
fnins-15-744190 December 21, 2021 Time: 14:56 # 1

ORIGINAL RESEARCH
published: 03 January 2022

doi: 10.3389/fnins.2021.744190

Edited by:
Ali Ghazizadeh,

Sharif University of Technology, Iran

Reviewed by:
Seyed-Mahdi Khaligh-Razavi,

Massachusetts Institute
of Technology, United States
Seyed Amir Hossein Batouli,
Tehran University of Medical

Sciences, Iran

*Correspondence:
Luca Giancardo

luca.giancardo@uth.tmc.edu

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 19 July 2021
Accepted: 09 November 2021

Published: 03 January 2022

Citation:
Pena D, Suescun J, Schiess M,

Ellmore TM, Giancardo L and the
Alzheimer’s Disease Neuroimaging

Initiative (2022) Toward a Multimodal
Computer-Aided Diagnostic Tool

for Alzheimer’s Disease Conversion.
Front. Neurosci. 15:744190.

doi: 10.3389/fnins.2021.744190

Toward a Multimodal
Computer-Aided Diagnostic Tool for
Alzheimer’s Disease Conversion
Danilo Pena1, Jessika Suescun2, Mya Schiess2, Timothy M. Ellmore3, Luca Giancardo1*
and the Alzheimer’s Disease Neuroimaging Initiative

1 Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX,
United States, 2 Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston,
TX, United States, 3 Department of Psychology, The City College of New York, New York, NY, United States

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is one of the
leading sources of morbidity and mortality in the aging population AD cardinal symptoms
include memory and executive function impairment that profoundly alters a patient’s
ability to perform activities of daily living. People with mild cognitive impairment (MCI)
exhibit many of the early clinical symptoms of patients with AD and have a high chance
of converting to AD in their lifetime. Diagnostic criteria rely on clinical assessment and
brain magnetic resonance imaging (MRI). Many groups are working to help automate
this process to improve the clinical workflow. Current computational approaches are
focused on predicting whether or not a subject with MCI will convert to AD in the future.
To our knowledge, limited attention has been given to the development of automated
computer-assisted diagnosis (CAD) systems able to provide an AD conversion diagnosis
in MCI patient cohorts followed longitudinally. This is important as these CAD systems
could be used by primary care providers to monitor patients with MCI. The method
outlined in this paper addresses this gap and presents a computationally efficient pre-
processing and prediction pipeline, and is designed for recognizing patterns associated
with AD conversion. We propose a new approach that leverages longitudinal data
that can be easily acquired in a clinical setting (e.g., T1-weighted magnetic resonance
images, cognitive tests, and demographic information) to identify the AD conversion
point in MCI subjects with AUC = 84.7. In contrast, cognitive tests and demographics
alone achieved AUC = 80.6, a statistically significant difference (n = 669, p < 0.05). We
designed a convolutional neural network that is computationally efficient and requires
only linear registration between imaging time points. The model architecture combines
Attention and Inception architectures while utilizing both cross-sectional and longitudinal
imaging and clinical information. Additionally, the top brain regions and clinical features
that drove the model’s decision were investigated. These included the thalamus,
caudate, planum temporale, and the Rey Auditory Verbal Learning Test. We believe
our method could be easily translated into the healthcare setting as an objective AD
diagnostic tool for patients with MCI.

Keywords: mild cognitive impairment, ADNI, longitudinal, deep learning, neuroimaging, clinical features,
multimodal
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive cognitive decline that
severely disrupts activities of daily living. It is estimated that
the number of people affected by AD will triple to over 120
million people by 2050, costing the United States alone billions
of dollars in healthcare expenses (Lane et al., 2018). Further,
no medications are currently available that can either reverse
or stop the cognitive decline in subjects with AD. There is
a clear need to develop novel treatments for those with AD.
To accomplish this, early detection and identification of AD
will facilitate the development of biomarkers and support the
discovery of novel molecules by providing the right population
for clinical trials.

Early dementia detection is paramount to decrease the chance
of further comorbidities and mortality (Ahmed et al., 2019).
This is especially relevant in clinical environments outside large
academic centers, such as community hospitals, where resources
are limited. Subjects with mild cognitive impairment (MCI)
have many of the neurological deficits found in AD subjects.
Additionally, about 10–15% of subjects with MCI will progress
to AD every year (Plassman et al., 2008). This estimate is
variable, with higher rates in clinical centers and some treatment
trials; and lower numbers in population-based studies. Hence,
subjects with MCI represent the perfect prodromal population
for the exploration of conversion biomarkers, which has been
one focus of the neurocognitive field (Desikan et al., 2010;
Jack et al., 2010; Landau et al., 2010; Young et al., 2014; Liu
et al., 2017; Ottoy et al., 2019; Giorgio et al., 2020). Creating
a computer-assisted diagnosis (CAD) tool would provide an
objective instrument for early AD diagnosis in patients with MCI.
The vast majority of community hospitals can perform basic
neuropsychological assessments and T1 magnetic resonance
imaging (MRI); as such, we propose a multi-modal approach
that combines both data sources to objectively and efficiently
confirm the AD diagnosis in patients with MCI (which are at high
risk of conversion).

For years, researchers have been investigating neuroimaging-
based biomarkers in conjunction with computational tools to
find early signs of AD within MCI subjects. Studies have
looked at the differences between all of the combinations
of healthy controls (CN), AD subjects, MCI subjects who
have converted to AD (cMCI), and MCI subjects who have
stayed stable (sMCI) (Mateos-Pérez et al., 2018). To determine
the crucial features of an MCI subject which eventually
converts to AD, we decided to focus on a cMCI vs. sMCI
comparison. Current works have combined many types of data
and a host of machine learning techniques. Recent papers
have used T1-weighted MRI images and linear support vector
machines (Sun et al., 2017; Tong et al., 2017), positron
emission tomography (PET) and random forests (Nozadi et al.,
2018), clinical information/neuropsychological measurements
with ensemble learning (Grassi et al., 2019), and T1-weighted
and diffusion MRI with linear models (Xu et al., 2019) to
predict MCI conversion. However, many of these techniques
require dimensionality reduction techniques, feature selection,
lengthy image pre-processing pipelines, and other tabular data

transformations that all require a priori hypotheses and increase
the model and hyperparameter search space (Moradi et al., 2015;
Ahmed et al., 2019).

Thus, scientists have turned to deep learning methods to
abstract some of these steps that may incur bias throughout
the pipeline. This class of models allows the incorporation
of different types of data that form complex, non-linear
relationships that could potentially provide more information
about the conversion risk of an MCI subject. Some of the
recent deep learning techniques for MCI classification use
multimodal data types. These include T1-weighted MRI imaging
with clinical variables (Spasov et al., 2019), cerebrospinal fluid
imaging and longitudinal brain volumetric features (Lee et al.,
2019a), T1-weighted and hippocampal imaging (Li et al., 2019),
and a recurrent neural network (RNN) structure that uses
cerebrospinal fluid, cognitive, and imaging biomarkers (Lee
et al., 2019b). Using an array of data has been shown to
have additive effects over using one data type alone for MCI
classification. Researchers are also interested in developing a
better understanding of the disease progression. Groups have
predicted MCI clinical trajectories through a longitudinal feature
framework (Bhagwat et al., 2018) and have used gray matter
density maps at multiple time points as inputs to an RNN
(Cui et al., 2019). This extension of data through time within
one subject’s trajectory has proven a complicated but necessary
problem to be able to incorporate all potential clinically available
data (Lawrence et al., 2017). This is a non-exhaustive list
of neuroimaging deep learning models for AD/MCI detection
and prediction, and we refer to recent comprehensive reviews
(Rathore et al., 2017; Ansart et al., 2021) for a complete
list. This body of work focuses on the prediction of future
AD in MCI subjects or diagnosis of AD using cohorts of
subjects included in studies after their AD diagnosis, and
therefore likely to have the disease for many years. To our
knowledge, limited to no attention has been given to the
development of automated CAD systems able to diagnose
the conversion from MCI to AD, in patient cohorts followed
longitudinally. This is important as these CAD systems could be
used by neurologists and non-specialized physicians to monitor
their MCI patients.

In our work, we propose to fill in this gap with a
model that combines multi-modal longitudinal data that
can be easily acquired in the vast majority of clinical
settings in the industrialized world (e.g., T1-weighted
magnetic resonance images, cognitive tests, and demographic
information). This model is based on a compact convolutional
neural network architecture that combines Attention and
Inception modules which is computationally efficient and
requires only linear registration between imaging time
points. We test the conversion diagnosis performance
of our model in a cohort of subjects that received a
confirmed AD diagnosis after having MCI in a previous
visit (cMCI) and subjects that remained with a stable
MCI diagnosis (sMCI). Our dataset has a relatively large
sample size (440 sMCI vs. 229 cMCI) compared to related
methodological studies, which has been a common criticism
(Mateos-Pérez et al., 2018).
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MATERIALS AND METHODS

Data
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1

in October 2019. The ADNI was launched in 2003 as a public–
private partnership led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), PET, other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD.

Demographic information used in this study is displayed in
Table 1. The majority of subjects were categorized as white
(>93%) and non-Hispanic (>97%). Differences between sex
counts were tested using Fisher’s exact test, and differences in
baseline age, time between sessions, and years of education were
evaluated with Wilcoxon rank-sum tests. p-Values of less than
0.05 were considered statistically significant.

For each subject, T1-weighted structural magnetic resonance
images (MRI) were taken at two different time points in
addition to clinical and demographic variables (age, sex, and
years of education) available from ADNI. The clinical variables
included APOe4 genotypes, neuropsychological cognitive tests
like Montreal Cognitive Assessment (MoCA), Mini-Mental State
Exam (MMSE), and the Dementia Rating Scale (CDRSB),
the AD Assessment Scale (ADAS13, ADAS11, and ADASQ4),
memory evaluations from the Rey Auditory Verbal Learning
Test (RAVLT), and the functional activities questionnaire
(FAQ). Additionally, we used AD and CN subjects to pre-
train the model, and these subjects’ demographics are in
Supplementary Material.

The time points used for cMCI subjects were chosen by
selecting the session when the subjects were diagnosed with AD
(session two) and the previous session where the subjects were
still not converted (session one). Sessions for the subjects in the
other cohorts (sMCI, AD, and CN) were chosen by selecting two
consecutive sessions where both imaging and clinical evaluation
were present. The current dataset did not allow a design to match
the time between sessions for the whole cohort, this potential
confounder is accounted for in our analysis.

Mild cognitive impairment conversion was clinically
adjudicated by trained clinicians as described in the ADNI
protocol. Any subject who converted back from AD to MCI
was excluded from the study. Any subject included in the

1adni.loni.usc.edu

TABLE 1 | Demographics and time between imaging sessions of MCI subjects
used in this study (1 SD).

sMCI cMCI p-Value

Number of subjects 440 229

Baseline age, years [mean (SD)] 73.4 (7.7) 74.2 (7.1) 0.167

Time between sessions, years [mean (SD)] 2.9 (2.2) 3.7 (1.9) <0.0001

Years of education [mean (SD)] 15.8 (2.9) 15.8 (2.7) 0.831

Sex [male, n (%)] 260 (59.1) 134 (58.5) 0.934

sMCI cohort remained stable for all sessions present in the
ADNI dataset. For the subjects who converted (cMCI), the MRI
images selected were based on the closest imaging session to the
conversion adjudication; as such, we assumed that the T1 brain
image would be representative of the status of the subject at the
time of conversion as it is unlikely to significantly change in
this time period. The average elapsed time between the time of
conversion and the second imaging session was−0.7± 1.4 years.

The information on the conversion date can be found
in the DXSYM_PDXCONV_ADNIALL.csv file from
the ADNI database.

Image Preprocessing Pipeline
As shown in Figure 1, the T1-weighted MRI images were pre-
processed according to the steps outlined in our previous work
(Pena et al., 2019). In summary, the two images at two time
points were normalized and aligned to each other first and
then registered to a common space using a linear registration
algorithm. The normalization involved motion correction, non-
uniform intensity normalization, and skull strip as implemented
in the first pre-processing stages of the Freesurfer 6.0 pipeline.
The final common interpatient space was derived from 2 mm
MNI T1 template which was cropped of the background space
to reduce the computational complexity of the network for a final
resolution of 64× 80× 64. This pipeline was shown to drastically
decrease the pre-processing time compared with conventional
image processing pipelines such as the wull FreeSurfer-based
ones (Pena et al., 2019). These steps were extended to the full MCI
cohort used in this study.

Nine clinical variables were used at two different imaging
sessions (e.g., cross-sectional variables). In addition, the
longitudinal signed differences for each of these variables. Note
that while the APOe4 genotype is not expected to change between
sessions, it has followed the same processing for consistency
and simplifying the evaluation of the feature importance. Age,
sex, and years of education were also concatenated in the final
feature vector used in the model. These clinical variables were all
normalized by their mean value.

Deep Learning Pipeline
Experimental Design
A 10-fold stratified cross-validation procedure was employed
for model training and evaluation. Each fold was split into
training, validation, and test sets with proportions of 80, 10,
and 10%, respectively. Each fold maintained the distribution
of sMCI/cMCI. Binary cross-entropy and the Adam were the
loss function and optimizers used, respectively (Kingma and Ba,
2015). Each of the 10-folds had 75 epochs, and an early stopping
condition of 10 epochs was implemented based on the model’s
validation loss. Cyclical learning rates were used to dynamically
change the learning rate throughout the training process (Smith,
2017). This method has been shown to potentially allow the
model to “jump” out of local minima to subsequently find a lower
minimum to reduce the overall loss. The upper and lower bounds
for the learning rates were 1e−5 to 1e−8. A batch size of 4 was
used in the experiments. The area under the receiver operating
curves (AUC) and balanced accuracy were the experimental
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FIGURE 1 | Overview of image pre-processing pipeline implementation. This pipeline involves rigid registration to align the patient’s brains intra-patient first and then
inter-patient to a common space. cMCI subjects’ session one was before conversion, and session two was the imaging session at the clinically deemed conversion
date. sMCI subjects, by definition, are not diagnosed with an AD conversion at any point.

evaluation metrics. The DeLong’s test for statistical significance
was used to test differences between AUC curves (DeLong et al.,
1988). AUC curves’ 95% confidence intervals were calculated
using a Monte Carlo resampling simulation with 1,000 iterations,
and in each iteration, 80% of the total subjects’ probabilities were
randomly chosen.

Two of the experiments used a transfer learning approach
where an additional set of 190 AD and 243 CN subjects were
first used to pre-train the network aimed at a simpler task
first. None of the 433 AD/CN subjects in this pretraining step
were used for the cross-validation, this avoided any risk of data
leakage. The pretraining step followed all image pre-processing,
hyperparameters, and initializations as stated in the text above,
except for the cross-validation procedure. Finally, the pre-trained
model was then used as the starting point for the weights used in
the MCI classification task.

A fully connected network using only clinical variables was
tested to obtain baseline comparison with the multi-modal
network. This model is effectively equivalent to a logistic
regression trained using the same optimization technique and
validation approach as the multi-modal network; as such, it will
allow for a fair evaluation of the relative improvement of adding
brain imaging to the clinical data. The input feature vectors
were the clinical variables, and the outputs were the same as the
multi-modal network.

The experiments outlined were completed using Python 3.7,
Keras version 2.2, and TensorFlow 1.14. The graphical processing
units used were GeForce RTX 2080 Ti with 11 GB RAM. The
training times varied between 30 and 90 s per epoch, depending
on the architecture and experimental setup. The computational
performance at inference time, which is more relevant to evaluate
the ease of deployment of the model in a clinical environment, is
discussed in section “Results.”

Deep Learning Architecture
The network architecture employed was inspired by a model
that learned from spatial symmetry between brain hemispheres
in the stroke detection task (Barman et al., 2019; Sheth
et al., 2019). Our previous work extended this model in the
AD-progression and time domain (Pena et al., 2019). This
study has implemented a new network that combines cross-
sectional and longitudinal imaging data with clinical features,
which can be trained end-to-end on the MCI conversion
classification task. Further, we focused our efforts on a less
parameterized network to improve computational efficiency, as
we are primarily concerned with the clinical application of this
class of methods. This was possible through residual attention-
based modules (Wang et al., 2017), allowing the network
to focus on specific areas of the image with an Inception-
based network, which leads to learning convolutional filters at
different scales.

From a high level (Figure 2), the model can learn a
complex representation of two images at different time points
through the two subnetworks (Attention and Inception) in
addition to the temporal differences of the two brains through
the subtraction layer. This subtraction layer is sensitive to
changes and is referred to as the “longitudinal” portion of the
network. In the attention module, cross-sectional information
is added through skip connections. The output from these two
subnetworks is combined with clinical variables in a final dense
layer for prediction.

This model has several benefits:

• It has the potential to identify structural changes in
T1-weighted MRI scans over time, which is vital for
determining MCI conversion while utilizing commonly
available clinical information.
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FIGURE 2 | Deep learning architecture high-level overview. Imaging data pass through (A) an Attention-based subnetwork and (B) an Inception-based subnetwork.
The Attention-based network includes skip connections that concatenate cross-sectional information to the processed longitudinal information. The Inception-based
network only contains longitudinal information. These two subnetworks’ outputs are combined with clinical variables (C) that contain both cross-sectional and
computed longitudinal differences. Finally, these subnetworks are combined and input into a prediction layer. Note that transfer learning approaches were used with
AD and CN data, as stated earlier.

• It uses attention-based networks and deliberately leverages
a less parameterized network that inherently regularizes the
weights to only focus on important information.
• It incorporates an inception-based network that allows the

model to use multi-resolution to represent the images at
different scales in a non-sparse fashion.

Residual Attention Modules
Wang et al. (2017) extended the previously studied attention
mechanism and applied it to their approach for image-
level classification. Their overall network was composed of
blocks named the residual attention module. These modules
combined normal convolutional blocks (e.g., convolution, back
normalization, and max pooling) with a U-Net inspired structure
(Ronneberger et al., 2015) through a multiplication operator. The
U-Net subunit allows the model to learn important information
representing the input image through an encoder-decoder-
like structure. The convolutional blocks allow the model to
pay “attention” to these critical parts of the image through
multiplication. This output then goes through another series
of convolutional layers for further learning. Wang et al. (2017)
stacked these residual attention modules to create a deep

structure with complex attention mechanisms at different scales
of the images. However, to create a less parameterized network,
we limited the proposed network to just one residual attention
block. For additional details about these modules, we refer the
readers to the original publications.

Inception Modules
The inception modules used in this paper were inspired by the
work done by Szegedy et al. (2015) and were extended to the
3-dimensional space (3D). The inception modules used were a
combination of multi-resolution 3D convolutional layers. These
layers were composed of three parallel operations: 1 × 1 × 1,
3 × 3 × 3, and 5 × 5 × 5 convolutions with two filters. Previous
work has shown that this module can produce meaningful
results in neuroimaging applications (Barman et al., 2019,
2020; Pena et al., 2019). This style of operation allows the
model to view an image or input at different scales to learn
different types of spatial information. The outputs were then
concatenated and served as input to the next network layer. For
additional details about these modules, we refer the readers to the
original publications.
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FIGURE 3 | Deep learning architecture detailed overview. Longitudinal images pass through (A) an Attention-based network and (B) an Inception-based network.
These subnetworks are composed of an initially shared weight representation, a subtraction layer, and a subsequent flatten layer. These two subnetworks’ outputs
are combined with clinical variables (C). Lastly, this concatenation is put through a dense layer for the final prediction.

FIGURE 4 | Model experiments and associated AUC scores by varying input data and the use of transfer learning (left). ROC curves for comparing model
performance from the experiments conducted (right).

Layers
From the overall network perspective (Figure 3 below), the first
module layers learned a representation shared between the first

and second imaging time points. This representation proceeded
to a subtraction layer that took the difference between the two
sessions, and this difference was the input to another module.
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These longitudinal outputs then went through another module
to further learn from the differences between the two sessions.
Note that the attention subnetwork incorporated longitudinal
and cross-sectional information through the addition of skip
connections, as seen in the figure below. Next, these outputs were
flattened and concatenated with each other to form an imaging
and clinical feature vector. Finally, the prediction layer was used
for prediction utilizing the SoftMax activation function.

The code repository for this publication can be found at https:
//gitlab.com/lgianca/deepsymnet-att.

Confounding Variable Adjustment
A logistic regression model was fit with the deep neural network’s
probability output, baseline age, time between imaging sessions,
and sex to adjust for any potential confounders inherent in
the data chosen for the model. The logistic regression model
coefficients, the 95% confidence intervals, and corresponding
p-values were reported.

Feature Importance
To develop an intuition about which voxels from the T1-
weighted MRI images and features from the clinical variables,
we employed the epsilon layer-wise relevance propagation (e-
LRP) method (Bach et al., 2015). The e-LRP method starts from
the prediction layer and works its way backward through the
network. Layer-by-layer, the relevance of each of the previous
layer’s nodes is computed until the operation reaches the
input data layer. Each feature in the input data is assigned
a final relevance score that describes how important that
feature was for the final prediction. The codebase used in
our experiments follows the implementation of DeepExplain
(Ancona et al., 2018).

As stated above, relevance scores are projected onto
the input data, which, in this study, are the two T1-
weighted images and the subject’s clinical feature vector.
We used a global and regional method to compute the
magnitude of relative importance for the voxels in the MRI
images. For the global method, each subject’s MRI relevance
map was added for both sessions, and absolute values
were used to remove the risk of canceling out relevance
scores. Then, a heatmap allowed for the visualization of
this global method.

For the regional method, the cortical and subcortical regions
were segmented for each subject via the Harvard–Oxford atlas
(Caviness et al., 1996). Then, for each subject and session,
the summation of all the voxels’ magnitude in each region
was calculated. This value was then divided by the volume
of that particular region, resulting in a normalized relevance
magnitude for a particular brain region. This final value allowed
the different regions to be compared to one another on a
similar scale. A similar approach was used to find the relative
importance of the clinical features. The unsigned value for a
clinical feature was added for each subject and then ranked in
order of importance based on the magnitude of the total value.
The overall method is described in greater detail in our previous
work (Pena et al., 2019).

RESULTS

This study aims to (1) evaluate the use of different deep learning
architectures, input data modalities, and transfer learning for
MCI conversion classification using a computationally efficient
architecture and to (2) investigate the important imaging and
clinical features that drove the model’s decision based on the
e-LRP method.

Model Evaluation
As seen in Figure 4 and Table 2, the model that used imaging and
clinical input data was pre-trained using AD, and CN subjects
with frozen weights had the highest AUC score (Experiment 5).
This model was considered the “best” performing model in this
paper. The pre-trained model where all of the weights could be
fine-tuned had the best-balanced accuracy. Table 2 also shows
that the improvement between solely using clinical variables
(Experiment 1) and the best model that combined clinical and
T1 imaging was statistically significant. Further, our best model
was the only one significantly greater than the model that used
clinical variables only. The average time taken to pre-process an
image and for the model to make a prediction was 129.7 ± 19.8
and 0.12± 0.05 s, respectively.

We evaluate the individual importance of the Inception
and Attention subnetworks with ablation studies. We
use as a base model and training strategy what has been
described in Experiment 5. In order to account for the
artificial advantage that the architectures might have solely
on the basis of having more parameters, we increased the
number of convolutional filters in each of the independent
subnetworks to make them comparable with the full network.
In Table 3, we show that the Inception-based subnetwork
overperforms the Attention-based subnetworks. However,
their combination (with the addition of the clinical data)
outperformed the two architectures individually, even if the
number of parameters was comparable.

In order to evaluate the computational efficiency of the model,
we evaluated the time required to generate a prediction at
inference time (i.e., after model training) on an off-the-shelf
laptop without using any GPUs. We repeated this 100 times
and achieved an average execution time of 1.56 s (0.10 std).

TABLE 2 | Model experiments’ metric comparison for balanced accuracy, AUC
score, and testing for significant differences between AUC curves.

Experiment Balanced
accuracy

AUC score

(1) Clinical variables only 75.5 80.6

(2) T1-weighted MRI only 73.2 79

(3) Clinical variables + T1-weighted MRI 75.4 82.2

(4) Clinical variables + T1-weighted MRI
(pre-trained network: no frozen layers)

78.2 84.1

(5) Clinical variables + T1-weighted MRI
(pre-trained network: frozen layers)

77.8 84.7

p-Values were computed from the DeLong test for correlated ROC curves to reject
the null hypothesis that there is no statistical difference between the AUCs.
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TABLE 3 | Ablation studies indicate that the combination of the two Attention and
Inception-based subnetworks overperform the two individual subnetworks.

Experiment Number of
parameters

Balanced
accuracy

AUC score

Attention-based subnetwork
(imaging + pre-training with
frozen layers)

374,398 65.7 68.6

Inception-based subnetwork
(imaging + pre-training with
frozen layers)

333,352 73.6 77.6

Best performing network
(imaging + clinical + pre-
training with frozen
layers)

355,572 77.8 84.7

Note that the number of convolutional filters in the subnetworks were increased to
have comparable parameters with the entire network (i.e., within 10%).

This does not take into account the file conversion, initial brain
extraction and linear registration steps required, which can take
from tens of seconds to a few minutes, depending on the software
used. This compares favorably to the “de facto” Freesurfer-
based longitudinal pipeline that can take an average of 17 h
per subject (Pena et al., 2019) or methods relying on non-linear

registration and extraction of the warp field, taking each image
into template space. For example Spasov et al. (2019) report
approximately 19,200 h of CPU time on a high-performance
parallel computing cluster to non-linearly register the images,
which is∼19 h per subject.

The Network as a Clinical Decision
Support Tool
With the final model, we investigated the strength of the signal
(deep network output probability) between MCI subjects who
eventually converted to AD and those who stayed stable, as
seen in Figure 5. The starting point for the cMCI subjects is
higher than the sMCI subjects since there was some indication of
AD conversion-like progression using MRI imaging time points
before the actual conversion. However, this signal strengthens
when an imaging time point around AD conversion is included,
shown by the tendency toward higher probabilities on the right
side of the figure. The sMCI group has a smaller slope with respect
to time as there is no indication of AD conversion. This makes
for a clear, qualitative difference between the two groups. The
network derives a much stronger signal at the conversion point,
indicating its ability to recognize patterns distinctly associated
with AD conversion.

FIGURE 5 | Line graph visualizing the difference in output network scores between cMCI (blue) and sMCI subjects (orange) with 95% confidence intervals in the
shaded regions. The darker lines represent the mean trajectory based on the distribution of scores of the respective groups. Note that the cMCI subjects’ starting
score is computed using the network and both imaging time points before conversion. The ending score includes the second time point when the AD conversion
was diagnosed. The sMCI subjects’ starting scores are taken using the baseline and time point near the baseline date, and their ending score is using the baseline
and a later date.
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TABLE 4 | Summary of the logistic regression coefficients, confidence intervals,
and p-values for model output probability and confounding variables.

Baseline age Time between
sessions

Years of
education

Sex Deep learning
output

probability

0.0140
(0.001–0.027)*

0.0916
(0.010–0.174)

0.0361
(−0.024 to

0.096)

0.0521
(−0.358 to

0.462)

−4.0714
(−4.700 to
−3.443)***

*p < 0.05.
***p < 0.0001.

Confounding Variable Adjustment
Further, the deep learning output probabilities were assessed
for statistical significance with a logistic regression model
and potential confounding variables. As seen in Table 4, the
output probability remained statistically significant (p < 0.0001).
Interestingly, though there were group differences between the
imaging variable, as seen in Table 1, these differences were not
significant when combined with the output probabilities.

Feature Importance
Next, model feature importance was evaluated for both the
imaging and clinical inputs. The imaging feature importance
was completed on both a voxel-wise level and a brain regional
level (subcortical vs. cortical regions), as seen in Figure 6.
These saliency maps are smoother than our previous work (Pena
et al., 2019), and we attributed this improvement to the use
of attention-based modules and a less parameterized network.
These model characteristics perform significant regularization,
highlighting only the most informative regions for the given task.

Further, the top five regions from the cortical and
subcortical regions were plotted in Figures 6B,C. After
volume normalization, the thalamus, caudate, pallidum, and
lateral ventricle subcortical regions contained the highest overall
contribution to the model’s decision. For the cortical regions,
the planum temporale and parietal operculum cortex had the
highest contributions. Both the cortical and subcortical regions
had similar contribution magnitudes, as seen in the x-axis of
Figure 7.

The clinical variables’ contributions are shown in descending
order in Figure 8. The RAVLT score from the second session
was the most important clinical feature, with ADAS11 from the
second session and MoCA scores from the first session following.

DISCUSSION

This study employed a deep learning model to enable a CAD
system able to provide an AD conversion diagnosis in an
MCI cohort followed longitudinally. The model combined both
Attention and Inception modules and was designed to be less
parameterized to form a sparse yet rich representation of the
input imaging and clinical features. The experiments performed
demonstrated that the combination of imaging and clinical
features produced a better model than using either type of
data alone. Also, a model pre-trained on AD and CN subjects

that served as a baseline for MCI classification was a better
starting point for subsequent model fine-tuning than random
weight initialization. Further, the brain regions that drove the
model’s decision were visualized and quantified through the
e-LRP method. The clinical features included in the model were
also ranked and analyzed for relevance.

One of the main contributions of this network architecture is
the combination of longitudinal and cross-sectional information.
The subtraction operation was used between the two imaging
and clinical time points and their respective features; thus,
the network could learn from the differences over time.
Further, this information was preserved throughout the training
process by keeping the raw signal from the individual time
points (e.g., cross-sectional data). The imaging-focused part of
the network was divided into the Attention and Inception-
based mechanisms. The attention module extended the residual
attention used in computer vision, allowing the model to
introduce sparsity into the network parameters. This allows
the model to focus on certain parts of the brain input data
related to MCI conversion to AD. The inception modules
used 3D convolutional filters to find information at different
spatial scales and granularity. We empirically show that
using a combination of these modules, both the balanced
accuracy and AUC were higher than using these modules
individually in a network.

Further, we showed that the network improved AUC
performance by incorporating more information in the time
domain (cross-sectional and longitudinal) and in data modality
(T1-weighted MRI and clinical features). This has been shown to
be the case in related MCI and AD research (Goryawala et al.,
2015; Spasov et al., 2019). The best model was also pre-trained on
a cohort of AD and CN subjects. This model’s only trainable layer
was the dense layer right before the prediction layer. Exclusively
fine-tuning of the penultimate layer allowed the model to focus
on changing a smaller number of weights compared to the
entire model. This transfer learning setup also assumed that the
brain representation from the AD and CN subjects was a good
representation for an MCI application, making intuitive sense
since this is modeling a progression pattern in subjects at high
risk of developing AD in their lifetime. Finally, after controlling
for several potential confounding factors, the network output
probabilities remained statistically significant. Once the model is
trained, the whole model can run in∼1.5 s plus the time required
to perform basic pre-processing involving file conversion, skull
stripping, and linear registration (typically tens of seconds to
a few minutes) on an off-the-shelf laptop without GPU. This
would enable a neurologist to use this system as a computer-aided
diagnostic tool during the office visit once the required imaging
and/or clinical variables are acquired.

Once the experiments were completed, the crucial features
for driving the model’s decision were investigated. To narrow
down the imaging analysis for interpretation, we focused on
the subcortical and cortical regions. The thalamus, caudate,
pallidum, and lateral ventricle had the highest overall activation
magnitude for the subcortical regions. Cholinergic synapses
have a high density in several parts of the brain, including the
thalamus, and have played a central role in research in aging and
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FIGURE 6 | Epsilon layer-wise relevance propagation relevance maps displaying voxel-level and region-level contribution to model output probability at different brain
slices. The maps are at the (A) voxel-level, (B) cortical, and (C) subcortical levels. Maps (B,C) are normalized to the brain region volume. The scales indicate the
degree of voxel contribution magnitude.

cognitive decline. Cholinesterase inhibitors are considered first-
line treatments for mild and moderate AD (Hampel et al., 2018).
Likewise, an in vivo imaging study found reduced serotonin
transporter availability in MCI subjects in the thalamus compared
to controls (Smith et al., 2017). Qing et al. (2017) found
that impairment of spatial navigation skills, a clinical feature
of AD found in MCI subjects, was significantly correlated to
neuroimaging variable changes in the pallidum and thalamus.

Similarly, Fischer et al. (2017) investigated mobility changes
in subjects with MCI. They found that decreased gray matter

volume in the caudate nucleus was associated with a lower
speed in functional mobility tasks. Crocco et al. (2018) applied
a cognitive stress test to AD and MCI subjects and showed
that negative clinical results were related to dilation of the
lateral ventricle, among other regions. Yi et al. (2016) found
that gray matter volumes in subcortical regions, including,
but not limited to, the thalamus, caudate, and pallidum, were
significantly reduced in MCI subjects when compared to controls.
Additionally, many of these subcortical volumes were correlated
with cognitive function.
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FIGURE 7 | Brain regional contribution magnitude of the top five (top) cortical and (bottom) subcortical regions. The contributions were calculated by summating all
the magnitudes within the brain region and then normalized to the brain region volume.

For the cortical regions, the planum temporale, operculum
cortex, and occipital cortex were some of the top regions
with associated findings in AD and MCI literature. Researchers
using several independent AD datasets found that anatomical
changes in the planum temporale and thalamus were among
the top features for their predictive model (Giraldo et al.,
2018; Li et al., 2020). Others have found that changes in
cortical minicolumn organization and premortem cognitive
scores were significantly related in the planum temporale,
potentially reflecting a phenomenon in brain atrophy in
AD subjects (Chance et al., 2011). Alternatively, this might
indicate the importance of auditory processing in MCI
to AD progression as planum temporale is involved in
auditory processing. A clinical study that used functional
connectivity imaging and associated metrics found decreased
intrinsic connectivity in the operculum cortex among MCI
and AD subjects (Xie et al., 2012). Finally, a PET study
demonstrated a significant and high overlap in hypoperfusion
and hypometabolism in AD subjects in the occipital cortex
(Riederer et al., 2018).

From the clinical features, ADAS, MoCA, and MMSE scores
are among the top five variables with the most relevance for the
model’s decision. This is unsurprising as MoCA and MMSE are
the most widely used screening tools in clinical practice. ADAS
is frequently used as a progression measurement in both clinical
settings and clinical trials.

Interestingly, the RAVLT, a recent memory test, was the
variable with the most relevance for the model’s decision for the
first session, and it was ranked as one of the top five variables
for the second session. Memory for recent events is distinctively

impaired in AD and is served by the hippocampus, entorhinal
cortex, and related structures in the medial temporal lobe.

This could indicate that the RAVLT provides more
complementary information that is harder to directly learn
from the imaging alone. Multiple clinical and neuroimaging
studies have shown the importance of this variable in AD and
MCI research; one of the earliest was performed by Estévez-
González et al. (2003). More recently, Eliassen et al. (2017)
used PET imaging and clinical scores to show that RAVLT were
significant predictors in changes in cortical thickness between
MCI and CN participants. A neuroimaging study conducted
by Moradi et al. (2017) found that the MRI-based volumetric
features were suitable variables for predicted parts of the RAVLT
tool using an elastic net-based linear regression model. Russo
et al. (2017) found that parts of the RAVLT assessment can have
differences in discrimination accuracy and response bias between
MCI and AD subjects, indicating there could be diagnostic
specificity if using different test portions.

Our study has some limitations. First, the absolute
classification performance of our method was lower than
some found in the literature (Liu et al., 2017; Tong et al.,
2017; Spasov et al., 2019) that report AUC scores around 90%.
However, these models focus on the prediction of future AD
rather than an actual diagnosis of the AD conversion, and they
typically involve a very long pre-processing pipeline that would
be hard to use in clinical settings. The use of longitudinal data
to output an AD diagnosis can also be considered a limitation
as it requires data from two-timepoints. The dataset used did
include a majority of Caucasian non-Hispanic population, as
such, the generalizability of the algorithm needs to be further
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FIGURE 8 | Clinical variable-level contribution magnitude. These values were calculated by summation of the contribution across all subjects. Neurological clinical
variables denoted with “first_ses” and “second_ses” correspond to the subjects’ first and second clinical sessions, respectively. The clinical variables without a suffix
represent the longitudinal change in that particular variable over time. Demographic variables included were age, sex, and years of education.

confirmed on an entirely external dataset including a more
diverse population. Finally, while the model can handle missing
imaging or clinical data (as a whole), it currently cannot leverage
clinical data with missing variables (unless imputation is used).

Future work could extend the ADNI dataset to incorporate
multiple sources. This would increase the model’s generalizability
to bias and errors that are inherent to different datasets. Also,
adding more time points by extending this model using recursive
neural networks or Gaussian processes algorithms could give a
more nuanced trajectory signal that may unearth a strong signal
for MCI progression and conversion to AD.

CONCLUSION

In this paper, we introduce a novel method that utilizes T1-
weighted MRI and clinical data at two-time points to diagnose
AD in patients with MCI. At a high level, the model is a
deep learning framework that combines residual Attention and

Inception modules while taking advantage of cross-sectional and
longitudinal data. The epsilon layer-wise propagation method
allowed the interpretation of essential brain regions and clinical
features that drove the model’s output. Some of the top
subcortical and cortical regions included the thalamus, caudate,
planum temporale, and operculum cortex. Further, RAVLT was
the clinical feature that had the highest contribution to the
final prediction. This method could easily be translated to the
healthcare environment because it integrates variables commonly
used in a clinical setting and has a fast image processing and
prediction pipeline. This instrument could potentially be used as
an objective and efficient diagnostic tool for patients at high risk
of AD conversion.
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