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The promise of neuromorphic computing to develop ultra-low-power intelligent devices
lies in its ability to localize information processing and memory storage in synaptic
circuits much like the synapses in the brain. Spiking neural networks modeled using
high-resolution synapses and armed with local unsupervised learning rules like spike
time-dependent plasticity (STDP) have shown promising results in tasks such as
pattern detection and image classification. However, designing and implementing a
conventional, multibit STDP circuit becomes complex both in terms of the circuitry
and the required silicon area. In this work, we introduce a modified and hardware-
friendly STDP learning (named adaptive STDP) implemented using just 4-bit synapses.
We demonstrate the capability of this learning rule in a pattern recognition task, in
which a neuron learns to recognize a specific spike pattern embedded within noisy
inhomogeneous Poisson spikes. Our results demonstrate that the performance of the
proposed learning rule (94% using just 4-bit synapses) is similar to the conventional
STDP learning (96% using 64-bit floating-point precision). The models used in this study
are ideal ones for a CMOS neuromorphic circuit with analog soma and synapse circuits
and mixed-signal learning circuits. The learning circuit stores the synaptic weight in a
4-bit digital memory that is updated asynchronously. In circuit simulation with Taiwan
Semiconductor Manufacturing Company (TSMC) 250 nm CMOS process design kit
(PDK), the static power consumption of a single synapse and the energy per spike (to
generate a synaptic current of amplitude 15 pA and time constant 3 ms) are less than
2 pW and 200 fJ, respectively. The static power consumption of the learning circuit is
less than 135 pW, and the energy to process a pair of pre- and postsynaptic spikes
corresponding to a single learning step is less than 235 pd. A single 4-bit synapse
(capable of being configured as excitatory, inhibitory, or shunting inhibitory) along with
its learning circuitry and digital memory occupies around 17,250 um? of silicon area.

Keywords: adaptive STDP, synaptic weight resolution, neuromorphic hardware, pattern detection, neuromorphic
computing, biomimetic silicon neuron, silicon synapse

INTRODUCTION

The primary goal of neuromorphic computing since its inception in the late 1980s has been to
design low-power electronic circuits that can mimic human cognition as well as shed light on
the complex mechanisms underlying neural computation. Toward this endeavor, research groups
across the globe have pursued different design methodologies. Inspired by the architecture of
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the brain, the common feature in all the approaches is the
core components of a neuromorphic system consisting of
neuronal soma and synaptic circuits empowered with learning
mechanisms—supervised or unsupervised. These circuits are
designed based on the mathematical models of the cell
membrane, ionic dynamics in the cell, and synapses, which in
turn are constructed from electrophysiological data measured
from them. The learning mechanism is also the most important
component in the neuromorphic systems. Spike time-dependent
plasticity (STDP) is the most well-known learning rule for
unsupervised learning in the brain, which is implemented in
many neuromorphic systems. The STDP learning updates the
synaptic weight of a particular synapse based on the interspike
interval between the spikes of the pre- and the postsynaptic
neurons. STDP-based unsupervised learning has been successful
in tasks such as pattern detection (Masquelier et al., 2008, 2009)
and image classification (Diehl and Cook, 2015), achieving high
performance in simulation.

Depending on the implementation details and the capability
of the models chosen, neuromorphic systems can be categorized
as bioinspired (simpler models, easier to implement) (Vogelstein
et al., 2007; Merolla et al., 2014; Davies et al., 2018), biomimetic
(detailed models, take up relatively more area and power)
(Nease et al., 2012; Schemmel et al., 2017), or an optimized
combination of both (Benjamin et al., 2014; Qiao et al., 2015).
The choice of the model is driven by the desired application
and involves making a trade-off between power consumption,
area, and ease of design. The complementary metal-oxide-
semiconductor (CMOS) circuit is generally used in low-power
neuromorphic circuits. The integration of novel non-volatile
memory devices (e.g., memristors and ferroelectric field-effect
transistors) for learning rule implementation is a trend these
days, but conventional CMOS circuit will be a realistic solution
from the viewpoint of cost, stability, and integration until these
devices get matured.

Spike time-dependent plasticity learning models that have
achieved high performance in simulation (Masquelier et al., 2008,
2009; Diehl and Cook, 2015) use the entire 64-bit floating-point
operation available on standard digital computers. Implementing
the STDP learning with high-resolution weights (even 8 to
10 bits) in CMOS digital memory circuit requires a large number
of transistors which leads to a big footprint and high-power
consumption. Because non-volatile memory devices are still
in their prototype stage, we propose a modified bioinspired
learning rule, adaptive STDP learning, which can achieve good
performance with lower resolution memory.

The long-term goal of our research is to develop a biologically
plausible neuromorphic system that can be used in biohybrid
systems such as the brain—-machine interface (BMI) decoder (Boi
et al., 2016). Toward this goal and to demonstrate the capability
of this learning rule, we choose a spike pattern detection model
presented in Masquelier et al. (2008) that takes into account
the background activity of presynaptic neurons. In this model,
repeatedly appearing spike patterns hidden in the spontaneous
background firing activity are detected by the STDP learning rule.
In this work, we apply the proposed adaptive STDP learning
rule in this pattern recognition task and present the simulation

results. The key idea behind the adaptive STDP learning is that
the loss in performance generally accompanied by the use of
low-resolution synapses can be compensated by adapting the
parameter controlling the long-term depression function (in
the STDP learning) over the course of training. The circuit
controlling this adaptation can be shared with all the synapses
involved in the task; thus, the overhead is minimal. In addition,
the bit update (modification in the value of synaptic weight) at
any instant in time is restricted to just 1 bit, which simplifies
the circuitry considerably. Our results show that the presented
learning rule (using just 4-bit weight) is equally powerful as the
high-resolution STDP learning. Along with these results obtained
using simulation of ideal models in python, we also present
the circuits that implement the neuron and synapse models
used in this work to indicate that these models are suitable for
neuromorphic implementation. The manuscript is organized as
follows: the next section comprises the details of the pattern
recognition task, the adaptive STDP learning, and the results.
This is followed by a discussion and conclusion.

MATERIALS AND METHODS

We begin by describing the setups used for the pattern
recognition task. Then the adaptive STDP learning rule is
introduced. This is followed by a description of the neuron and
synapse models used in the task along with the schematic of the
corresponding circuit modules.

Pattern Recognition Setup

Repetitive spike patterns precise to the scale of milliseconds and
spontaneous background firing activity with a fano factor in the
range of 1 to 1.2 are ubiquitous in the cortex (Koch, 1999).
The task of pattern recognition here involves detecting these
spike patterns hidden within the spontaneous background firing
activity. In Masquelier et al. (2008), it was demonstrated that
a single neuron equipped with STDP learning could perform
this task of detecting one hidden pattern within spontaneous
background firing with a success rate of 96%. The random
background firing activity is modeled by an inhomogeneous
Poisson process, and the single spike pattern to be detected
is hidden at irregular intervals. Like the setup presented
in Masquelier et al. (2008), our setup comprises a neuron
receiving spikes from N,g inputs through excitatory synapses.
These synapses are activated by spike trains, each generated
independently using an inhomogeneous Poisson process with a
variable instantaneous firing rate ranging between 0 and 90 Hz.
The maximum possible rate of change was chosen so that spiking
frequency could go from 0 to 90 Hz in 50 ms. The setup also
made sure that each afferent spikes at least once within a 50-ms
duration, making the minimum spiking frequency 20 Hz. After
the generation of random spike trains, a part of it covering 50 ms
duration is randomly chosen and copied; this is the pattern to be
detected. The original spike train is then discretized into 50 ms
sections, and randomly, one of this section is chosen and replaced
by the copied spike train. Then based on the desired pattern
repetition frequency (chosen to be 25% or 10% in our simulation
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setups), a certain number of these sections are randomly chosen
from the original spike train and replaced by the pattern to be
detected. Consecutive 50 ms sections are avoided in this process.
The population average firing rate of these afferents in 10 ms time
bins is approximately the same throughout the input spike train,
making sure that the 50-ms sections comprising spike patterns
have the same population average spike rate as the rest of the
input spike train [10 ms time bins was chosen because it was the
time constant of the LIF neuron used in Masquelier et al. (2008)
and we also use the same value]. This population average firing
rate is around 54 Hz. Then to make the pattern recognition task
extra difficult, additional spontaneous 10 Hz noise is added to all
spike trains along with a random jitter on the precise spike time
of the spike patterns to be detected. This additional noise overlaps
with the spike patterns, and the population average firing rate
in 10 ms bins with this addition is around 64 Hz. Without this
additional noise and jitter, all the afferents fire in precisely the
same manner at every pattern presentation. The jitter added to
the spike pattern is modeled as a Gaussian random variable with
a mean zero and standard deviation of 1 ms.

In the reference simulation setup in Masquelier et al. (2008),
there are 2,000 afferents, of which 1,000 of the afferents receive
repeated spike patterns hidden in the background spiking activity
as described above, and the remaining 1,000 afferents receive
stochastic spike trains that model the background firing activity
(with no repeated hidden patterns). In our work, we perform
simulations using three different setups. Setup 1 has 2,048
afferents, of which stochastic spike trains containing hidden
patterns are received by 1,024 afferents, and the remaining
1,024 afferents receive stochastic spike trains that model the
background firing activity (they do not contain any repeated
hidden patterns). It corresponds to the reference setup in
Masquelier et al. (2008). In setup 2, we choose the number of
afferents to be 1,024, and in setup 3, the number of afferents is
reduced further to 256. In setups 2 and 3, all the afferents receive
stochastic spike trains with patterns hidden within. In the setup
with 1,024 afferents, we use spike patterns described above, the
same as in setup 1 and (Masquelier et al., 2008). In the setup
with only 256 afferents, the additional 10-Hz spontaneous noise
and jitter in the spike times within the pattern are not included.
Everything else remains the same. It is empirically known that
the performance of the pattern recognition task degrades with a
reduction in the number of afferents. The additional noise and
jitter are removed from setup 3 to “normalize” the difficulty of the
task, as the number of active afferents is reduced to one-fourth

of the original value. Setup 1 compares the performance of
the adaptive STDP learning with the STDP learning with
64-bit floating-point operation. The other two setups are for
neuromorphic applications with light-weighted neuromorphic
circuits. Because of limited chip area, the number of synapses in
a neuromorphic chip is generally restricted; hence, we reduce the
number of afferents in our setup too.

The spike trains with patterns to be detected buried in the
background activity are generated for 225 s. We executed 100
runs for each simulation setup, and each run is 450 s long.
Because of memory constraints, the 225-s-long input is repeated
twice to get 450 s-long input. Because the period of 225 s is
sufficiently longer than the 50-ms time bin, this repetition is
expected to have very few additional effects on the learning
process. In the simulation setup presented in Masquelier et al.
(2008), 150-s-long input was repeated thrice to get 450-s-long
input spike train. A summary of the experimental setups is given
in Table 1.

Adaptive STDP Learning

When using the STDP learning, the network dynamics evolve as
follows. The spike inputs received via synapses cause the neuron
to spike. If the input spike (presynaptic spike) activating a synapse
arrives before the postsynaptic spike (if the synapse contributes
to the spiking of the neuron), the value of its synaptic weight is
potentiated. On the other hand, if the input spike (presynaptic
spike) activating the synapse arrives after the postsynaptic spike
(if the synapse does not contribute to the spiking of the neuron),
the value of its synaptic weight is depressed. The closer the pre-
and the postsynaptic spikes are to each other, the higher is the
value of potentiation or depression. The update made in the
value of synaptic weight decays exponentially with increasing
interspike intervals, as shown in Figure 1A. Mathematically, this
is represented as:

at - exp (’f;’*') if f; < 4; (LTP),

AWj = (1)

a  -exp (— tj;_tt) if >t (LTD).

Here, t; is the timing of the presynaptic spike and ¢; is the
timing of the postsynaptic spike. T (t7) is the time constant
of the decaying exponential controlling potentiation (depression)
of synapses, and a* (a”) is the learning rate that controls the
maximum change in the value of synaptic weight while in the
potentiation (depression) process. The product a* <™ is generally

TABLE 1 | Experimental setups for pattern recognition.

Setup in Masquelier

This work setup 1

This work setup 2

This work setup 3

et al. (2008)
Number of afferents (Naf) 2,000 2,048 1,024 256
Number of active afferents 1,000 1,024 1,024 256
Stochastic spike trains with hidden patterns modeled by Inhomogeneous Inhomogeneous Inhomogeneous Inhomogeneous

Population average spike rate in 10 ms time bins

Poisson process and
10 Hz spontaneous
noise and jitter

64 Hz

Poisson process and
10 Hz spontaneous
noise and jitter

64 Hz

Poisson process and
10 Hz spontaneous
noise and jitter

64 Hz

Poisson process

54 Hz
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FIGURE 1 | Variants of the STDP learning rules. (A) The STDP learning rule. (B) The STDP Learning Rule for Neuromorphic Systems with DACs and digital
memories configuring synaptic weights. (C) 1-bit rectangular STDP. (D) Adaptive STDP: the value of tpost in 1-bit rectangular STDP is varied in steps over time.

set smaller than the product a~t~. In the pattern recognition
task using STDP learning, with the onset of input spikes,
the neuron receives current via N,g synapses, each initialized
with the same value of synaptic weight. In the beginning, the
postsynaptic spikes arise in response to random coincidence
in the input spikes. The initial value of synaptic weights is
set so that during the initial phase of the run, the spiking
frequency is relatively high (50-160 Hz), and the postsynaptic
spikes occur both inside and outside the pattern. While the
pattern to be detected does not appear and the presynaptic
spike train comprises only random spikes, all the synapses
get depressed over time. This happens because aTtt < a~t~
and depression dominates over potentiation. However, in the
presence of spike patterns repeating at irregular intervals, the
synapses associated with the spike pattern are activated much
more than the other synapses receiving random spikes. As a result
of this over the course of learning, a relationship emerges between
pre- and postsynaptic spikes. The synapses associated with the
spike pattern get potentiated, while the remaining synapses get
depressed, and therefore, the neuron spikes in response only to
the spike pattern. As the pattern is 50 ms long and the time
constant of the neuron used in Masquelier et al. (2008) was
10 ms, the parts of the pattern that the neuron responds to are
determined by chance initially, but while learning, the timing of
the spike within the pattern decreases and the neuron gets to
spike very close to the beginning of the pattern.

The success rate of the pattern recognition task described
above relies on the resolution of synaptic weights, the minimum
allowable change in the value of synaptic weight either during
potentiation or depression. The smaller the change (or the higher
the resolution), the higher is the success rate, because with a small

change in the value of synaptic weights, the total synaptic current
depolarizing the neuron does not change substantially in a small
duration even if many synapses are updated simultaneously,
this keeps the learning process stable, and the neuron does not
stop spiking due to a sudden depression of synapses. In the
pattern detection task presented in Masquelier et al. (2008),
the synaptic resolution is quite high using the entire 64-bit
floating-point precision. Designing a neuromorphic system with
relatively high-resolution weight (~8- to 10-bit fixed-point)
takes a significant amount of silicon area as well as power. In
such systems (Vogelstein et al., 2007; Cassidy et al., 2011; Pfeil
et al., 2012; Moradi and Indiveri, 2013), the STDP circuit is
generally designed by implementing a function approximating
the exponential dependence of LTP and LTD as shown in
Figure 1B. However, even designing such a circuit gets very
complicated involving the use of modules like adders, subtractors,
lookup tables or comparators, and digital to analog converters.
The circuit design of the STDP circuit can be simplified if the
change in the value of synaptic weight is restricted to 1 bit
at any instant of time. This can be achieved by modification
of the STDP learning rule to 1-bit rectangular STDP learning
rule as shown in Figure 1C and mathematically expressed as:

+ 1bit, ift; < tjand t;—t; < tpre (LTP),

2
—1 bit, ifi’j > t;and tji—t; < tpost (LTD), )

AW]':[

where, fpre is the maximum delay of the postsynaptic spike
after the presynaptic spike that leads to potentiation (LTP),
and fpost is the maximum delay of the presynaptic spike
after the postsynaptic spike that leads to depression (LTD).
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However, in our simulations, we observed that using this
learning rule with low-resolution synapses (e.g., 4 bits) leads to
poor performance in the pattern recognition task. In Cassidy
et al. (2007, 2011), low complexity synthetic implementation
of STDP was explored using basic combinational digital
logic gates. They implemented the STDP functions shown
in Figures 1A-C and a few others and evaluated their
performance using a balanced excitation experiment, based on
the experiment run by Song et al. (2000). The experiment involves
exciting a LIF neuron via STDP-enabled synapses activated
by independent Poisson spikes. The judgment criterion was
based on the shape of the bimodal distribution of synaptic
weights obtained after learning. Results obtained from the STDP
function in Figure 1A were used as the baseline condition for
evaluation. They observed that the STDP function in Figure 1B
performed best, and reasonable bimodal distributions were
obtained from the function in Figure 1C by manual tuning
of parameters fyre and fyosr. One hundred and twenty-eight
8-bit synapses were used in this study. Though a bimodal
distribution is obtained, designing 8-bit synapses is still a major
overhead in terms of silicon area and power consumption
(in CMOS-based analog circuits, it would occupy 16 times
more area than a 4-bit synapse). In addition, in the spike
pattern recognition task like the one discussed in this study,
obtaining a bimodal distribution of synaptic weights alone
is not a criterion for success, because such a distribution
is obtained even in the presence of false alarms (neuron
spikes outside the 50-ms patterns). The task is considered
successful if after learning the neuron spikes within the
50-ms duration where the pattern is present and nowhere
outside the pattern.

The degradation in performance with the use of a low-
resolution synapse occurs due to the following reason. Because
the minimum change in the synaptic weight is not sufficiently
small, a single learning step causes a big and sudden
change in the synaptic current. Moreover, as the value of
tpost is generally larger than #,p, it tends to induce a
strong depression of the synapses even those associated with
spike patterns at an earlier stage in the learning process
and this causes the neuron to stop spiking. Essentially, the
neuron gives up before the synapses have a chance to be
potentiated by the spike patterns to be detected. On the
other hand, if #,0s is kept slightly higher than fy, then the
neuron does not stop spiking and many synapses even those
not associated with the pattern get potentiated, leading to
many false alarms.

To overcome this problem and improve the performance,
we propose to modify #yost in steps during the learning phase
as shown in Figure 1D. At the beginning fpos is closer to
tpre» this gives ample time for the synapses involved in the
pattern to be potentiated, along with many extra synapses, and
as time progresses, fpost is adapted to higher values leading to
depression of synapses not associated with the pattern. tpr is
kept constant and it keeps reinforcing the synapses associated
with the spike pattern repeatedly presented. The initial value
of synaptic weights is set so that the spiking frequency of
the neuron during the initial phase of learning is quite high

(50-160 Hz), and as time passes, the neuron becomes selective
to spike inputs from the synapses associated with the spike
patterns and spikes only when the spike pattern is present. Just
like in the case of the STDP rule, chance determines which part
of the spike pattern the neuron responds to initially, but over
time, the latency to spike within the pattern decreases. Then
the neuron learns to spike close to the beginning of the pattern
presentation. The weight update is governed by only the most
recent pair of pre- and postsynaptic spikes as in the preceding
work (Masquelier et al., 2008).

Neuron and Synapse Model

To design a biologically plausible system that can be used
in biohybrid applications such as BMI decoders, a detailed
neuron model might be preferable, but designing such a
model is not very efficient in terms of silicon area and
power consumption. Hence, a trade-off needs to be made
between neuro-mimicry and compact low-power circuitry.
Toward this goal, we use the reduced compartmental modeling
technique (Herz et al, 2006) to model our neuron. It
comprises two compartments: a somatic compartment and a
dendritic compartment. The somatic compartment is modeled
using a biomimetic qualitative neuron model (Kohno and
Aihara, 2016; Kohno et al., 2016), and the passive dendritic
compartment is modeled using a leak resistor (Rje,) and
a dendritic capacitor (Cge,). All N, excitatory synapses
connect to the dendritic compartment. The somatic and
dendritic compartments are connected via a unidirectional
resistor that either sources or sinks current into the somatic
compartment depending on the membrane potential difference
between the dendritic and the somatic compartment. As
the name implies, no current flows into or out of the
dendritic compartment via the unidirectional resistor. The
unidirectional resistor is to be implemented using a single-
stage transconductance circuit that consumes very low static
power in the picowatts range. In terms of its complexity,
this neuron model lies in between the point neuron model
(where synapses connect directly to the soma) and the two-
compartment neuron model (where somatic and dendritic
compartments are connected via a resistor). Implementing
a point neuron model might seem a simpler choice, but
its implementation with a biomimetic somatic compartment
and a large number of synaptic circuits requires a current
conveyor circuit (Chaisricharoen et al., 2010) as an interface
module between the soma and the synapses. Without the
interface module, the large parasitic capacitance and the leakage
current of the synapses affect the membrane capacitance of
the soma and disturb the spiking behavior of the neuron.
However, to convey the current faithfully, maintaining the
precise shape and timing of the synaptic current, the current
conveyor needs to be operated using a high bias voltage
leading to a significantly high static power consumption in
the nanowatts range, whereas the implemented unidirectional
resistor consumes power in the picowatts range. Hence, the
two-compartment model with a unidirectional resistor was
chosen. Figure 2 shows the block diagram of the pattern
recognition setup.
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FIGURE 2 | Pattern Recognition Setup. The dendritic compartment is passive and is represented by a dendritic capacitance Cgep, and a leak resistor Rigac. The
Adaptive STDP modifies the value of synaptic weights based on the time of the pre- and the postsynaptic spikes.
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The somatic compartment modeled using a biomimetic
qualitative neuron model (Kohno and Aihara, 2016) is described
by the following equations

d on —
G =IO = 80) o =1 () =g (g) + 5 )
dn
Cna =fn (v) — &n W) + Loy — 1 (n), (4)
dq
CqE :fq (v) + Iaq —1q (‘I) 5 (5)

where, v, n, and g represent the membrane potential,
the fast dynamics, and the slow dynamics of the somatic
compartment, respectively. I, Iz, and I44 are constant current
parameters. C,, Cy, and C; are 0.6, 0.9, and 24 pE respectively.
Rc is the unidirectional resistor, which is implemented by a
transconductance amplifier circuit (see Figure 3B). In this
work, it is 2 GQ. "2 js the current flowing into the somatic
compartment (controlled by the potential difference between
dendritic and somatic compartment) via the unidirectional
resistor. fi (v), g (v), and ry (x) are sigmoidal functions and
their equations are as follows:

My

X - N 6
S A e CE o ©
Ry - eXP(ULegx)
a =] T , 7
& (V) 0 1+ Rle . eXp(_ULT (V _ egx)) ( )
exp(-6ry)
() = Io s (®)

1+ eXp(—ULT ()’ - ery)) '

where, Ur, Iy, and k are the thermal voltage, the current
scaling parameter, and the capacitive coupling ratio of the PMOS

transistor used to design the neuron circuit. Parameters oy,
Ogx, and Oyy control the turning point of the sigmoid function.
A detailed description of this somatic compartment and its circuit
implementation are found in Kohno and Aihara (2016) and
Kohno et al. (2016). In the circuit, v is implemented as the
difference between the power voltage (Vdd) and the voltage of
the membrane potential node, and the polarity of excitatory
and inhibitory currents is reversed. The synaptic current is
depolarizing (hyperpolarizing) when it flows out (in) from the
somatic compartment circuit. This circuit can reproduce six
different spiking dynamics observed in biological neurons. This
model has been designed from first principles (with dynamics
like the Hodgkin-Huxley neuron model) and does not involve
resetting of membrane potential while spiking. In the integrate-
and-fire-based neuron models such as the LIF neuron model,
the neuronal spike is approximated by a reset of the membrane
potential. It is known that they can realize class 1 spiking
dynamics in the Hodgkin’s classification (the spiking frequency
of the neuron is dependent on the input current) but not class 2
dynamics (characterized by the Hopf bifurcation and bistability).
An adaptive exponential integrate-and-fire (AdEx) neuron can
realize class 2 spiking dynamics, but because it omits the
dynamics of reproducing the neuronal spike, its phase response
curve (PRC) is not generally of type 2. The spiking dynamics
replicated by the somatic compartment used in this work are
fast spiking (classes 1 and 2 in the Hodgkin’s classification),
regular spiking, low threshold spiking, elliptic bursting, and
square wave bursting, and its circuit implementation is estimated
to consume less than 6 nW of static power. This versatility in
spiking dynamics comes at a cost in terms of silicon area and
power consumption in comparison with circuit implementation
of the LIF and AdEx neuron models. An estimated static power
consumption of AdEx neuron in the ROLLS chip (Qiao et al,,
2015) is less than 3 nW (exact value not available). The energy
consumption of a recent implementation of the AdEx neuron
using lower-node FD-SOI technology has been reduced by an
order of magnitude (Rubino et al., 2019).
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FIGURE 3 | (A) Circuit diagram of the synaptic circuit. Dimensions of the transistors: M7 = 0.3758 * (w/l), M8 = w/l, M9 = 2 * (w/l) and M10 = 4 * (w/l) with w = 2 um,
| =500 nm. (B) Single-stage source degenerated transconductance amplifier configured as unidirectional resistor.

For the task of pattern recognition here, the somatic
compartment is configured to be in the fast spiking class 1
mode. In this mode, its spiking frequency increases in response
to an increase in the stimulus current. The resting membrane
potential v is set at 315 mV (in the circuit 685 mV). The dendritic
compartment receives spike inputs via excitatory synapses
whose synaptic conductance is modeled by a bi-exponential
waveform mimicking AMPA-type synapses. The majority of
large-scale neuromorphic implementations such as the ROLLS
chip (Qiao et al., 2015) use single compartment neuron models
and do not have dendritic compartments. The BrainscaleS
project has implemented a multicompartment neuron model
with active dendritic compartments (Schemmel et al., 2017).
These dendritic compartments can generate various kinds of
spikes (e.g., sodium-based action potential and calcium-based
plateau potential) independent of the somatic compartment. In
our implementation, we use a passive dendritic compartment
with no spiking capability for simplicity of the circuitry.

The synaptic circuit implemented in this work is shown
in Figure 3A. It is similar to the log-domain integrator
synapse (Merolla and Boahen, 2003). The 4-bit synaptic weight
is implemented using a digital to analog converter (DAC),
comprising the first stage of the synaptic circuit. A brief
description of the circuit operation is given next, and its details
are found in Gautam and Kohno (2020). An input pulse activates
the node nVj,, switching on the transistor M1, and pulling its
drain to Vyqin, and M2 along with the inverter 10 comprises
a charge injection module making the transition to Vg
instantaneous. Transistors M3 to M6 are binary switches that
control the value of the synaptic weight and are connected to
the STDP module. Transistors M7 to M10 are matched binary-
weighted transistors. The parameter voltage sV, controls the
amplitude of the synaptic current. Depending on its value and
the value of the synaptic weight, the DAC stage sources a
current into the node Vg, which is charged for the duration
of the input pulse. Once the pulse turns off, the transistor

MI11 operating in the saturation region discharges the node
Veyn linearly. The parameter voltage sV and the capacitor Ceyn
control the rate of discharge. The linear voltage Vi, is then
converted to exponential current via the exponential current-
voltage relationship of the MOS transistor (M12) operating in
the subthreshold domain; 256 of these synaptic circuits impinge
on the dendritic compartment. Because current flowing out of
(into) the somatic compartment depolarizes (hyperpolarizes)
the neuron, the synaptic circuit upon activation depolarizes the
neuron and causes it to spike.

In the results presented in this study, a simplified synapse
model that retains the bi-exponential profile of synaptic current
generated by the circuit is used to model the synaptic current. It is
modeled as a difference of two exponentially decaying waveforms
of different time constants described by

Lsyn ® = Isw~(_exp_t/tr + eXp_t/Td)/ascale )

where, Iy, (t) is the synaptic current. T, and t4 together control
the rising and falling time constant of the synaptic current, and
their values are set at 1 and 3 ms, respectively. In the circuit, the
time constant is controlled by Cy, and the voltage sVt. agcqle is
a scaling factor so that the peak value of the synaptic current is
equal to the value of the synaptic weight denoted by I,. This peak
occurs at around 2 ms similar to the current profile generated
by the synaptic circuit. The synaptic weight of these synapses
is restricted to 4 bits. The maximum amplitude of the synaptic
current is fixed at 15 pA and the minimum amplitude at 0 pA.
A single-bit change in the value of synaptic weight induces a
change of 1 pA in the synaptic current. The synaptic current flows
into the dendritic compartment described by:

AV den

C _
den dt

_ Vden — Ejeak (10)

yn
Riea

where, v4e, and v are the membrane potentials of the dendritic
and somatic compartments, respectively. Cge, is the dendritic
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capacitance fixed at 30 pF (for setups 1 and 2) and 12 pF (for
setup 3). The value of the leak resistor Rj, is set at 40 MQ for
setups 1 and 2 and 80 MQ for setup 3. The leak resistor can also
be implemented using the same single-stage transconductance
amplifier (Figure 3B) with the gate of transistor M4 connected
to Elex and the gate of transistor M5 connected to vge,. As
the number of active afferents in setup 3 is much lower, the
value of leak resistance is increased and the value of membrane
capacitance is reduced. Ej,x is kept at 315 mV and it sets the
membrane potential of the soma circuit at around the same
value. A programmable capacitor bank along with parasitic
capacitance of the synaptic circuits implements the dendritic
capacitance C gep.

RESULTS

We performed two groups of simulations in each setup (100 runs
for each group) using the fourth-order Runge-Kutta method
with a 10-ps time step. Spike pattern frequency (time intervals
between repeating spike patterns) was varied between the two
groups. In the first group, it was fixed at 25%, and in the second
group, to make the task even more difficult, it was dropped to
10%. This increases the difficulty of the task as the neuron now
comes across more random noise rather than repeating spike
patterns, increasing the probability that synapses get depressed
during the initial phase of the run and causes the neuron to stop
spiking. The criterion for success was chosen to be a hit rate
greater than 98% and zero false alarms in the last 150 s of the
run similar to the criterion used in Masquelier et al. (2008).

In Table 2, results by the STDP learning with 64-bit floating-
point precision and the adaptive STDP learning with 4-bit fixed-
point precision are shown. In the former setup (Masquelier et al.,
2008) with a pattern frequency of 25%, 96 out of 100 runs
were successful and it was observed that with pattern frequency
reduced to 10%, the success rate dropped to around 45% from
96%. Using the adaptive STDP learning, the performance was
similar. Here (setup 1), we obtained a 94% success rate with a
pattern frequency of 25%. Out of 100 runs, in four cases, the
neuron stopped spiking within the first 40 s; in one case, there
was a single false alarm in the last 150 s of the run (with a 100%
hit rate); and in the final case of failure, the hit rate in the last 150 s
was 96%. Of the successful runs, in 85 runs, the hit rate was 100%,
and in 8 runs, a hit rate greater than 99% was observed. With the
pattern frequency reduced to 10%, the success rate dropped to
38% in setup 1. In Table 3, the endurance of the adaptive STDP
learning against the smaller number of afferents is evaluated.
With 1,024 afferents (setup 2), the performance was better than
even STDP learning with 64-bit floating-point precision. We
obtained a 96% success rate with a pattern frequency of 25%
and an 88% success rate with a pattern frequency of 10%. In the
final setup with just 256 afferents, we obtained a success rate of
95% with a pattern frequency of 25% and 83% with a pattern
frequency of 10%.

The parameters controlling learning and the values of the leak
resistance and the dendritic capacitance were tuned manually.
They were specifically tuned for setup 1 and then used as it is

TABLE 2 | Comparison of the STDP and adaptive STDP learnings.

Performance metric STDP with Adaptive STDP with
high-resolution 4-bit synapses (setup
synapses 1) (%)

(Masquelier et al.,
2008) (%)

Success rate with 96 94
pattern frequency of
25%

Success rate with
pattern frequency of
10%

40-50 38

TABLE 3 | Results of adaptive STDP learning for setups 2 and 3.

Performance metric Setup 2 (1,024

afferents) (%)

Setup 3 (256
afferents) (%)

Success rate with 96 95
pattern frequency of

25%

Success Rate with 88 83
pattern frequency of

10%

TABLE 4 | Parameters changed across setups.

Parameters Setup 1 Setup 2 Setup 3
thost (last step) 35.6 ms 35.6 ms 38.6 ms
Initial weight 2 3 7
Risak 40 MQ 40 MQ 80 MQ
Cden 30 pF 30 pF 12 pF

for setups 2 and 3 with minor modifications. The parameters
that were modified are listed in Table 4. Between setups 1 and 2,
the only change made was in the initial value of synaptic weight.
With the value of dendritic capacitance and leak resistor fixed, the
initial value of synaptic weight determines the spiking frequency
of the neuron during the initial phase of the run. The value of
initial synaptic weight was set so that the spiking frequency of
the neuron during the initial phase of the run stays within the
range of 50 to 160 Hz. This value of initial spiking frequency
is not dependent on the input spike rate or any specific task.
A minimum initial firing frequency around 50 Hz makes sure
that the synaptic current in the initial phase of the run is strong
enough to keep the neuron spiking for learning to take place.
With an initial frequency smaller than 10-15 Hz, performance
starts to degrade considerably. On the higher end, it was observed
that having a very high spiking frequency (>200 Hz) during the
initial phase of the run led to more failures. This is intuitive
because a high initial spiking frequency leads to a higher number
of discharges outside the pattern leading to early depression of
synapses. Also, there is a limit to the maximum spiking frequency
of a biomimetic neuron model. Just like biological neurons, if the
excitatory input current is too high, the neuron does not spike,
and its membrane potential saturates at a value higher than its
resting membrane potential.
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As the number of afferents in setup 1 doubles that of setup 2,
the value of initial synaptic weight in setup 1 was chosen to be 2
(implying a synaptic current of 2 pA), and in setup 2, it was fixed
at 3 (implying 3 pA). In setup 2, using an initial synaptic weight
value of 3 and 4 gave similar results. However, using an initial
synaptic weight of 2 did not generate sufficient synaptic current
to depolarize the neuron sufficiently. In setup 3 (256 afferents),
the value of the leak resistor, the dendritic capacitor, and the
initial value of synaptic weight were changed. As the number of
active afferents is reduced considerably, it is reasonable that the
value of the leak resistor is increased, and the value of dendritic
capacitance is decreased. The initial value of synaptic weight was
fixed at 7 so that the initial spiking frequency is in the desired
range of 50-160 Hz.

The adaptive STDP learning parameter tpr was fixed at 10 ms
and fpost was varied during learning. The first change in the value
of tpost Was made after 6 s (2 * f,4qp) and the remaining changes
were made every 3 s. The following are the values of tpos for each
of the six steps while learning (in setups 1 and 2): 10.3, 13.3, 18.3,
23, 28.2, and 35.6 ms. The exact change in its value is not very
important as long as it is not too large during the first few steps.
In setup 3, the final value of #yos in the last step was increased
to 38.6 ms instead of 35.6 ms. As the background activity in the
spike train in setup 3 does not contain the additional 10 Hz noise
and the spike patterns do not have any jitter, the value of fs

can be increased to higher values without depressing the synapses
associated with the pattern. It was observed that without this
change a couple of false alarms were detected in around 25% of
the runs. The spike pattern hit rate is 100% in all successful runs.
In setups 1 and 2, a hit rate of 100% is observed in 85 (30) and 90
(80) runs for a pattern frequency of 25% (10%), respectively.

The evolution of the dynamics of a neuron for one of the runs
(in setup 2) is shown in Figure 4. Figure 4A shows the spiking
behavior of the neuron with a pattern frequency of 10%. The
spiking frequency is high during the initial phase of the run, and
as the learning progresses and the neuron becomes more selective
to spike inputs, the frequency decreases. Figure 4B shows the
spiking behavior of the neuron in the last second; as expected,
the neuron only spikes in the presence of the pattern. The times
where the 50-ms pattern ends are labeled in the top right corner of
the figure, and the pattern duration is marked by a box. Figure 4C
shows how the time to spike within a pattern decreases while
learning and settles to a value less than 10 ms. Figure 4D shows
the profile of dendritic membrane potential v4e, during the last
second of the run. Figure 4E shows the bimodal distribution of
synaptic weights after learning is completed, and the final figure
shows the profile of synaptic current injected into the somatic
compartment via the unidirectional resistor. The unidirectional
resistor allows the current only to flow into or out of the somatic
compartment, and this current is proportional to the difference
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between the membrane potential of the dendritic compartment
and the somatic compartment. The current reverses direction
during the neuronal spike when v > v 4¢p.

DISCUSSION AND CONCLUSION

The presented work is built upon the spike pattern model
in Masquelier et al. (2008) where the same pattern detection
task was demonstrated using STDP learning. The results above
show that the proposed adaptive STDP learning with 4-bit
fixed-point synaptic weights is equally powerful as the STDP
learning using higher resolution weights. Synaptic weight in
CMOS-based synaptic circuits is generally implemented using
DACs (Schemmel et al., 2010; Moradi and Indiveri, 2013) or
capacitors (Azghadi et al., 2014). Both have their disadvantages.
The size of these DACs increases exponentially with the number
of bits needed to configure the value of synaptic weight, and
the capacitors due to their physical nature have the limitation
of being leaky and thus lead to depression in the value of
synaptic weight over time unless an additional circuitry to refresh
the charge on the capacitor is implemented. This is one of
the reasons that large-scale analog neuromorphic chips like
ROLLS (Qiao et al., 2015) have palimpsest (1-bit sticky) STDP
synapses. However, the use of low-resolution weights leads to a
degradation in performance in some tasks such as the pattern
recognition discussed in this work. The proposed learning
rule strives to solve this problem. Instead of increasing the
weight resolution, the performance of the network is improved
by adapting tpost (the parameter controlling depression) over
the course of learning. In terms of implementation, this is
advantageous because a single circuit controlling the adaptation
of fyost can be shared with all the afferent synapses, instead
of increasing the area of each synapse (when using high-
resolution weights). Another simplification made in the design
was to use the 1-bit rectangular STDP function (Figure 1C)
instead of the exponential STDP function (Figure 1B). With
the 1-bit rectangular STDP function, the bit update can be
implemented by a simple 4-bit up-down counter (Mano, 2002)
that saturates at the maximum (1111) and minimum (0000)
count values with the state of the counter controlling the value
of synaptic weight.

The performance of the network in case where pattern
frequency was reduced to 10% decreases considerably in setup 1
but is relatively better in setups 2 and 3. Comparing the results in
setups 1 and 2, a severe degradation in performance occurs only
in setup 1. The main factor for this reduction in success rate may
not be the reduced pattern frequency but the additional 1,024
afferents that do not have hidden spike patterns. A limitation
of this study is that a very limited range of parameter space
could be explored as all the parameters were tuned manually.
Instead of using a parameter search technique like grid search,
the values of parameters were decided empirically based on
simulation results. The value of t,4,, was fixed at 3 s to make sure
that the synapses associated with the pattern to be detected have
enough time to be potentiated (in both cases with a pattern input
frequency of 25% and 10%). However, the effectiveness of the

algorithm is not sensitive to t,4,p. Similar results were obtained
when t,4,pwas 2 and 4 s. The value of 3 s was chosen as the
results were good enough across all setups to demonstrate the
capability of the algorithm. The results can likely be improved
further by determining the optimum value of the t,4,, parameter
either by manual tuning or some metaheuristic algorithm like
differential evolution (Buhry et al., 2011). The value of t,qp is
also independent of the input spike rate as the same value of 3 s
is chosen across all simulation setups that differ in the number
of active afferents and population average input spike rate (see
Table 1). A larger value of t,4,, might be needed if the spike
patterns are present even more sparsely (results have been shown
for 25% and 10% pattern frequency). The value of #,4,, seems to
be related to the frequency of spike patterns in the input spike
train, but we have not yet worked out a systematic method to
arrive at this relationship. It will be explored in future works.
The values of the parameters of the dendritic compartment
were modified in setup 3 (with respect to setups 1 and 2) as
the number of active afferents was reduced to one-fourth of its
value and their average population spike rate was smaller due
to the absence of the 10-Hz noise. Though the change in the
value of these circuit parameters makes intuitive sense (a smaller
number of afferents imply a high value of leak resistance and low
capacitance), this modification did not follow any specific scaling
rule, and a proper guideline to make these modifications will also
be explored in future works.

In a pattern detection task like the one described in this
study, upon completion of learning, the STDP rule potentiates
the weight on synapses that are activated near the beginning of
the pattern. That is, during the learning phase, the time to spike
within a pattern decreases, and upon completion of learning, the
neuron spikes near the beginning of the pattern. While learning
with each pattern presentation, the neuron initially spikes at a
random time within the 50-ms pattern. The STDP learning then
potentiates the weight of the synapses that fired just before the
spike of the postsynaptic neuron; due to this, during the next
pattern presentation, the neuron spikes a bit earlier. For the spike
latency to decrease continuously, the spike density of the input
must be high enough (throughout the 50-ms duration of the
pattern) for a group of synapses to be activated in close temporal
proximity to one another and cause the neuron to spike. Though
we could not arrive at a specific minimum value necessary, this is
more likely to happen if the number of afferents is high. In our
simulation setups, we observed this latency in 93 runs in setup 1
and 87 runs in setup 2 with a pattern frequency of 25%. In these
cases, the neuron spiked within 10 ms of the pattern presentation
after learning. However, in setup 3, this reduction in spike latency
was not observed in most of the cases because the number of
afferents is too small leading to a sparser input spike density.
The neuron becomes sensitive to a part of the pattern and spikes
repeatedly at the same part with negligible change in timing of
the spike in subsequent pattern presentations.

A trade-off in the performance must exist between the number
of neurons used to detect patterns and the resolution of synaptic
weights, but this trade-off was not explored in this study.
Increasing the number of neurons should theoretically improve
the performance, but it is likely that there is some minimum limit
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below which the value of synaptic efficacy cannot be reduced if
high performance is desired.

The neuron model used in this study was a two-compartment
model with a unidirectional resistor. This model was chosen
because of its ease of implementation. It can be implemented
using a transconductance circuit that consumes very low static
power in the picowatts range. However, the use of the proposed
adaptive STDP learning is not restricted to two-compartment
models and can be used with single compartment point neuron
models, too. We verified this using setup 3 and obtained a success
rate of 85% with a pattern frequency of 25% using the same
biomimetic somatic compartment (with a completely different set
of parameters). The somatic compartment (Kohno and Aihara,
2016) was configured to operate in fast spiking class 1 mode. As
the natural spiking mode of a bioinspired LIF neuron is similar to
the fast spiking class 1 mode (where the spiking frequency of the
neuron increases with increased stimulus current), the proposed
learning rule may be applicable with a single compartment LIF
neuron, like in the study of Masquelier et al. (2008).

The primary motivation behind the proposed adaptive STDP
learning is to reduce the circuit footprint, synaptic weight
resolution, and complexity of the learning circuit without
degrading its performance. This is done at two levels: first, the
learning rule does not require the use of very high-resolution
weights, and second, the change in the value of synaptic weight
is restricted to a single bit for a learning step. Relatively lower
resolution weights such as the 4-bit fixed point used in this study
consume relatively less silicon area and power, and restricting the
change in the value of synaptic weight to a single bit simplifies the
design of STDP circuits. Based on simulation results, we showed
that the proposed adaptive STDP learning is equally powerful as
conventional high-precision STDP learning. We reported how
the network dynamics evolve with variation in the value of #,0st
alone. Changing the value of t,,. might have other interesting
effects and will be explored in the future. It is also possible
that such simple adaptation mechanisms are taking place in the
brain. This idea of adapting the value of parameters controlling
depression can also be extended to the STDP learning with
high-resolution synaptic weight. One of our next steps is to
verify the capability of the proposed adaptive STDP rule in a
more biologically realistic and competitive setting with multiple
neurons tasked with detecting multiple spike patterns hidden in
the input spike train like the study presented in Masquelier et al.
(2009).

The simulation results discussed in this study are
demonstrated using ideal circuit models in python instead of
a circuit simulator. This was done because of the prohibitively
high computational resources needed to simulate the network
with transistor-level schematics. The potential impact of circuit
mismatch and thermal noise on the performance of the adaptive
STDP learning was not verified by simulation and will be
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