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Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation,
neuronal degeneration and demyelinating lesions within the central nervous system. The
mechanisms that underlie the pathogenesis and progression of MS are not fully known
and current therapies have limited efficacy. Preclinical investigations using the murine
experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical
observations in patients with MS, provide converging lines of evidence implicating the
endogenous opioid system in the pathogenesis of this disease. In recent years, it has
become increasingly clear that endogenous opioid peptides, binding µ- (MOR), κ- (KOR)
and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the
immune and nervous systems. The endogenous opioid system is also well known to play
a role in the development of chronic pain and negative affect, both of which are common
comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism
that contributes to the pathogenesis of MS and associated symptoms. Here, we review
the evidence for a connection between the endogenous opioid system and MS. We
further explore the mechanisms by which opioidergic signaling might contribute to the
pathophysiology and symptomatology of MS.
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INTRODUCTION

Multiple sclerosis (MS) is a neuroinflammatory disease characterized by chronic inflammation,
demyelinating lesions, and neurodegeneration within the central nervous system (CNS) (Compston
and Coles, 2008; Polman et al., 2011). MS is a highly prevalent chronic condition and a leading cause
of disability in North America (Browne et al., 2014). Despite decades of research, the complex
pathogenesis of MS remains incompletely understood. While its exact etiology is unknown, it is
generally believed that symptoms of MS result from damage to the myelin sheath and interruption
of myelinated tracts in the CNS. As such, the diagnosis of MS is limited to the recurrent presentation
of clinical symptoms that indicate CNS demyelination or the identification of radiologically
observable demyelinated lesions within the CNS (Karussis, 2014). More recently, the presence of
oligoclonal immunoglobulin bands specifically within the cerebrospinal fluid has been offered as an
alternative diagnostic criterion to a secondary clinical or radiological event (Link and Huang, 2006;
Carroll, 2018). Given that different neuroanatomical locations within the CNS can be involved
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in disease pathophysiology, MS can present with a wide range
of symptoms. Clinical symptoms of the disease include motor,
cognitive, sensory, and autonomic disturbances in most patients
with MS. These can manifest as loss of coordination and balance,
deficits in executive functioning, vision impairment, chronic
pain, and mood disorders (Compston and Coles, 2008).

There is currently no cure for MS, although various forms
of pharmaceutical and rehabilitation therapies are available for
treating acute attacks, improving symptoms, and modifying the
disease course (Gilmour et al., 2018). Given the chronic and
heterogeneous nature of the disease, treatment with multiple
concurrent therapies is frequent in clinical practice. Disease-
modifying therapies interfere with the course of MS through
modulation or suppression of the immune system. The disease-
modifying therapies that are widely used in the clinic primarily
inhibit lymphocyte access to the CNS, sequester lymphocytes in
primary lymphoid organs, or deplete B cells (Vargas and Tyor,
2017; Greenfield and Hauser, 2018; Hauser and Cree, 2020).
However, many of these therapies have considerable undesirable
side effects and confer only partial protection against disease
progression and symptomatology. Thus, there is an unmet
clinical need to understand the complex pathophysiology of MS
and identify novel drug targets.

A growing body of evidence suggests that the opioid system
may contribute to the pathogenesis of MS and the development of
comorbid symptoms. Endogenous opioid signaling is seemingly
altered in people with MS (Gironi et al., 2000, 2008; Ludwig
et al., 2017) and treatment with opioid therapies in the clinic is
largely ineffective for pain management (Kalman et al., 2002).
The role of endogenous opioid peptides and their receptors in
the modulation of the immune system, nociceptive processes,
and mood states has been well characterized. The interaction
between these systems is complex and likely contributes to
the MS disease course. The goal of this review is to discuss
the role of the endogenous opioid system in MS. It will
highlight pathophysiological mechanisms by which dysregulated
opioid signaling may contribute to MS progression and
symptomatology, with a focus on pain and affective disorders.

THE ENDOGENOUS OPIOID SYSTEM:
AN OVERVIEW

The endogenous opioid system plays a critical role in modulating
nociception, affective states, motivational and mood processes,
neuroendocrine function, respiratory activity, and autonomic
stress and immunological responses. Opioid receptors and
their ligands are widely distributed throughout the central
and peripheral nervous systems, the immune system, and
the gastrointestinal tract. Human (Kuhar et al., 1973; Peckys
and Landwehrmeyer, 1999; Peng et al., 2012) and rodent
studies (Mansour et al., 1987, 1994) have characterized the
widespread but distinct expression of the opioid subsystems in
various tissues and cell types. In the CNS, the opioid system
is classically implicated in pain signaling and antinociception.
Opioid receptors are highly expressed at all levels of the central
pain control network. Activation of opioid receptors within

the descending pain modulatory system, which consists of
the periaqueductal gray, rostral ventromedial medulla, and
dorsal horn of the spinal cord (Basbaum and Fields, 1984),
suppresses spinal cord nociceptive transmission and contributes
to opioid-induced antinociception (Tortorici et al., 2001;
Wang and Wessendorf, 2002; Lueptow et al., 2018; Wang et al.,
2018a). Opioid receptors modulate a diverse range of additional
functions, such as mood and the stress response, which can
be attributed to their expression throughout cortical, limbic
and midbrain structures (Mansour et al., 1987; Likhtik et al.,
2008; Peng et al., 2012; Van’t Veer and Carlezon, 2013; Blaesse
et al., 2015). Opioid receptors and their ligands are also found
in neuronal and non-neuronal tissues, including cells of the
immune (Wybran et al., 1979; Chuang et al., 1995; Bidlack, 2000)
and enteric systems (Bagnol et al., 1997; Wood and Galligan,
2004; Poole et al., 2011).

The opioid system is comprised of three genetically distinct
families of endogenous opioid peptides, including β-endorphin
(derived from the precursor pro-opiomelanocortin), dynorphins
(derived from pre-prodynorphin), and methionine (met)- and
leucine (leu)-enkephalins (derived from pre-proenkephalin).
All opioid peptides have a conserved NH2-terminal Tyr-Gly-
Gly-Phe signature sequence that interacts with the classical
opioid receptors: µ- (MOR), κ- (KOR), and δ-opioid receptors
(DOR). Each receptor is encoded by a unique gene (OPRM1,
OPRK1, OPRD1, respectively). The opioid receptors are all seven-
transmembrane spanning proteins that couple to inhibitory G
proteins (Simon, 1991; Al-Hasani and Bruchas, 2011; Benarroch,
2012) to modulate intracellular signaling cascades involving
the cyclic adenosine monophosphate pathway (Vigano et al.,
2003). In general, β-endorphin binds to MOR and DOR,
dynorphin preferentially binds KOR, and met- and leu-
enkephalin bind DOR and MOR (Benarroch, 2012). Additional
opioid peptides, such as endomorphin and nociceptin/orphanin
FQ (N/OFQ), which have respective affinities for MOR and
nociceptin/orphanin FQ receptor (NOP), have also been
described (Meunier, 1997; Zadina et al., 1997; Horvath, 2000).

THE OPIOID SYSTEM MODULATES
IMMUNE FUNCTION

Endogenous Opioids and
Immunomodulation
A connection between the opioid and immune systems is well
established and has been detailed in several excellent reviews
(Salzet et al., 2000; Vallejo et al., 2004; Al-Hashimi et al.,
2013; Liang et al., 2016; Plein and Rittner, 2018; Eisenstein,
2019). The immunomodulatory properties of opioids were
identified over 30 years ago, when Wybran and colleagues
first reported the presence of opioid receptors in normal
human T lymphocytes (Wybran et al., 1979). Subsequent studies
detected the presence of transcripts for all three opioid receptor
subtypes (MOR, DOR, and KOR) in cells of the immune
system, including T cells, B cells, and macrophages (Chuang
et al., 1995; Wick et al., 1996; Sharp et al., 1997; Bidlack, 2000;
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Ninkovic and Roy, 2013). Several immune cell types can
stimulate the release or enhance the synthesis of endogenous
opioid peptides. For example, the mRNA for β-endorphin,
its precursor pro-opiomelanocortin, and proenkephalin are
expressed by macrophages, monocytes, granulocytes, and T and
B lymphocytes(Mousa et al., 2004; Pomorska et al., 2014). Under
pathological pain and inflammatory conditions, leukocytes
actively synthesize and secrete opioid peptides that interact with
opioid receptors within inflamed tissue to produce analgesia
(Stein et al., 1990; Przewlocki et al., 1992; Cabot et al.,
1997). In addition, leukocyte-derived opioid peptides suppress
neuropathy-induced mechanical allodynia in mice via opioid
receptors expressed in nociceptors at the site of nerve injury
(Labuz et al., 2009).

Endomorphin 1 and 2, two endogenous opioid peptides
with high specificity and affinity for MOR, were originally
detected in the CNS (Zadina et al., 1997) and later identified
in cells and tissues of the immune system (Jessop et al., 2000;
Mousa et al., 2002; Labuz et al., 2006). Accumulating evidence
suggests that endomorphins, particularly endomorphin-1,
possess potent antinociceptive and anti-inflammatory properties
(Przewłocka et al., 1999; Jessop et al., 2010; Zhang et al.,
2018). Endomorphin-1 increases the secretion of the anti-
inflammatory cytokine interleukin (IL)-10 and suppresses the
secretion of proinflammatory cytokines IL-12 and IL-23 in
lipopolysaccharide-activated dendritic cells in vitro (Li et al.,
2009). Investigations involving in vivo rodent models of acute
inflammation have shown that local or intrathecal administration
of endomorphin-1 improves peripheral inflammatory pain and
reduces a localized inflammatory response (Khalil et al., 1999;
McDougall et al., 2004; Zhang et al., 2018). Furthermore,
the addition of endomorphin-2 in vitro inhibits the release
of inflammatory mediators, such as tumor necrosis factor
(TNF)-α and IL-12 by stimulated macrophage cells (Azuma
and Ohura, 2002). Endomorphin-2 also attenuates macrophage
chemotaxis and phagocytosis, suggesting that this peptide
alters macrophage functions related to innate host defense
(Azuma and Ohura, 2002).

β-endorphin and met-enkephalin have received significant
attention for their influence on T lymphocyte function. The
effects of these peptides on T lymphocytes have been explored
by numerous investigators with conflicting results. Early
in vitro investigations report that β-endorphin modifies T
lymphocyte function by either enhancing (Gilman et al.,
1982; Gilmore and Weiner, 1989; Hemmick and Bidlack,
1990; Van Den Bergh et al., 1991; Navolotskaya et al., 2002)
or inhibiting proliferation and cytokine secretion (Hough
et al., 1990; Garcia et al., 1992; Marchini et al., 1995; Panerai
et al., 1995). More recently, it has been demonstrated that
β-endorphin suppresses IL-2 transcription (Börner et al., 2009)
and potentiates IL-4 expression in a human T lymphocyte
cell line (Börner et al., 2013). Met-enkephalin is implicated
in the regulation of neural and non-neural cell proliferation
(Zagon and McLaughlin, 1991; Zagon et al., 2002; Donahue
et al., 2009). In a similar manner to β-endorphin, treatment
with met-enkephalin has been shown to increase (Hucklebridge
et al., 1989; Bajpai et al., 1995; Kowalski, 1998; Zagon et al., 2011;

Hua et al., 2012), suppress (Brown and Van Epps, 1985;
Ye et al., 1989; Ohmori et al., 2009) or have no overall effect on
T lymphocyte activity or proliferation (Gilman et al., 1982; Ye
et al., 1989; Kamphuis et al., 1998). Dose-dependent effects of
β-endorphin (Van Den Bergh et al., 1993) and met-enkephalin
(Fóris et al., 1986; Piva et al., 2005) on T lymphocyte function
have been reported, which may account for inconsistencies in
the literature. For instance, Piva et al. (2005) found that low
doses of met-enkephalin and its metabolic derivatives stimulated
the production of several cytokines by splenocytes in vitro,
whereas higher doses were suppressive (Piva et al., 2005).
The discrepancies between investigations may also be due to
differences in methodologies, including the concentration of
the peptide in question, whether the peptides were natural or
synthetic, whether the cells were stimulated or homeostatic,
the presence or absence of serum in culture, and the types
of assays used to assess cell proliferation. Nevertheless, it is
clear that endogenous opioid peptides can influence immune
cell function and may therefore contribute to immune system
pathology as seen in MS.

Clinical Use of Opioids and
Immunomodulation
Preclinical and clinical studies have demonstrated
that exogenously administered opioids exert robust
immunomodulatory effects, which are highly dependent on
the type of opioid and the duration of exposure (Sacerdote et al.,
2000; Martucci et al., 2004; Al-Hashimi et al., 2013; Franchi
et al., 2019). For instance, chronic morphine treatment appears
to have potent modulatory effects on the immune system,
whereas codeine and hydromorphone do not (Sacerdote et al.,
1997; Ninkovic and Roy, 2013). The modulatory effects of
clinically used opioids on peripheral immune cells have been
most extensively studied in vitro and in vivo (Vallejo et al., 2004;
Ninkovic and Roy, 2013). The majority of experiments that
involved the in vivo administration of opiates, such as morphine
and heroin, or the addition of MOR, KOR, and DOR agonists
to cell cultures in vitro, indicate significant suppression of the
immune system. Immunosuppression was reported as reduced
natural killer cell activity (Shavit et al., 1986b,a; Weber and Pert,
1989; Yeager et al., 1995; Sacerdote et al., 1997; Gavériaux-Ruff
et al., 1998), cytokine and chemokine production by peripheral
blood mononuclear cells (Bussiere et al., 1993; Chao et al., 1993;
Bonnet et al., 2008) and monocytes (Bussiere et al., 1993; Bian
et al., 1995; Roy et al., 1998), T and B cell reactivity (Sacerdote
et al., 1997; Govitrapong et al., 1998), phagocytic activity (Tubaro
et al., 1985; Casellas et al., 1991; Rojavin et al., 1993; Szabo
et al., 1993; Tomassini et al., 2004), as well the induction of
macrophage apoptosis (Bhat et al., 2004; Lin et al., 2021).
Additional evidence supporting the immunosuppressive role of
opioid analgesics emerges from epidemiological studies showing
increased prevalence of infections such as HIV, pneumonia,
hepatitis and tuberculosis among opioid users (Nath et al., 2002;
Quaglio et al., 2002; Roy et al., 2011; Wiese et al., 2018).

Multiple sclerosis immunopathology is generally thought to
be mediated by myelin-reactive CD4+ T helper (Th) cells.
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Autoreactive effector CD4+ T cells can differentiate into Th1 or
Th2 effector cells based upon their functions and cytokine profile.
Disruption to the Th cell balance, especially the decrement of
the Th1/Th2 ratio, is implicated in the development of several
autoimmune diseases, including MS (van Langelaar et al., 2018;
Kunkl et al., 2020). Similarly, several studies indicate that Th17
cells, a subset of CD4+ T-cells that produces IL-17, play a key role
in the pathogenesis of various inflammatory and autoimmune
diseases (Waite and Skokos, 2012; Yasuda et al., 2019; Moser
et al., 2020). Modulation of T cell differentiation and function
by opioids has been well documented and may therefore be
relevant in MS immunopathology. Morphine has been shown
to selectively direct T cells toward Th2 differentiation in vitro
and in vivo, resulting in a shift in the Th1/Th2 balance (Roy
et al., 2004; Han et al., 2020). Gao et al. (2012) demonstrated
that the effects of morphine on CD4+ T lymphocytes isolated
from healthy volunteers include altered cytokine expression,
suppression of T cell apoptosis and Th cell differentiation, as well
as an imbalance in the ratio of Th1/Th2 cells (Gao et al., 2012).
Morphine dose-dependently suppresses the proliferative activity
of phytohemagglutinin-stimulated T lymphocytes isolated from
opioid-naive subjects in vitro (Govitrapong et al., 1998). In line
with these findings, heroin users show reduced CD4+ T cell
proliferative activity upon stimulation in vitro and an altered
Th1/Th2 balance when compared with healthy controls and
individuals on opioid maintenance therapy (Sacerdote et al.,
2008; Riß et al., 2012). In rats, acute morphine exposure (Peng
et al., 2020) and moderate doses of naltrexone (Xu et al., 2020)
have been shown to suppress Th17 cell expression and function,
as well as disrupt the balance between Th1 and Th2 cells (Xu et al.,
2020). Moreover, treatment with chronic morphine enhances
Th17 cell functional activity in peripheral blood mononuclear
cells isolated from non-human primates (Cornwell et al., 2013).

Glial cells, consisting primarily of microglia, astrocytes, and
oligodendrocytes, represent immune cells of the CNS. Several
laboratories have demonstrated that microglia and astrocytes
become activated in response to chronic morphine exposure,
inducing the upregulation of proinflammatory cytokines IL-1,
IL-6, and TNF-α, microglial and astrocytic activation markers,
and purinergic receptors P2×4 and P2×7 (Raghavendra et al.,
2002; Tawfik et al., 2005; Cui et al., 2006; Horvath and Deleo,
2009; Hutchinson et al., 2009; Watkins et al., 2009). Interfering
with glial function reduces opioid tolerance and opioid-induced
hyperalgesia, providing further evidence for the modulatory
role of opioids on glial cells (Raghavendra et al., 2002, 2003;
Eidson and Murphy, 2013).

DYSREGULATION OF THE OPIOID
SYSTEM IN MULTIPLE SCLEROSIS

Overwhelming evidence indicates that endogenous opioid
peptides and clinically used opioids have significant influence on
innate and adaptive immunity. While the etiology of MS remains
incompletely understood, it is recognized that the pathogenesis
and progression of this disease are mediated by the immune
system. Thus, it is important to elucidate the relationship between

the opioid and immune systems in the context of MS to gain
mechanistic insight into pathophysiological processes associated
with this disease.

The Role of the Opioid System in the
Pathogenesis and Progression of
Multiple Sclerosis
Disease-Related Changes in Endogenous Opioid
Peptide Concentrations
Human and animal studies provide converging lines of evidence
indicating that perturbations to the endogenous opioid system
contribute to the pathogenesis of several autoimmune disorders,
including MS. Patients with MS show decreased concentrations
of endogenous opioid peptides β-endorphin and enkephalin
in peripheral blood mononuclear cells and cerebrospinal
fluid samples compared with healthy controls (Panerai et al.,
1994; Gironi et al., 2000, 2008; Ludwig et al., 2017). Mice
with experimental autoimmune encephalomyelitis (EAE), the
most commonly used preclinical murine model of MS, also
show a marked reduction in serum concentrations of met-
enkephalin compared with baseline levels and with controls
prior to the onset of clinical behavioral signs of disease (Ludwig
et al., 2017; Patel et al., 2020). Studies assessing changes in
endogenous opioid peptide and receptor expression in MS
patients and animal models are summarized in Table 1. EAE
is a CD4+ T lymphocyte-mediated demyelinating autoimmune
disease of the CNS, characterized by widespread central
inflammation and infiltration of T cells and monocytes into
the CNS (Robinson et al., 2014). The EAE model shares many
pathological features with MS, including neuroinflammation,
demyelination, neurodegeneration, axonopathy and pain
(Olechowski et al., 2009; Kipp et al., 2012; Potter et al., 2016;
Catuneanu et al., 2019). Given the role of met-enkephalin
in modulating adaptive immune cell reactivity (Zagon and
McLaughlin, 1991; Zagon et al., 2002; Malendowicz et al., 2005;
Donahue et al., 2009), reduced serum enkephalin levels in MS
patients may promote immune cell proliferation and drive
immune-mediated flares. Indeed, a series of investigations reveal
that increasing levels of met-enkephalin confer a neuroprotective
effect in mice with EAE and people with MS (Gironi et al., 2008;
Zagon et al., 2009, 2010; Ludwig et al., 2017). Jankovic and Maric
(1987) demonstrated that injections of met-enkephalin to rats
with EAE prevents or delays paralysis. Daily administration of
met-enkephalin to mice with EAE at the time of disease induction
prevents the onset and progression of disease, and decreases
overall disease severity, areas of demyelination, and activated glia
in the spinal cord relative to saline-treated controls (Zagon et al.,
2010; Rahn et al., 2011; Patel et al., 2020). In mice with established
EAE, treatment with met-enkephalin halts the progression of
disease, improves the clinical behavioral scores, and reduces
the number of activated glia, T cells, and demyelinated areas
in the spinal cord (Campbell et al., 2012, 2013). Moreover,
treatment with met-enkephalin in mice with relapse-remitting
EAE results in less severe clinical disease scores, fewer and
shorter relapses, and diminished glial activation and spinal
cord pathology compared to controls (Hammer et al., 2013).
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In summary, results from studies involving exogenous therapy
with enkephalins in the EAE model indicate beneficial effects
of modulating endogenous opioid levels and suggest that
the opioid system plays an integral role in the underlying
disease process.

Low Dose Naltrexone Therapy
Naltrexone is a non-selective opioid receptor antagonist that
is primarily prescribed for the treatment of opioid addiction
in daily doses of at least 50 mg (Minozzi et al., 2011). When
prescribed at the lowest dosage levels (1–4.5 mg), it acts as
an immune modulator by reducing the inflammatory glial
response (Mattioli et al., 2010; Younger et al., 2014), in addition
to systemically upregulating endogenous opioid signaling by
transient opioid receptor blockade (Gironi et al., 2008; Ludwig
et al., 2017). Treatment with low dose naltrexone has been
demonstrated to improve symptoms in a variety of chronic
inflammatory conditions, including Crohn’s disease (Lie et al.,
2018), fibromyalgia (Younger and Mackey, 2009; Younger et al.,
2013), complex regional pain syndrome (Chopra and Cooper,
2013; Weinstock et al., 2016), and MS (Gironi et al., 2008; Cree
et al., 2010; Sharafaddinzadeh et al., 2010; Ludwig et al., 2017).

Preclinical studies wherein mice were immunized with EAE
report beneficial effects of low dose naltrexone treatment in
modulating disease processes (Zagon et al., 2009; Hammer
et al., 2013, 2015; Ludwig et al., 2017). Therapy with low dose
naltrexone, but not high dose naltrexone, prevents neurological
signs of disease, suppresses disease onset and progression, and
reduces the number of activated astrocytes in the spinal cord of
EAE mice (Zagon et al., 2009). In addition, mice with chronic
EAE receiving low dose naltrexone show reduced sensitivity to
heat relative to saline-treated EAE mice (Ludwig et al., 2017).
In studies with mice immunized with relapsing-remitting EAE,
treatment with low dose naltrexone initiated at the time of
established disease significantly diminishes behavioral scores and
increases the incidence and lengthens the time of remissions
compared with EAE mice treated with saline (Hammer et al.,
2015). Low dose naltrexone therapy also reduces numbers of
inflammatory cells, such as microglia, CD3+ T cells, and activated
astrocytes, as well as areas of demyelination in the lumbar spinal
cord (Hammer et al., 2015). Recent work extended these findings

TABLE 1 | Changes in endogenous opioid peptide and receptor expression in MS
patients and animal models.

Opioid
peptide/receptor

Disease Expression change References

Met-enkephalin MS (human) ↓ protein in serum Ludwig et al., 2017

EAE (mouse) ↓ protein in serum Ludwig et al., 2017;
Patel et al., 2020

β-endorphin MS (human) No change in serum Ludwig et al., 2017

MS (human) ↓ protein in peripheral
blood mononuclear
cells

Gironi et al., 2000

EAE (mouse) No change in serum Ludwig et al., 2017

MOR, KOR, and
DOR

TMEV (mouse) ↓ mRNA in spinal cord Lynch et al., 2008

and demonstrated that treatment with low dose naltrexone
preserves myelin basic protein expression and the number of
oligodendrocytes within the spinal cord in EAE mice relative to
control animals (Patel et al., 2020).

Results from clinical trials suggest that low dose naltrexone
treatment enhances the quality of life of patients with MS
(Gironi et al., 2008; Cree et al., 2010) and that treatment is well
tolerated (Gironi et al., 2008; Cree et al., 2010; Sharafaddinzadeh
et al., 2010). The first multi-center open-label pilot study
involving 40 patients with primary progressive MS reported
that spasticity was significantly reduced following 6 months of
treatment with low dose naltrexone (Gironi et al., 2008). Levels
of β-endorphin in patients’ peripheral blood mononuclear cells
increased concurrently with low dose naltrexone administration,
providing support for a potential mechanism of action. The
interpretation of these results, however, is limited by the
uncontrolled design of the study and the small sample size.
More recently, low dose naltrexone therapy was shown to restore
depressed serum enkephalin levels of MS patients to non-MS
patient concentrations (Ludwig et al., 2017). An additional
randomized, placebo-controlled study comprised of 60 MS
patients found that 8 weeks of therapy with low dose naltrexone
was associated with significant improvement in self-reported
mental health outcome measures (Cree et al., 2010). By contrast,
a 17-week randomized, double-blind, placebo-controlled clinical
trial involving 96 MS patients found no statistically significant
improvements in self-reported quality of life following low dose
naltrexone treatment between groups (Sharafaddinzadeh et al.,
2010). The authors noted that low dose naltrexone therapy was
relatively safe and that longer trials are needed to conclude that
there is no beneficial effect.

Nevertheless, high quality clinical studies evaluating the
therapeutic effects of low dose naltrexone in treating MS are
lacking. Of the completed studies, results indicate that low
dose naltrexone is generally safe, compatible with currently
recommended MS treatments and well tolerated, but do not
show significant changes in symptoms beyond quality-of-life
improvements. Low dose naltrexone may be a promising
alternative or adjunct therapy for MS treatment; however,
additional research is necessary to determine the clinical potential
of low dose naltrexone use in MS.

The Kappa Opioid System as a Potential Therapeutic
Target
There is emerging evidence indicating that targeting the kappa
opioid system may be a promising therapeutic target for
attenuating the progression of MS via remyelination (Wang
and Mei, 2019). An in vitro myelination assay has shown
that KOR agonism promotes differentiation of oligodendrocyte
precursor cells (OPCs) into mature oligodendrocytes and
subsequent myelination (Mei et al., 2016). This beneficial
effect on myelination is abolished in mice that have KOR
conditionally knocked out in OPCs. This study provides support
that KOR ligands are directly acting on KORs expressed on
OPCs and suggests that future studies should consider targeting
this receptor for remyelination therapy (Mei et al., 2016).
In line with these results, treatment with a selective KOR
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agonist, U50,488H, has been shown to enhance remyelination
in lysolecithin-, hypoxia-, and cuprizone-induced demyelination
models (Mei et al., 2016; Wang et al., 2018b), and has since been
replicated in the EAE model using a delayed treatment schedule
(Denny et al., 2021). Furthermore, Du et al. (2016) found
that administration of U50,488H reduced the severity of motor
impairments in EAE mice through promoting oligodendrocyte
differentiation and remyelination. The authors also induced EAE
in opioid receptor knockout mice. MOR-deficient mice did
not show any changes in the severity or progression of EAE,
DOR knockout mice only displayed a small increase in peak
disease severity, and genetic deletion of KOR worsened disease
severity compared with wild-type (Du et al., 2016). These data
indicate that KOR contributes to remyelinating processes and
that targeting the kappa opioid system is an intriguing avenue for
developing novel therapeutics for the treatment of MS.

The Endogenous Opioid System and
Multiple Sclerosis Symptomatology: A
Focus on Pain and Affect
The Opioid System and Pain
Chronic pain is one of the most frequent and debilitating
symptoms of MS, affecting between 50–80% of patients over
the course of their disease (Österberg et al., 2005). MS-related
pain is characterized by hyperalgesia (enhanced pain responses
to noxious input) and allodynia (perception of innocuous stimuli
as painful). MS patients often describe their pain as constant,
bilateral aching, burning, and pricking sensations in both the
lower and upper extremities (Österberg et al., 2005). Classical
pain treatments, such as opioid therapy, are typically ineffective
in treating MS-related pain, with only a minority of patients
receiving significant relief (Kalman et al., 2002). Chronic pain
associated with MS represents a significant clinical and societal
burden. As the general population ages, it can be expected
that the rates of MS will only increase, thus it is becoming
increasingly imperative that adequate treatments for pain in
this disease are developed. A more thorough understanding of
the basic mechanisms driving pain in MS is necessary for the
development of novel therapies to improve pain management for
this patient population.

There are a large number of autoimmune and inflammatory
diseases with different etiologies and symptomatologies,
including rheumatoid arthritis, irritable bowel syndrome,
complex regional pain syndrome, and MS, and pain appears
to be a common factor in most of these conditions (Mifflin
and Kerr, 2017). Activation of the endogenous opioid system is
evidenced in a variety of these conditions that are associated with
the development of pathological pain. Human positron emission
tomography studies show that compared with controls, patients
with rheumatoid arthritis (Jones et al., 1994), complex regional
pain syndrome (Klega et al., 2010), and central neuropathic
pain following stroke (Willoch et al., 2004) have reduced opioid
receptor binding potential at several neural loci involved in
the central pain matrix and emotional regulation. This may
indicate increased occupancy of receptors by endogenous opioid
peptides or a reduction in available receptors for binding.

Work from animal studies further corroborate the release
of endogenous peptides in chronic pain states. For example,
experimental hindpaw inflammation induces a rapid increase
in pre-prodynorphin mRNA and a prolonged increase in a
dynorphin peptide in the spinal cord (Iadarola et al., 1988).
These data collectively suggest that several inflammatory pain
states are associated with the release and binding of endogenous
opioids to their cognate receptors. However, studies that directly
investigate the contribution of the opioid system to pain
hypersensitivity in MS and EAE are limited.

As discussed above, the role of endogenous opioids in MS
has primarily been evaluated in the context of immunity and
disease progression. Although the contribution of opioidergic
neurotransmission to MS-related pain remains relatively
unexplored, there is evidence to indicate that dysfunction of
the opioid system may be implicated in the development and
maintenance of pain in this disease (summarized in Table 2).
Similar to that observed in other chronic pain conditions
(Arnér and Meyerson, 1988; Zurek et al., 2001; Luger et al.,
2002; Rowbotham et al., 2003; Chen et al., 2013; Kissin,
2013), opioid analgesics often provide inadequate relief for
MS patients, except at high doses that might enhance the
risk for adverse side effects (Kalman et al., 2002). Animal
models of MS-related pain also show reduced opioid analgesia
compared with controls (Lynch et al., 2008; Dworsky-Fried
et al., 2021). We previously reported that morphine lacks
potent analgesic efficacy in female mice induced with EAE at a
time point that was associated with peak pain hypersensitivity
and inflammation in the brain (Dworsky-Fried et al., 2021).
Consistent with these findings, male and female mice infected
with Theiler’s murine encephalomyelitis virus (TMEV) as a
model for MS display a loss of morphine analgesia compared
to uninfected control mice (Lynch et al., 2008). Mice infected
with TMEV also show reductions in spinal cord mRNA levels
of all three opioid receptors (MOR, DOR, and KOR), which
correlated with the development of thermal and mechanical
hyperalgesia (Lynch et al., 2008). While this study did not
investigate the causal relations between receptor changes and
pain behaviors, decreases in spinal opioid receptors may explain
the increased central neuropathic pain commonly observed
in MS patients (O’Connor et al., 2008; Khan and Smith,
2014). From a clinical perspective, dysregulation of the opioid
system might also help to explain the poor patient response to
this class of analgesics (Kalman et al., 2002). Taken together,
these findings provide support for the hypothesis that loss of
endogenous antinociceptive processes mediated by the opioid
system contribute to MS- and EAE-related pain. As such,
restoring opioid system function may be a viable target for
novel analgesic drugs and therapeutics to manage pain in this
disease. Additional investigations are needed to understand
the contribution of endogenous opioids and receptors to
pathological pain in MS.

The Opioid System and Negative Affect
Mental health comorbidities are highly prevalent among
individuals with MS. Depression is the most common of these
comorbidities, affecting approximately 50% of people with MS
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(Marrie et al., 2009). This is nearly three times higher than
the current rate of depression in the general United States
population (Villarroel and Terlizzi, 2020). People living with
MS are twice as likely to commit suicide as someone without
MS, with suicidal ideation showing a similar increase (Turner
et al., 2006; Feinstein and Pavisian, 2017). Studies using
functional magnetic resonance imaging reveal that MS patients
with chronic pain show structural and functional alterations
in brain regions involved in reward processing, which are

associated with impaired reward responsiveness and depression
(Pardini et al., 2013; Seixas et al., 2016; Heitmann et al., 2020).
Pharmacological treatment of depression is not often pursued
in people with MS because there is limited evidence to support
a beneficial effect in this patient population (Minden et al.,
2014; Patten et al., 2017). In addition, there are reports of a
possible harmful interaction between some antidepressants and
the initiation of fingolimod use—a common immunomodulatory
drug prescribed for managing MS (Patten et al., 2017). This

TABLE 2 | Effects of exogenous opioid treatment in MS patients and animal models.

Opioid receptor ligand Disease Main findings References

Low dose naltrexone EAE (mouse) ↓ motor impairment Rahn et al., 2011; McLaughlin et al., 2015;
Patel et al., 2020

↓ activated astrocytes in spinal cord; ↓ incidence of
EAE

Rahn et al., 2011

↓ T and B splenocytes at disease onset McLaughlin et al., 2015

↑ CD4+ T cells in CNS; ↓ CD3+ and CD4+ T cells in
spinal cord

Hammer et al., 2016

↑ met-enkephalin protein in serum; ↓ leukocytes and
eosinophils in blood; ↓ heat sensitivity (hot plate)

Ludwig et al., 2017

↑ myelin basic protein in spinal cord; ↑
oligodendrocytes in spinal cord

Patel et al., 2020

MS (human) ↑ β-endorphin in peripheral blood mononuclear cells; ↓
spasticity; ↑ pain

Gironi et al., 2008

No change in quality of life Sharafaddinzadeh et al., 2010

↑ quality of life; ↑ mental health; ↓ pain Cree et al., 2010

↑ met-enkephalin protein in serum Ludwig et al., 2017

Met-enkephalin EAE (rat) ↓ lesions in CNS; ↓ incidence of EAE Jankovic and Maric, 1987

EAE (mouse) ↓ motor impairment Zagon et al., 2010; Rahn et al., 2011; Campbell
et al., 2012; Hammer et al., 2013, 2015;
McLaughlin et al., 2015; Patel et al., 2020

↓ activated astrocytes in spinal cord Zagon et al., 2010; Rahn et al., 2011; Campbell
et al., 2013; Hammer et al., 2013, 2015

↓ damaged neurons in spinal cord Zagon et al., 2010; Campbell et al., 2012;
Hammer et al., 2013, 2015

↓ incidence of EAE; ↑ disease remission Zagon et al., 2010; Rahn et al., 2011

↓ CD3+ T cells in spinal cord Campbell et al., 2012; Hammer et al., 2013,
2015, 2016

↓ demyelination in spinal cord; ↓ astrocyte proliferation;
↓ microglia/macrophages in spinal cord

Campbell et al., 2012; Hammer et al., 2013,
2015

EAE (mouse) ↓ heat sensitivity (hot plate) Campbell et al., 2012

↓ number of relapses; ↓ time in relapse Hammer et al., 2013, 2015

↓ T and B cells at onset; ↑ Th1 and Th17 cells in spinal
cord

McLaughlin et al., 2015

↓ CD4+ T cells in CNS Hammer et al., 2016

↑ myelin basic protein in spinal cord; ↑
oligodendrocytes in spinal cord

Patel et al., 2020

U50,488H (KOR agonist) EAE (mouse) ↓ spinal demyelination; ↑ spinal myelin thickness; ↓
motor impairment

Du et al., 2016

EAE (mouse) ↓ motor impairment; ↑ incidence of remission; ↑ time in
remission

Denny et al., 2021

Quinoxaline-derivatives
(KOR agonist)

EAE (mouse) ↓ motor impairment; ↓ B cells in CNS; ↓ Th17 cells in
CNS; ↑ Treg cells in CNS

Tangherlini et al., 2019

Nalfurafine (KOR agonist) EAE (mouse) ↓ motor impairment; ↓ B cells in CNS; ↓ CD8+ T cells
in CNS; ↑ myelinated axons; ↑ myelin thickness; ↑
incidence of remission; ↑ time in remission; ↓ number
of relapses

Denny et al., 2021
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undertreatment of negative affect in people with MS poses a
significant problem and has profound impacts on quality of life.
As such, understanding whether dysfunction of the opioid system
is involved in the etiology of mood disorders in MS is critical for
effective management of this condition.

In recent years, dysfunction of the endogenous opioid system
has garnered significant attention as a key component in
depressive symptomatology and pathophysiology (Hegadoren
et al., 2009; Peciña et al., 2019). Preclinical and clinical studies
provide evidence of opioid system involvement in negative
affective states. For instance, individuals with a history of
depression who commit suicide have increased MOR density
in the brain, specifically in the prefrontal cortex, temporal
cortex, and basal ganglia (Gross-Isseroff et al., 1990; Gabilondo
et al., 1995). Women with major depressive disorder exhibit
increased MOR system activation compared with control subjects
(Kennedy et al., 2006). Indeed, increases in KOR and MOR
protein in the blood serum have become targets for biomarker
identification of major depressive disorder in humans (Al-
Hakeim et al., 2019, 2020). Clinical reports have described the
effectiveness of MOR agonists, including oxycodone, tramadol,
oxymorphone, and buprenorphine, as well as β-endorphin,
in patients suffering from depression (Darko et al., 1992;
Bodkin et al., 1995; Stoll and Rueter, 1999; Shapira and
DeGraw, 2001). Preclinical studies using animal paradigms of
depression corroborate these findings (Rojas-Corrales et al.,
1998, 2004). The evidence of opioid system dysfunction as
an important mechanism driving negative affect suggests that
altered opioidergic mechanisms may also play a role in the
development of comorbid mood disorders in MS.

The EAE mouse model is a useful tool for modeling
the affective symptoms of MS (Pollak et al., 2002). Affective
disturbances, such as depressive- and anxiety-like behaviors,
and cognitive and memory dysfunction have been noted early
in the EAE disease course, similar to the clinical population
(Pollak et al., 2002; Peruga et al., 2011; Acharjee et al., 2013;
Olechowski et al., 2013). Several studies report that mice with
EAE show higher levels of anxious and depressive behaviors than
control mice in a variety of experimental paradigms including
the elevated plus maze, open field test, forced swim test, tail
suspension test, and social interaction test (Acharjee et al., 2013;
Olechowski et al., 2013). Using the conditioned place preference
assay to assess drug reinforcement, our group has recently
demonstrated that morphine reward is blunted in mice with EAE
(Dworsky-Fried et al., 2021). This finding indicates that affective
and reward processing is disrupted in the EAE model, and is
consistent with other reports indicating dysregulated reward
processing in chronic pain states (Ozaki et al., 2002, 2003; Martin
et al., 2007; Petraschka et al., 2007; Niikura et al., 2008). Although
literature that focuses on the involvement of the endogenous
opioid system in MS-related mood and affective disorders is

limited, existing evidence warrants further exploration into
this research avenue. Understanding whether disruptions to
endogenous opioid signaling contribute to impaired mood and
reward regulation in MS is paramount for future treatment of
this comorbidity.

CONCLUSION

Opioid peptides and their receptors are intimately involved
in regulating various aspects of immune function, nociceptive
processing, and affective states. Dysregulation of the opioid
system may be an important mechanism to help explain the
pathophysiology of MS, as well as the pathological pain and
disordered mood commonly observed in this disease. Therefore,
it is of interest to further investigate and consider the opioid
system as a potentially attractive therapeutic target for MS
and its symptoms.

Although MS is a highly prevalent autoimmune disorder,
a comprehensive understanding of the pathogenesis and
symptomatology of the disease is still lacking. Accumulating
data imply functional association between endogenous opioid
systems and MS. Patients with MS and animal models show
decreased levels of endogenous opioid peptides compared with
healthy controls (Panerai et al., 1994; Gironi et al., 2000, 2008;
Ludwig et al., 2017; Patel et al., 2020) and some clinical trials have
shown beneficial effects of therapies that enhance endogenous
opioid concentrations (Gironi et al., 2008; Ludwig et al., 2017).
Moreover, opioid analgesics often provide inadequate pain relief
for patients with MS. Given the complex interactions between
the opioid and immune systems, nociceptive processing, and
mood regulation as discussed in this review, targeting opioidergic
mechanisms may provide an effective measure to interfere
with the development and progression of MS and improve
disabling symptoms.
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