessment of neuronal damage exist, a very common strategy
is the manual counting of PI-positive, degenerated cells in the
region of interest (Sun et al., 2009; Koch et al., 2011; Grabiec et al.,
2019; Hohmann et al., 2019). Here, we focused on degenerating
processes in the dentate gyrus of hippocampal slice cultures.
The manual approach is not only time consuming but also
subjective in terms of the definition of true-positive signals. While
there is—to the authors’ knowledge—no study evaluating the
reproducibility of manually counting pycnotic cells in PI-labeled
brain slices, it was performed for analytically similar systems. For
example, for the evaluation of γH2AX foci, which narrows down
to counting bright dots with (partially) noisy background, it was
shown that counting results depend on the rater (Herbert et al.,
2014; Hohmann et al., 2018). Thus, the here-presented approach
is a clear improvement, as it significantly speeds up the analysis
process and is reproducible, if the trained model is provided.
Nevertheless, as this machine learning approach imitates manual
counting, it cannot provide a ground truth, as it is dependent on
the training data and thus the rater.

Currently available (partly) automatic analysis approaches are
all based on either purely measuring cumulative PI fluorescence
intensity in a defined region of interest or segmentation of PI-
positive nuclei using a manually set threshold (Dehghani et al.,
2003; Hailer et al., 2005; Lee et al., 2011; Won et al., 2011; Pérez-
Gómez and Tasker, 2012; Kim et al., 2014; Di Pietro et al., 2015;
Masuch et al., 2016a; Grüßer et al., 2019). While the cumulative
intensity measurement is objective, it showed no correlation
to the manually counted number of dead neurons in OHSC
(Ebrahimi et al., 2010). The noisy background with its region-
dependent intensity might be the main reason for this finding.
Notably, as the final models used here were trained on different
OHSC with varying background levels, it is consequently able to
handle different levels of background. The issue with manually
selecting a threshold is its subjectivity and that the resulting
signal is likely distorted by local variations in the signal-to-noise
ratios, resulting in either over- or under-segmentation. To the
authors’ knowledge, these aspects have not yet been investigated
and studies are missing that compare the segmentation results
to a manual ground truth. Consequently, quantifying the exact
extent of these problems is challenging. Nevertheless, based
on these issues, the presented approach seems promising as a
multitude of features is used, covering a variety of morphological
image features. Furthermore, false positives or overlap was not
considered in any of the cited algorithms, while our analysis
scheme provides an additional layer for detection of overlap and
false-positive signals. Additionally, the provided scheme is not
necessarily limited to PI labeling only, because the spatial features
used for segmentation and morphological features for false-
positive detections were used to identify approximately circular
structures. Consequently, the models can be adapted to image
modalities that narrow down to the detection of approximately
circular objects in different settings.

Taken together, the presented set of algorithms clearly
improves the existing approaches and can be used for reliably
analyzing neuronal damage in PI-labeled slice cultures.

Limitations
Despite the very good match between manual and automatic
detections, the usage of the presented framework is limited in
some aspects. For the analysis of dead cells in PI-labeled brain
slices, the test data were split in a “low” and “high” damage class,
used for training a SVM to assign OHSC to these classes. Thereby,
it became evident that the trained SVM tends to misclassify
OHSC of “intermediate” damage, leading to the comparably low
accuracy of 0.82. Yet, these images were those that were also
most difficult to assign for the expert. Consequently, it might
be useful to introduce a third “intermediate” damage class for
refining the system. Here, we did not introduce this damage class,
as this would yield a significantly lower amount of training data
for each class, making the resulting models less stable. For future
studies trying to analyze PI uptake in brain slices, this more
refined differentiation of damage classes is an option, but it has
to be taken into account that the overall amount of training data
needed will be significantly higher.

Another limitation lies within the usage of spatial features for
assessing dead cells. As these features were used to take advantage
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of the specific morphology of pycnotic nuclei, they are adjusted
to the resolution of the used images. Hence, the given approach
is somewhat resolution dependent; thus, rescaling of images to a
similar pixel size might be needed. Another issue is the variability
of OHSC, as they can also be viewed in the presented classification
results. As the amount of used training data was limited (117
OHSC), for some image modalities, only an insufficient amount
of training data was available and thus classification accuracy
was severely reduced for rare image modalities, corresponding
to two to three OHSC of the whole training set, with accuracies
below 0.6 for the MLP or RF model, respectively. For future
studies to avoid such issues, a higher number of training data is
needed to also adequately classify these images. Nevertheless, as
these kinds of image modalities are rare (≈2% of OHSC), their
impact is limited.

Similarly, the efficiency of the post-processing to identify
false-positive signals was hampered, as only a very limited
number of clearly identifiable false positives were available when
using the final RF or MLP model, proving the robustness
of the classification approaches. In future studies, this step
needs further improvements, especially by providing more data
on false positives. A last issue was the overlap of PI-positive
nuclei. As only a semantic segmentation strategy was proposed,
problems associated with overlap were not addressed, and thus,
for images with high damage, an object splitting strategy had to be
employed to avoid underestimation of neuronal damage. Based
on previous studies in different fields, the Hough transformation
was considered a useful and robust tool for object splitting, as PI-
positive nuclei are circular (Hohmann et al., 2018, 2020b), but this
approach is limited to roughly circular (or ellipsoid) shapes, and
thus can only cover overlap to such a degree that single pycnotic
nuclei still roughly resemble circles. Large accumulations of
signals cannot be handled this way.

Conclusion
In the present study, the applicability of spatial features for the
classification of neuronal damage in PI-labeled slice cultures

was tested, using multiple machine learning approaches. The
used approaches led to very high classification accuracies up to
0.97, when using a MLP model. Additionally, a post-processing
procedure was introduced to eliminate false-positive signals
and handle signal overlap to improve classification results. The
presented approach thereby appeared to be highly robust, with
only few outliers in classification accuracy.
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