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Trigeminal neuralgia caused by paroxysmal and severe pain in the distribution of the

trigeminal nerve is a rare chronic pain disorder. It is generally accepted that compression

of the trigeminal root entry zone by vascular structures is the major cause of primary

trigeminal neuralgia, and vascular decompression is the prior choice in neurosurgical

treatment. Therefore, accurate preoperative modeling/segmentation/visualization of

trigeminal nerve and its surrounding cerebrovascular is important to surgical planning.

In this paper, we propose an automated method to segment trigeminal nerve and its

surrounding cerebrovascular in the root entry zone, and to further reconstruct and visual

these anatomical structures in three-dimensional (3D) Magnetic Resonance Angiography

(MRA). The proposed method contains a two-stage neural network. Firstly, a preliminary

confidence map of different anatomical structures is produced by a coarse segmentation

stage. Secondly, a refinement segmentation stage is proposed to refine and optimize

the coarse segmentation map. To model the spatial and morphological relationship

between trigeminal nerve and cerebrovascular structures, the proposed network detects

the trigeminal nerve, cerebrovasculature, and brainstem simultaneously. The method has

been evaluated on a dataset including 50 MRA volumes, and the experimental results

show the state-of-the-art performance of the proposed method with an average Dice

similarity coefficient, Hausdorff distance, and average surface distance error of 0.8645,

0.2414, and 0.4296 on multi-tissue segmentation, respectively.

Keywords: trigeminal nerve, cerebrovascular, segmentation, MRA, deep learning, coarse-to-fine

1. INTRODUCTION

Trigeminal nerve is the fifth paired cranial nerves, and has themost complex nerve structures which
contains three major branches: the ophthalmic nerve, the maxillary nerve, and the mandibular
nerve. Trigeminal neuralgia (TN) is a typical chronic pain disorder caused by trigeminal nerve
abnormalities, characterized by paroxysms of severe, lancinating pain in the distribution of the
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trigeminal nerveis, with an incidence of 4 per 100,000
population (Gronseth et al., 2008; Obermann, 2010). In
general, TN involves the maxillary and mandibular nerve
branches, and neurovascular compression is usually considered
to be the main cause of primary trigeminal neuralgia.
Common treatments for TN include percutaneous techniques,
microvascular decompression, and Gamma Knife radiosurgery.
In clinical practice, microvascular decompression (MVD) is
considered to be the first choice and the gold standard of
neurosurgical treatment (Cheng et al., 2014), where the vascular
loop overlying the trigeminal nerve is displaced away from the
root entry zone. This can be supported by a series of studies using
Kaplan-Meier statistical analysis (Kaplan and Meier, 1958), that
is, approximately 75% of patients treated with MVD can get a
long-term cure (ie, no pain and no medication) (Bederson and
Wilson, 1989; Barker et al., 1996; Broggi et al., 2000; Tronnier et
al., 2001; Zakrzewska et al., 2005; Zhong et al., 2014).

The presence of neurovascular compression (NVC), the
morphological and spatial relationships of vascular and nerve,
the severity of the compression have significant impacts on
the outcome of MVD (Li et al., 2004; Sindou et al., 2007;
Yao et al., 2018). Accurate preoperative assessment of the
characteristics of the NVC is not only critical to the surgical
planning and the outcome of trigeminal neuralgia treatment,
but also has the potential to shorten the operative time (Miller
et al., 2008; Leal et al., 2010, 2011; Zeng et al., 2013; Xie
et al., 2020). Visualization of the intracranial trigeminal nerve
and cerebrovascularture will be beneficial in obtaining the
characteristics of the NVC and morphological relationships. In
consequence, accurate segmentation and 3D reconstruction of
the trigeminal nerves and cerebrovasculature related to NVC are
primary factors to improve the surgical planning and outcome of
MVD surgery.

Several methods for visualization of neurovascularity within
the root entry zone (REZ) have been proposed in recent
years (Kumon et al., 1997; Yamakami et al., 2000; Fukuda et
al., 2003; Anderson et al., 2006; Prieto et al., 2012). However,
weaknesses such as low resolution and missing spatial structure
of conventional two-dimensional structural MRI make these
methods inadequately for constructing neurovascular spatial
relationships in REZ. To overcome these deficiencies, Mikami et
al. (2005) and Zhou et al. (2012) used 3D MRI that can provide
high spatial resolution while delineating vessels and nerves
(e.g., 3D fast imaging) to perform neurovascularity visualization.
With the advantages of 3D MRI and the characteristics of
different imaging modalities, some visualization methods based
on multimodal image fusion have been applied and developed in
clinical practice (Ohtani et al., 2016; Liu et al., 2020; Shi et al.,
2021).

Although there are now many clinical efforts to diagnose
trigeminal neuralgia based on 3D visualization, these methods
are manually adjusted to show neurovascular structures in 3D
space with the help of 3D visualization software such as 3D Slicer1

and BrainLab2. An obvious drawback is that these methods rely

1https://www.slicer.org/
2https://www.brainlab.com/

heavily on manual adjustment of various complex parameters
to achieve better visualization. Therefore, the diagnosis of TN
in this way is bound by the experience of the physician and
results in a large human error, which is detrimental to the
quantitative analysis of NVC. In addition, manual adjustment
to visualize the REZ is time consuming, which severely slows
down the development of a MVD surgical plan for TN patients
and therefore is likely to miss the optimal state of treatment.
Therefore, a precise, more effective, and fully automated NVC
visualization and detection system with less impact from human
error is needed.

In this paper, we propose a deep learning-based 3D volume
segmentation framework to address the above limitations.
The proposed method is an end-to-end segmentation network
containing two stages: a coarse segmentation stage and a
refinement stage. The former is used to obtain confidence maps
of the trigeminal nerve, cerebral vasculature and brainstem with
respect to the background, while the latter refines the boundaries
of tissues/organs based on the confidence maps. Importantly,
due to stronger robustness, higher accuracy and faster speed,
the neural network-based segmentation algorithm effectively
reduces human error in acquiring NVC morphological features
and greatly speeds up REZ rendering, which also provides a
more reliable basis for MVD surgery planning. Overall, this work
makes the following contributions:

• To the best of our knowledge, this is the first fully automated
work to reconstruct the trigeminal nerve, cerebrovasculature
and brainstem segmentation in MRA imagery, so as to visualize
the spatial information of NVC. Compared with existing semi-
automatic methods based on auxiliary software, the proposed
method receives higher accuracy and efficiency.

• We propose a novel end-to-end 3D segmentation
model based on two stages—coarse segmentation stage
and fine segmentation. The coarse segmentation stage
produces a preliminary trigeminal nerve, cerebral vessels
and brainstem segmentation results, and the second stage
refines the preliminary results, to obtain more accurate
overall segmentations.

2. RELATED WORKS

2.1. Semi-automatic 3D Visualization
Precise visualization of the anatomical features of NVC is
essential to assist clinicians in diagnosis. Most of the existing
studies are based on auxiliary tools to reconstruct neurovascular
structure of TN patients. Wang et al. (2020) rendered the 3D
volume based on the inverted h-T2WI image and manually
captured the neurovascular anatomical features under man-
machine interaction mode. Yamada et al. (2019) segmented the
cerebrovasculature, trigeminal and brainstem by the commercial
software Avizo (version 6.3.0, FEI, Portland, OR, USA), and then
analyzed the hemodynamic characteristics of the diseased artery
at the neurovascular compression site based on computational
fluid dynamics (CFD). They demonstrated that CFD can be used
as a useful clinical tool to determine the target of MVD under
preoperative conditions. Danyluk et al. (2020) first converted
DICOM images to NIFTI format, and then employed FMRIB’s
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FSL (Smith et al., 2004) series toolbox to generate brain tissue
(gray matter, white matter, cerebrospinal fluid) volume and
an estimated intracranial volume (ICV), as well as determined
volumes of bilateral hippocampus, amygdala, and thalamus. This
work aims to explore the relationship between the volumes
of the hippocampus and trigeminal nerve before surgery and
TN. Manava et al. (2020) visualized various types of nerves
including the trigeminal nerve through a series of direct volume
rendering methods (Hastreiter et al., 2002; Naraghi et al.,
2004, 2007) to analyze and compare different results of exact
reproducible anatomical 3D-representations of the ventrolateral
medulla (VLM) in patients with arterial hypertension. To address
the feasibility and predictive value of multimodal image-based
virtual reality in detecting and assessing features of neurovascular
confliction, Yao et al. (2018) utilized the open source 3D
Slicer to perform multimodal 3D images reconstruction to
generate multimodal virtual reality (VR) images for detection
of possible NVC in the cerebellopontine angle. To validate
the accuracy of image-bsed pre-operative segmentation using
the gold standard endoscopic and microscopic findings for
localization and pre-opetative diagnosis of the offending vessel,
Dolati et al. (2015) used BrainLab iPlanNet (BrainLab AG,
Munich, Germany) to segment and reconstruct 20 3.0T MRI
images with TN and hemifacial spasm. This study shows that
image-based segmentation is a promising method that can be
used to identify and locate offending vessels that cause hemifacial
spasm and TN before surgery. Similarly, in Kin et al. (2009),
computer graphics models were created with computer software
and observed interactively for detection of offending vessels by
rotation, enlargement, reduction, and retraction on a graphic
workstation in patients with NVC syndrome. In general, many
techniques such as Sánchez et al. (2010), Christiano et al. (2011),
and Alsofy et al. (2021) for capturing NVC features in the clinic
rely on manual operations based on semi-automated software.

2.2. 3D Medical Image Segmentation
Many computer vision methods have been developed and
adopted to handle the 3D medical image segmentation tasks,
including unsupervised methods and supervised methods. Early
unsupervised methods (Zhang et al., 2016; Zhao et al., 2018; Ma
et al., 2021) relied on manually pre-designed filters for image
segmentation, including traditional methods based on statistical
model analysis (Gao et al., 2011), phase field and likelihood
models (Zhao et al., 2014), wavelet transform and Markov (Cao
et al., 2016), and level sets (Hao et al., 2007). In a recent
unsupervised medical image segmentation, Zhao et al. (2018)
proposed a weighted symmetry filter for automatic 2D vessel
enhancement and segmentation, and further extended it to the
3D case for vascular segmentation.

With the development of high-performance hardware devices,
3D medical image processing methods based on deep learning
have been rapidly developed due to the superior feature
extraction performance of neural networks. Çiçek et al. (2016)
proposed a automated 3D tubular structural organ segmentation
method based on 3D convolutional neural netowrks (CNNs).
Zhang et al. (2019) proposed a novel method for 3D
retinal optical coherence tomography angiography (OCTA)

microvascular segmentation and surface reconstruction based
on CNN. Sanchesa et al. (2019) proposed a Uception network
based on U-Net-like architecture (Ronneberger et al., 2015)
cooperate with Inception modules (Szegedy et al., 2016) to
segment cerebrovasculature in MRA images. Milletari et al.
(2016) further extended the U-Net-like architecture into a multi-
layer densely connected convolutional network (named V-Net)
to implement automatic segmentation of 3D medical volumes.
Several cerebrovascular segmentation methods inspired by the
human attention mechanism have also been developed. Zhang
et al. (2020) proposed a convolutional neural network based
on reverse edge attention mechanism (RE-Net) to perform
3D cerebrovascular segmentation and surface reconstruction.
To capture detailed information of brain vessels at different
resolutions, Ni et al. (2020) proposed a global channel attention
model for brain vessel segmentation.

3. METHODS

In this section, we introduce a novel multiple tissue segmentation
method based on 3D convolutional neural network, i.e.,
the segmentation of trigeminal nerve, cerebrovasculature and
brainstem. Figure 1 illustrates the overall architecture of the
proposed segmentation framework, which consists of two main
components: 1) the coarse segmentation stage, and 2) the refine
segmentation stage. The detailed parameter settings for each
module are also listed in Figure 1.

3.1. Coarse Stage
Since the trigeminal nerve and cerebrovasculature are both
tubular structures, we use the CS2Net (Mou et al., 2020) as
the backbone in the coarse segmentation stage, and CS2Net
was specifically designed for tubular structure segmentation.
However, in order to achieve a more efficient feature extraction
performance, we utilized the Res2Block (Gao et al., 2021)
to replaced the residual feature extraction blocks (ResBlock)
(He et al., 2016) in original CS2Net. On one hand, the
Res2Block represents multi-scale features at a granular level, and
increases the range of receptive fields for each network layers
by constructing hierarchical residual-like connections within
one single residual block. On the other hand, the input MRA
volume contains small portion of trigeminal nerves, while the
cerebrovascular are widely distributed. To this end, the powerful
multi-scale feature extraction capability of Res2Block will benefit
to the multi-scale feature learning of multi-scale tissues in
MRA images.

Since this is a 3D volumetric tissue segmentation task,
the original Res2Net cannot be imposed on the 3D case
straightforwardly. Therefore, we replace the 2D convolutional
layers in the original Res2Net with 3D convolutional layers.
According to Gao et al. (2021), we divide the input features
after the 1 × 1 × 1 convolutional layer equally into s subsets of
feature maps along the channel dimension, and denote them as
xi, where i ∈ {1, 2, · · · , s} and each xi contains 1/s number of
channels of the input feature channels. We apply a 3 × 3 × 3
convolution Ki(), a batch normalization layer Bi() and a ReLU
activation layer σi() on each xi accordingly, except x1. Thus, the
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FIGURE 1 | The overall structure diagram of the proposed method. The proposed method consists of a coarse stage and a refine stage, where the feature extraction

module in the coarse stage is replaced by ResBlock to Res2Block, while the refine stage uses 3D UNet as a refiner to further improve the segmentation performance.

The details of the structure of the CSAM can be found in CS2-Net (Mou et al., 2020).

operation on each subset xi can be expressed as: σi(Bi(Ki(xi))).
Moreover, the feature subset xi is added with the output of
σi−1(Bi−1(Ki−1(xi−1))), and then fed into σi(Bi(Ki(xi))). Finally,
we denote the output of each xi as yi:

yi =











xi i = 1,

σi(Bi(Ki(xi))) i = 2,

σi(Bi(Ki(xi + yi−1))) 2 < i 6 s.

(1)

To further fuse the multi-scale information extracted by the
Res2Block, we concatenate all output subsets, and pass them
through a 1 × 1 × 1 convolution. The split and concatenation
strategy can enforce convolutions to process features more
effectively. In this work, we followed (Gao et al., 2021), and set
s = 4.

3.2. Refine Stage
Due to the variable appearance and inconsistent size of
multiple tissues, the boundaries of the trigeminal nerve,
cerebrovasculature, and brainstem regions generated through the
coarse segmentation stage are not clear, which greatly impair the
credibility of NVC examinations that require clear visualization.
Thus, it is crucial to provide clearer boundaries of different
anatomical structures. Therefore, we add a module for refining

the segmentation boundaries of different tissues after the coarse
segmentation phase, which is named as the refine stage.

In detail, anatomical structures with unclear boundaries are
fed into the refine stage to generate clearer anatomical structures.
All voxels of anatomical structures with unclear boundaries are
probabilized, which can be considered as a confidence map
for different anatomical structures and is denoted as P, where
P ∈ R

4×Z×H×W . 4 indicates that the confidence map has
four channels, i.e., 4 classes, and Z, H, and W indicate volume
thickness, height, and width, respectively. In addition to unclear
boundaries, it is also possible that a small number of voxels of
anatomical structures are not successfully identified, which can
also impair the accuracy of NVC assessment. To address this
limitation, we concatenate the raw volume (denoted as I) with
P in the channel dimension, thus constructing a new input for
the refine stage, denoted as F, i. e.,

F = cat (I,P) , (2)

where F ∈ R
5×Z×H×W . In this case, the new input F not only

contains voxel confidence for different anatomical structures, but
also complements the missing confidence with raw features. On
the other hand, the confidence map imposed on the raw volume
can be considered as a hard attention to the different anatomical
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structures, thus enhancing the segmentation performance of
the framework.

In this work, we employ the 3D U-Net (Çiçek et al., 2016) as
the backbone to extract hierarchical features, while the difference
is that we set the channels in each layer of the 3D U-Net to 32, as
shown in Figure 1. To reduce the loss of structural information,
we summedPwith the output features of the refine stage and then
applied a 1×1×1 convolution to reduce the number of channels
to 4. All extracted features first go through a coarse stage and then
are fed into a refine stage, which allows the proposed framework
to be trained and inferred in a end-to-end manner.

3.3. Loss Function
Supervised learning-based volumetric image segmentation
requires a loss function during the learning process to measure
the error between the predicted segmentation and the gold
standard, so as to continuously optimize the segmentation
performance. The loss function plays an important role in the
feature learning process of neural networks. In this work, we
segment the trigeminal nerve, cerebrovasculature, and brainstem
regions from MRA images. However, the percentage of voxels
of the trigeminal nerve in the MRA images is very small and
is present in approximately 3 consecutive slices. One problem
caused by the small percentage of trigeminal voxels is the
imbalanced segmentation classes, which can lead the neural
network to bias the learning of cerebrovasculature and brainstem
features while ignoring the learning of trigeminal features
during the training process. To address this limitation, we
employ a multi-loss mixture function to measure the predicted
segmentation of the network. In detail, we use the weighted
cross-entropy loss (Lwce) and the Dice coefficient loss (Ldice) as
the final loss function L for network training, i.e., defined as:

L = αLwce + (1− α)Ldice, (3)

where α is a weight balance parameter between Lwce and Ldice,
which is empirically set as α = 0.5.

Weighted cross-entropy reduces the weights of other tissues
and backgrounds and increases the weight of the trigeminal nerve
in the central region to balance the effect of the trigeminal nerve
with other tissues and backgrounds on the loss. In addition, the
Dice loss function evolved from the Dice coefficient can reduce
the sensitivity of the model to the imbalanced class and thus
guide the network to obtain more semantic information about
the trigeminal nerve. For our segmentation task, the weighted
cross entropy loss function is defined as:

Lwce = −

C
∑

i=1

ωigi log pi, (4)

where C indicates the number of classes, and where gi, pi,
and ωi are the truth label, normalized predicted probability,
and class weight of ith class, respectively. In this paper we set
the class weights of background, brainstem, cerebrovasculature
and trigeminal nerve as 1.0, 5.0, 20.0, and 300.0, respectively.

Moreover, the Ldice is defined as:

Ldice = 1−
1

C

C
∑

i=1

2x2i y
2
i + ǫ

x2i + y2i + ǫ
, (5)

where xi and yi represent the ground truth label and the predicted
probability of ith class, respectively, and where the ǫ is a Laplace
smoothing factor used to avoid numerical instability problem,
which is set as ǫ = 1.0 in this paper.

4. MATERIAL AND EVALUATION METRIC

4.1. Dataset
An in-house TRIgeminal NErve dataset (TRINE) acquired from
local hospital, is used to train and validate the segmentation
performance of cerebrovasculature and trigeminal nerves. This
dataset aims to investigate the morphological relationship
between cerebrovasculature and trigeminal nerves of patients
with trigeminal neuralgia. All the MRA images were captured
by a Siemens VIDA 3.0T machine by scanning trigeminal nerve
area from 50 subjects, aged from 36 to 69 years. The voxel size
is 0.5 × 0.5 × 1.0 mm3 and each volume consists of 288 ×

384 × 32 voxels. To explore the morphological relationship
between the trigeminal nerve and cerebrovasculature around
the brainstem, the proposed method extracts three different
tissues in acquired images, i.e., brainstem, cerebrovasculature and
trigeminal nerve. Figure 2 shows a sample MRA volume from
TRINE, and cerebrovascular (red), trigeminal nerves (blue) and
brainstem (gray) have been annotated by expert.

4.2. Data Preprocessing and Manual
Labeling
All raw data acquired from local hospital were stored in DICOM
sequences. To facilitate input to the 3D convolutional network
for learning, we exported the raw sequences into 3D metadata
format. To circumvent the interference of tissue segmentation
due to inconsistent spacing of the raw data for each patient,
we resampled the metadata to a 1 × 1 × 1 spacing size. To
reduce the GPU memory consumption for training and testing,
we center-crop the original MRA volume at 96 × 96 × 32
size. This is because the REZ is located right in the center
or not far from the center from the axial view. Therefore,
we can directly center crop out the REZ without spending
extra effort to detect the REZ. The manual annotation of
cerebrovasculature and the trigeminal nerve of cropped volumes
were labeled at pixel level by a senior neurosurgeon using
software 3D Slicer3. Specifically, the neurosurgeon annotates
the cerebrovascular by first obtaining a rough mask using the
built-in thresholding module, then removing voxel clusters that
are not cerebrovascular with the isolation module, and finally
refining the boundaries to obtain an accurate cerebrovascular
ground truth. For brainstem and trigeminal nerve labeling, the
neurosurgeon generates the ground truth by manually outlining
the boundaries and filling them in, respectively.

3https://www.slicer.org/
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FIGURE 2 | Visualization example of the trigeminal nerve and (a) the original MRA volume; (b) the enlarged view of the central area within the dashed green box; (c)

the anatomical labeling of cerebrovascular, trigeminal nerve (blue) and brainstem; (d) the 14th slice of the MRA volume; and (e) the pixel labeling of cerebrovascular

(red), trigeminal nerve (blue) and brainstem (white) in the 24th slice.

4.3. Evaluation Metrics
To quantitatively measure the performance of the proposed
segmentation method, we use Dice similarity coefficient to
measure the coverage between the segmented volume and the
ground truth, which is defined as follows:

DSC =
2 |P ∩ G|

|P| + |G|
, (6)

where P and G represent the network predictions and
corresponding ground truths, respectively. A higher DSC value
indicates a superior segmentation performance, where higher
than 0.70 generally indicates excellent agreement (Zijdenbos et
al., 1994). Since DSC is sensitive to intra-volume overlay, and
clear segmentation boundaries of cerebrovascular and trigeminal
nerves are import for visualization of NVC. Therefore, the
Hausdorff distance (HD) and the average surface distance (ASD)
error are also employed as additional evaluation metrics, where
HD is to measure the distance between the segmentation and the
ground truth boundaries, while ASD is used to calculate the error
between the segmentation and the ground truth surfaces. TheHD
metric is defined as follows:

HD(P,G) = max
(

dPG, dGP
)

, (7)

where dPG = max
p∈P

min
g∈G

‖p, g‖ is the Hausdorff distance between

the boundary voxels in P and G. A smallier HD value indicates
a more accurate segmentation. The evaluation metric ASD for
quantifying surface distance error is defined as:

ASD =
1

2





1

nP

∑

p∈surf (P)

d(p,G)+
1

nG

∑

g∈surf (G)

d(g, P)



 , (8)

where surf (P) and surf (G) denote the surface of P and G,
respectively. nP and nG are the total number of voxels in the P and
G surfaces. d(p,G) denotes the closest Euclidean distance from
voxel p on the surface of P to the surface of G. A smaller ASD
value represents better segmentation performance.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup
The implementation of the proposed method relies on the
Python-based PyTorch4 (version = 1.5.0) framework with a dual
NVIDIA GPU (Titan Xp). All training and testing procedures
were run on a 32 GB RAM, IntelrXeon(R) Silver 4114 CPU
@ 2.20GHz workstation. Adam serves as the optimizer for all
comparative experiments. We adopt a poly learning strategy with
an initial learning rate of 0.001 and a weight decay of 0.0005 to
adjust the learning rate during training. The maximum number
of iterations of the entire training procedure is set to 1,000,
while the model with the best performance in 1,000 iterations is
selected for evaluations. To evaluate the model fairly, we follow
Mo and Zhang (2017) using a 5-fold cross-validation method
for model testing, i.e., 40 volumes are used for training and the
remaining 10 volumes serve for testing. In the training phase,
we used a random flip with probability 0.5, and a random
affine transformation with probability 0.5 for augmentation.
Finally, the augmented volume is normalized to (0,1) after the
generalization. In the test phase, we only apply normalization to
the volumes.

4https://pytorch.org/
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TABLE 1 | Segmentation performance of comparison methods on MRA volumes.

Methods
DSC HD ASD

BS CV TN BS CV TN BS CV TN p

3D U-Net 0.9096 0.7803 0.7213 0.2046 0.6451 0.3557 0.3119 0.9316 0.7904 0.001

VNet 0.8976 0.7888 0.5796 0.2790 0.5817 0.5136 0.3825 0.9127 1.1612 .001

Uception 0.8779 0.7821 0.6591 0.3051 0.6741 0.4648 0.4526 1.0258 0.9558 0.001

AnatomyNet 0.9305 0.8445 0.7304 0.1221 0.4879 0.2858 0.2225 0.7459 0.6831 0.001

CS2-Net 0.9321 0.8603 0.7117 0.1096 0.4096 0.3174 0.2158 0.6562 0.7171 0.029

Proposed 0.9344 0.8568 0.8024 0.1152 0.3697 0.2329 0.2105 0.5927 0.4856

BS, Brainstem; CV, Cerebrovascular; TN, Trigeminal nerve. Bolded values indicate the best performance.

5.2. Multi-Tissue Segmentation Results
To demonstrate the segmentation performance of the proposed
method, we introduce several state-of-the-art 3D volume
segmentation methods for comparison: 3D U-Net (Çiçek et al.,
2016), V-Net (Milletari et al., 2016), Uception (Sanchesa et al.,
2019), AnatomyNet (Zhu et al., 2019), and CS2-Net (Mou et al.,
2020). 3D UNet and V-Net are the benchmark models in medical
image segmentation, Uception and CS2-Net are state-of-the-art
methods for cerebrovascular segmentation, and AnatomyNet is
specialized with the segmentation of multiple organs. Therefore,
the segmentation performance of the proposed method can be
effectively demonstrated by comparing these typical methods.
Table 1 demonstrates the comparison results of segmenting the
brainstem (BS), cerebrovascular (CV), and trigeminal nerve
(TN). In terms of DSC, the proposed method is inferior to CS2-
Net in segmenting cerebrovascular. However, its segmentation of
both brainstem and trigeminal nerve surpasses the state-of-the-
art methods. In particular, for the segmentation of the trigeminal
nerve, the DSC value of the proposed method exceeds that of
AnatomyNet by 7.2%, which indicates that the proposed method
is more advantageous in segmenting small tissue (trigeminal
nerve). In addition, the proposed method remarkably improves
the performance of trigeminal nerve segmentation in terms of
Hausdorff distance as well as the average surface distance error,
as evidenced by a 5.29 and 19.75% decrease in HD and ASD,
respectively. Since the voxels of the trigeminal nerve account for
a small portion of the cropped volume, yet the trigeminal nerve
is a key component for visualizing NVC, it is important and
challenging to accurately segment the trigeminal nerve. Thus, the
proposed method focuses on extracting multi-scale features by
introducing Res2Block. Finally, the proposed method achieved
Dice similarity coefficients of 0.9344, 0.8508 and 0.8024 for
brainstem, cerebrovascular and trigeminal nerve segmentation,
respectively (all DSC values are higher than 0.7), which indicates
that the segmented volumes of the proposed method are in
excellent agreement with expert annotations. Furthermore, the
smaller HD and ASD values demonstrate that the proposed
method is able to segment the boundaries more clearly.

To better demonstrate the superior performance of the
proposed method to visualize NVC, we perform 3D rendering of
the segmentation volumes of all comparison methods. Figure 3
illustrates the rendering results of two test samples, where the
first and third rows are 3D renderings of the segmented volumes,

and the second and fourth rows are the segmentation masks
of the corresponding intermediate slices. By observing the 3D
rendering in Figure 3, it can be seen that there are more isolated
components in the segmented volumes of the comparison
methods, especially in the cerebrovascular, while the proposed
method produces smoother and more continuous tissues.
Moreover, the superiority of the proposed method is further
demonstrated by comparing the masks of the intermediate slices,
as evidenced by the trigeminal nerve indicated by the yellow
arrow in Figure 3. Specifically, 3D UNet, V-Net and Uception
severely over-segmented the cerebrovascular and trigeminal
nerve in the root entry zone, which is extremely detrimental
to the subsequent diagnosis of NVC. Whether the trigeminal
nerve and cerebrovascular vessels are under-segmented or over-
segmented, their morphological structure is greatly impaired,
which is not conducive to visualize NVC. If the trigeminal nerve
in the root entry zone is not adequately segmented, the presence
or absence of NVC cannot be fully observed. Therefore, the
diagnosis of neurovascular compression may be confounded by
over-segmented cerebrovascular and trigeminal nerve, meaning
that it is possible that there is no real NVC, but only an artifact of
over-segmentation.

5.3. Visualization of Neurovascular
Compression
The segmentation of the trigeminal nerve and cerebrovasculature
in the MRA volume ultimately serves the visualization of
neurovascular compression. Therefore, in this section, we analyze
the morphological structural spatial relationship between the
local cerebrovasculature and trigeminal nerve in the root entry
zone. Figure 4 shows two cases from the test set. The first
and the second rows show patients with bilateral trigeminal
neuralgia, and left-sided trigeminal neuralgia, respectively. The
first column shows the location of the cropped volume in the
original MRA volume of the brain and its anatomical structure
of the cerebrovascular and trigeminal nerve labeled automatically
by the proposedmethod. The second and third columns illustrate
the 3D rendering of the anatomy in the axial view in the opposite
perspective, while the last four columns indicate the 3D rendering
of the anatomy on the left and right side of the sagittal view
and its zoomed-in rendering in root entry zone, respectively.
For the case in the first row, the enlarged rendering of the
sagittal view shows that the left brain vessels and trigeminal
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FIGURE 3 | Visualization of the segmentation results. The first and third rows represents the 3D rendering of two segmentation volumes, and the second and fourth

rows correspond to the 20 and 14th slices of the two segmentation volumes, respectively. From left to right in each column: the cropped MRA volumes and the

corresponding intermediate slices, the ground truths, the segmentation results of 3D UNet, V-Net, Uception, AnatomyNet, CS2-Net and the proposed method.

FIGURE 4 | Virtual visualization of the root entry zone for TN patients. The two rows show patients with bilateral trigeminal neuralgia, and left-sided trigeminal

neuralgia, respectively. The first column shows the location of the cropped volume in the original MRA, as well as the predicted anatomy of the cerebrovascular and

trigeminal nerve. The second and third columns illustrate the rendering of the predicted anatomical structures in the axial view, while the last four columns indicate the

rendering of the left and right perspectives in the sagittal plane and their enlarged renderings, respectively.

nerve are extremely deformed due to compression, resulting in
severe left-sided NVC, while the right-sided vessels and nerve
are compressed but less severely deformed than the left, resulting
in mild NVC, which is consistent with the clinical diagnosis. As

for the second case, the rendering from its sagittal view visually
shows that neurovascular compression exists on the left side
while no compression is identified on the right side, which also
coincides with the diagnosis of left-side trigeminal neuralgia.
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FIGURE 5 | Segmentation performance of ResBlock-based CS2-Net, Res2Block-based CS2-Net and the proposed method.

FIGURE 6 | Local enlarge rendering of the trigeminal nerve in the right root entry zone.

6. DISCUSSION

The proposed multi-tissue segmentation method consists of
a coarse segmentation stage and a fine segmentation stage,
which utilizes an end-to-end training strategy to gradually refine
the segmentation of trigeminal nerves and cerebrovasculature.
The coarse stage employs a modified CS2-Net (Mou et al.,
2020) as the backbone, i.e., we replace the original ResBlock
with a Res2Block to improve the performance of the model
for multi-scale feature extraction. And we introduce 3D
U-Net (Çiçek et al., 2016) as the backbone network for
refinement of cerebrovascular and trigeminal nerve boundaries
in the fine stage. To verify the enhanced performance of
the two-in-one segmentation framework for segmentation of
the trigeminal nerve and cerebrovasculature, we conducted an
ablation experiment to verify the performance of Res2Block
and refinement backbone. Therefore, we train and test the
ResBlock-based and Res2Block-based CS2-Net separately to
obtain two sets of predictions. Then we train/test the Res2Block-
based CS2Net embedded with a 3D UNet refiner. Figure 5

illustrates the comparison of the three ablation methods
as mentioned above in terms of Dice similarity coefficient,
Hausdorff distance, and average surface distance error. By
observing the performance of the compared methods in terms
of DSC, it is clear that the performance of ResBlock-based,
Res2Block-based, and the proposed methods for segmenting
the trigeminal nerve progressively improves, but unfortunately,

the performance of segmenting the cerebrovascular slightly
decreases. A plausible explanation is that the proposed method
segmented the small cerebrovasculature that were under-labeled.
Similar conclusions can be drawn from the performance of the
HD and ASD aspects.

To explore the importance of accurate segmentation
of the trigeminal nerve for NVC visualization, we show
3D renderings of the volumes segmented by the ablation
methods in Figure 6, respectively. As shown in Figure 6, the
rendering circled by the dotted line indicates a local enlarged
detail view of the trigeminal nerve. The local enlarged view
demonstrates that the segmentation of the trigeminal nerve
is increasingly accurate with the embedding of the Res2Block
and 3D UNet refiner, which corresponds to the performance
comparison shown in Figure 5. In other words, although the
ResBlock-based and Res2Block-based methods can segment
a portion of the trigeminal nerve, neither segmentation is
complete enough. On the contrary, the proposed method can
segment more trigeminal nerve voxels. Importantly, inadequate
segmentation of the trigeminal nerve greatly increases the
probabilities of under-diagnosis and misdiagnosis. For example,
the patient represented in Figure 6 was diagnosed as right-sided
trigeminal neuralgia by a clinical expert, yet both the ResBlock-
based and Res2Block-based methods failed to diagnose the
presence of NVC due to the inability to obtain the complete
neurovascular relationship.

Frontiers in Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 744967

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lin et al. Trigeminal Nerve and Cerebrovasculature Segmentation

7. CONCLUSION AND FUTURE WORKS

Trigeminal neuralgia is a rare chronic pain disease with
severe paroxysmal pain of the trigeminal nerve. Neurovascular
compression (NVC) is generally considered to be the primary or
most common cause of primary trigeminal neuralgia. Therefore,
characterization of the NVC is one of the key steps in addressing
trigeminal neuralgia. In order to better characterize the NVC
of patients, we need a more accurate technique for segmenting
the trigeminal nerve and its surrounding cerebrovasculature.
In this paper, we propose a neural network-based method for
trigeminal and cerebrovascular reconstruction, containing two
stages: coarse segmentation and fine segmentation. The coarse
segmentation stage is used to segment the original MRA volume,
while the fine segmentation stage further refines the segmented
map. The 3D reconstruction of the morphological structure of
the trigeminal nerve and cerebral vessels greatly reduces the
obstacle of obtaining their spatial relationship. The experimental
results show that the proposed method can effectively observe
and explore NVC. Our results indicate its potential of being
applied as a powerful image analysis tool for computer-aided
diagnosis and preoperative surgery simulation.

Although this paper highlights the potential of our proposed
method for multi-class and especially small tissue segmentation,
there are still several areas for improvement. The computational
cost of 3D image segmentation is expensive, which leads to long
model training and prediction times. Depending on the magnetic
field strength, MRA imaging presents different modes, e.g., 1.5T
MRA, 3.0T MRA. Since the segmentation models trained on
fixed magnetic field strength MRA are difficult to generalize to
other modal MRAs, cross-modal trigeminal nerve reconstruction
is thus of significant research value. Currently, the proposed
method detects only the neurovascular compression in the root
entry zone. It is valuable to quantify more morphological features
such as the degree of compression of the trigeminal nerve in the
root entry zone.
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