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Machine learning-based models are widely used for neuroimage-based dementia
recognition and achieve great success. However, most models omit the interpretability
that is a very important factor regarding the confidence of a model. Takagi–Sugeno–
Kang (TSK) fuzzy classifiers as the high interpretability and promising classification
performance have widely used in many scenarios. TSK fuzzy classifier can generate
interpretable fuzzy rules showing the reasoning process. However, when facing
high-dimensional data, the antecedent become complex which may reduce the
interpretability. In this study, to keep the antecedent of fuzzy rule concise, we introduce
the subspace clustering technique and use it for antecedent learning. Experimental
results show that the used model can generate promising recognition performance as
well as concise fuzzy rules.
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INTRODUCTION

Dementia is a clinical syndrome with progressive cognitive decline. The number of patients
suffering from dementia worldwide is as high as 47.5 million. With the aging of the population,
it is estimated that the number of people will be 75 million in another 20 years, and this number
will triple in the next 50 years (Chen and Herskovits, 2010; Bansal et al., 2018). Alzheimer’s Disease
(AD) is the most common cause of dementia, which has a long incubation period and prodromal
stage, and the average clinical treatment time is 8–10 years (Moradi et al., 2015; Zhang et al., 2015;
Liu et al., 2020). There is currently no treatment that can stop, delay or reverse the progression
of the course of AD. Neuropathological studies have found that the main causes of AD are the
accumulation of amyloid plaques outside the cell, the tangling of neuronal fibers within the cell, the
deterioration of synapses, and the death of neurons. The aggregation of amyloid plaques interferes
with synaptic activity and brings about a series of inter-neural and intra-neuronal effects, and
ultimately leads to the death of brain cells.
The current three-dimensional medical imaging technology is becoming more and more mature.
Obtaining multiple modal medical images for each patient has become a diagnostic trend of AD.
Such as complex but non-invasive magnetic resonance imaging (MRI) and positron emission
tomography (PET) can realize the diagnosis of the disease and monitor its progress and the effect
of subsequent treatment (Mirzaei et al., 2016; Zhang et al., 2021b). MRI is one of the neuroimaging
modalities with high resolution imaging and high brain tissue contrast. It can well quantify the
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FIGURE 1 | Data preprocessing pipeline of positron emission tomography (PET) images.
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FIGURE 2 | Learning framework of Takagi–Sugeno–Kang (TSK) fuzzy classifiers.

brain tissue atrophy in patients with AD and mild cognitive
impairment (MCI). PET is another neuroimaging modality for
detecting AD. AD and MCI patients usually reduce glucose
metabolism in certain areas before the brain is significantly
atrophy. PET can monitor changes in glucose metabolism in the
human body. In reality, the diagnosis of AD and MCI is still based
on doctor’s clinical diagnosis and psychometric evaluation. This
method greatly wastes manpower and material resources, and at
the same time produces highly subjective judgment results, which
can easily lead to misdiagnosis and missed diagnosis. Patients
with MCI will experience slight memory loss, but this will not
have a substantial impact on the life of the patient. Therefore, the
cognitive level of early MCI may not be judged according to the
evaluation of the medical diagnosis cognitive scale. If you ignore
it, then the risk of conversion to AD is extremely high, resulting
in irreversible consequences, which is extremely detrimental to

the early prevention of AD and MCI. Therefore, when looking
for effective treatments to prevent or slow down the progress of
AD, it is necessary to better develop medical auxiliary diagnostic
tools, and the development of these tools also helps to measure
the efficacy of new therapies.

Using machine learning methods to classify is to automatically
learn the existing data, then obtain the corresponding patterns.
Using such patterns, a set of unknown input samples can be
judged to achieve classification and prediction. Machine learning
methods have been widely used in character recognition, face
recognition, speech recognition, and medical classification. Based
on MRI, Cuingnet et al. (2011) compared 10 different AD
automatic classification methods and compared the difference
between extracting features of the whole brain and features of
some related regions. The experiment proved that the effect of
selecting a group of related regions is better than selecting the
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whole brain. Area or separate hippocampus area. Querbes et al.
(2009) used MRI images to measure the thickness of the cerebral
cortex as a classification feature. The thickness of the cortex
can characterize brain atrophy and achieved 85% classification
accuracy in the classification of AD and HC. Wen et al. (2008)
used principal component analysis to make feature selection for
PET features, and then used logistic regression to classify AD and
healthy controls (HC) and achieved a classification accuracy of
82%. Zhang et al. (2011) used support vector machine (SVM) to
classify AD and HC based on multi-modal features and achieved
a classification accuracy of 93.2%. Tong et al. (2017) used four
modal features, namely MRI, PET, cerebrospinal fluid (CSF) and
genetic information, and used an unsupervised metric fusion
method based on cross-diffusion to perform feature fusion, and
then classification of AD, MCI, and HC by Random Forest.
The classification accuracy of AD and HC is 91.8%, and the
classification of MCI and HC is 79.5%.

Although machine learning-based methods have been
achieved great successful in recognition for dementia caused by
AD, an important issue current models do not consider is the
interpretability of a model. The interpretability of a model means
that the model is not a black box, it has a mechanism to tell users
how it works. Takagi–Sugeno–Kang (TSK) fuzzy classifiers as the
high interpretability and promising classification performance
have widely used in many scenarios (Visalakshi and Radha,
2014; Zhang et al., 2017; Jiang et al., 2020a; Xia et al., 2020).
Compared with SVM (Zhang et al., 2021a), neural networks
(NN), Random Forest, etc., TSK fuzzy classifiers are rule-based,
and they can generate interpretable fuzzy rules which provide the
evidence for the final classification results. However, TSK fuzzy
classifiers are easy to suffer from “rule explosion” in the high-
dimensional feature space. What’s more, the high-dimensional
feature space also leads to very complicated antecedents of
fuzzy rules. Therefore, during the training phase, how to reduce
irrelevant features is very important. To this end, in this study,
we introduce a subspace clustering technique to the antecedent
learning phase to ensure a concise antecedent of each fuzzy rule.
The contributions of this study are summarized as follows.

(i) In order to keep the antecedents of fuzzy rules concise, a
subspace clustering technique is introduced to reduce irrelevant
features during antecedent learning.

(ii) We conduct extensive experiments to demonstrate the
promising performance and good interpretability of our method.

DATA AND METHODS

Data
In this study, our brain PET images are provided by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) which is
a 5-year public partnership sponsored by several institutes,
companies, and non-profit organizations (Zhang et al., 2021b).
Figure 1 illustrates the data preprocessing pipeline of PET
images, which can be divided into three main steps. In the first
step, each subject in ADNI contains 96 PET images. Statistical
parametric mapping (SPM) (Muzik et al., 2000) is used to fuse
these PET images to construct a 3-D one which has brain

spatial information and the feature information between tissue
structures are also retained. In addition, motion correction is
performed due to head motion. In the second step, the MRI image
and PET image of each subject are registered, and affinely aligned.
In the third step, the average template data generated in Figure 1
is used to spatially normalize all PET images to the standard MNI
space. PET images are also smoothed (8 mm Gaussian) to avoid
the influences caused by noises.

The automated anatomical atlas (AAL; Rolls et al., 2020) which
is available as a toolbox1 for SPM is used as a template to extract
original features from PET images. Based on AAL, the brain is
segmented into 116 regions, and we select 90 regions from the
cerebrum for feature extraction. To be specific, firstly, the PET
images are resampled to the same size as the AAL template so
that each region is in correspondence spatially. The size of AAL
template is 61 × 73 × 61. Then we extract average intensity
values from all regions of PET images as original features for our
proposed classification model.

Methods
Figure 2 illustrates the learning framework of our TSK
fuzzy classifier. The training contains two separate sections,
clustering-based antecedent learning and consequent learning.
In the following, we will focus on subspace clustering-based
antecedent learning.

Notations
In this study, X = [x1, x2, . . . , xn] ∈ RN×d is used to represent
the training sample set and y = [y1, y2, . . . , yn]T ∈ Rn ×1 is
the corresponding label vector. An arbitrary sample xi can be
denoted as [xi1, xi2, . . . , xid]T. For an arbitrary matrix B, we use
bij to represent its element in the i-th row and j-th column and bi
to represent its i-th row.

Subspace Clustering-Based Takagi–Sugeno–Kang
Fuzzy System
In this section, we develop a TSK fuzzy classifier to recognize
AD patients. TSK fuzzy classifiers are rule-based models, the k-th
fuzzy rule can be expressed as follows,

If xi1 is Ak
1 ∧ xi2 is Ak

2 ∧ . . . ∧ xid is Ak
d, then f k (xi) = pk0

+pk1xi1 + · · · + pkdxid (1)

where Ak
i denotes the fuzzy subset regarding the i-th feature,

[pk0, p
k
1, . . . , p

k
d] denotes the consequent parameter, f k (xi)

denotes the output of the k-th fuzzy rule regarding xi. When
we adopt multiplication as conjunction and implication, addition
as combination, and the center of gravity as defuzzification, the
output of the TSK fuzzy classifier can be expressed as follows,

y (xi) =

K∑
k=1

µk(xi)∑K
k′=1 µk′(xi)

f k (xi) =

K∑
k=1

µ̃k(xi)fk (xi) (2)

1http://www.gin.cnrs.fr/AAL
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FIGURE 3 | Activation of features by the subspace clustering under different thresholds: (A) 0.03, (B) 0.06, (C) 0.09, and (D) 0.2.

where K denotes the number of fuzzy rules, µk(xi) and µ̃k(xi)
are usually called as the firing strength and the normalized firing
strength, respectively, which are defined as follows,

µk (xi) =

d∏
j=1

µAk
i
(xi) (3)

µ̃k (xi) =
µk (xi)∑K

k′=1 µ
k′ (xi)

(4)

where µAk
i
(xi) denotes the membership function the fuzzy subset

Ak
i . In this study, we adopt the Gaussian function as the

membership function, which is defined as follows,

µAk
i
(xi) = exp

(
−(xi − vk

i )

2σki

)
(5)

where vki and σki are the antecedent parameters.
Once the antecedent parameters are determined clustering

techniques or other schemas, let

xe =
(

1, xTi
)T

(6)

x̃k = µ̃k (xi) xe (7)

xg =
((

x̃1)T , (x̃2)T , . . . , (x̃K)T)T (8)

pk
=

(
pk

0, pk
1, . . . , pk

d

)T
(9)

pg =
((

p1)T , (p2)T , . . . , (pK)T)T (10)
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FIGURE 4 | Model complexity and accuracy under different thresholds.
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FIGURE 5 | Linguistic meaning of activated features of each rule.

Based on (6)–(10), we can update the output of the TSK fuzzy
classifier as follows,

y (xi) = pT
g xg (11)

In general, the optimization of the TSK fuzzy classifier can be
conduct separately. As for the antecedent, clustering is usually
used, and for the consequent, we see from (11) that it can be

solved by many techniques because it can be considered as a
linear regression model. As we stated before that the number of
features involved in antecedents of fuzzy rules is a key factor to
the interpretability of TSK fuzzy systems. Therefore, to reduce
irrelevant features and make the antecedents of fuzzy rules
more concise, in our study, we introduce a subspace clustering
technique to optimize the antecedent. The core idea is that it uses
a weight matrix to measure the weights of features in each cluster.
The objective function of the introduced clustering technique is
formulated as follows,

J (U,V,W) =

C∑
c=1

N∑
i=1

µm
ci

d∑
j=1

wcj
(
xij − vcj

)2
+

c∑
c=1

δc

d∑
j=1

w2
cj,

(12)

s.t.
C∑
c=1

µci = 1,
d∑

j=1

wcj = 1 (13)

whereµci is an element of U which denotes the fuzzy membership
degree of sample xi belonging to cluster c, vcj is an element of
V which denotes the j-th feature of the c-th cluster’s center, and
wcj is an element of W which denotes the weight of the j-th
feature in the c-th cluster. δc is constant of the c-th cluster, C
denotes the number of clusters, N denotes the number of training
samples, d denotes the number of features and m denotes the
fuzzy exponential.
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TABLE 1 | Rule base.

Fuzzy rule: If xi1 is Ak
1 ∧ xi2 is Ak

2 ∧ . . . ∧ xid is Ak
d, then fk (xi) = pk

0 + pk
1xi1 + · · · + pk

dxid

Rule No. Antecedent Consequent[
pk

0, pk
1, . . . , pk

d

]
1 If xi6 is Low [0.0558, −0.1106, −0.1158, 0.0490, −0.0513, 0.0706, 0.0274, −0.0270, 0.1006,

0.0865, 0.0762, 0.0642, 0.0642, −0.0763, 0.2249, −0.1551]

2 If xi1 is High ∧ xi10 is Higher ∧
xi11 is Medium

[−0.1494, 0.0843, −0.1473, −0.2774, 0.1236, −0.1115, 0.0795, 0.0231,
−0.0210, 0.0027, 0.0950, 0.0711, 0.0687, 0.0585, −0.0767, 0.2036]

3 If xi1 is High ∧ xi10 is Higher ∧
∧xi11 is Medium

[0.1820, −0.1378, −0.2689, −0.2122, 0.1615, −0.0821, −0.1418, 0.0769,
0.0151, 0.2019, 0.1007, 0.0927, 0.0750, 0.0784, 0.0609, −0.0758]

4 If xi5 is Higher [−0.0708, 0.1903, −0.0854, −0.1610, 0.0968, −0.0573, −0.1169, −0.1359,
0.0722, −0.0805, −0.0210, 0.0912, 0.0944, 0.0584, 0.0850, 0.0562]

5 If xi10 is Lower [0.0533, −0.0488, −0.0385, −0.1871, 0.0617, −0.1196, −0.1453, −0.1122,
−0.1232, 0.0722, 0.0151, −0.0153, 0.0985, 0.1007, 0.0562, 0.0723]

6 If xi6 is High [0.0607, 0.0716, 0.2803, 0.4842, −0.1474, 0.1020, −0.1651, −0.1353, −0.1002,
−0.0581, 0.0722, 0.0122, −0.0199, 0.0505, 0.1021, 0.0601]

7 If xi6 is Low [0.0655, 0.0750, 0.0382, −0.0501, 0.1809, −0.1283, 0.0952, −0.1584, −0.1041,
0.1218, −0.1232, 0.0708, 0.0144, 0.0629, 0.0448, 0.0987]

8 If xi11 is Lower [0.0922, 0.0798, 0.0277, 0.0025, −0.0677, 0.2082, −0.1321, 0.0787, −0.1413,
0.2391, −0.1002, −0.1169, 0.0718, 0.0002, 0.0808, 0.0564]

9 If xi5 is Higher ∧ xi6 is Low ∧
xi7 is Lower ∧ xi15 is Medium

[0.0776, 0.0968, 0.1594, 0.0372, 0.0549, −0.0278, 0.2004, −0.1404, −0.0509,
0.0285, −0.1043, −0.0917, −0.1218, 0.0821, −0.0053, 0.0459]

10 If xi11 is Higher ∧ xi12 is Lower [−0.0004, 0.1066, 0.5270, −0.2723, 0.0613, 0.0965, −0.0364, 0.1864, −0.1640,
0.0788, −0.1414, −0.0815, −0.0985, −0.0874, 0.0844, 0.0041]

11 If xi4 is Lower [0.0096, −0.0235, 0.1841, −0.0057, 0.0676, 0.0958, 0.0857, −0.0543, 0.3149,
−0.1403, 0.0697, −0.1306, −0.0995, −0.0062, −0.0831, 0.0793]

12 If xi1 is High [0.0713, 0.0174, 0.0144, −0.2364, 0.0919, 0.0945, 0.0868, 0.0660, −0.0819,
0.1864, −0.1443, 0.0767, −0.1391, 0.0844, 0.0113, −0.0919]

13 If xi1 is Lower ∧ xi3 is Higher ∧
xi1 is Medium

[−0.1075, 0.0735, −0.2035, 0.2646, 0.0833, 0.1043, 0.0883, 0.0702, 0.0704,
−0.0543, 0.1821, −0.1413, 0.0245, −0.0569, 0.1103, −0.0234]

14 If xi5 is Medium ∧ xi6 is Low ∧
xi8 is Lower ∧ xi9 is Higher ∧
xi15 is Higher

[−0.0733, −0.1272, −0.2476, −0.3230, −0.0079, 0.1286, 0.1012, 0.0762,
0.1231, 0.0661, −0.0622, 0.1852, −0.1563, 0.0165, −0.0448, 0.0573]

15 If xi5 is Lower [−0.0368, −0.1045, 0.0095, −0.2519, 0.0104, −0.0287, 0.1196, 0.0949, 0.0234,
0.0702, 0.0589, −0.0562, 0.2137, −0.1574, 0.0320, −0.0693]

According to Frigui and Nasraoui (2004), by introducing
Lagrangian multipliers, we have several updating rules as follows,

wcj =
1
d
+

1
2δc

∑N

i=1
µm
ci

(
||xi − vc| |2

d
−
(
xij − vcj

)2
)
, (14)

δc =

∑N
i=1 µ

m
ci
∑d

j=1 wcj(xij − vcj)2∑d
j=1 w

2
cj

(15)

µci =
1∑C

c′=1

[ ∑d
j=1 wcj(xij−vcj)2∑d
j=1 wc′ j(xij−vc′ j)2

]1/(m−1) (16)

vcj =
wcj
∑N

i=1 µ
m
ci xij

wcj
∑N

i=1 µ
m
ci

(17)

When the subspace clustering converges, we can use the following
equations to calculate the antecedent parameters Vk

i and σki ,

vki =
∑N

i=1 µkixij∑N
i=1 µki

, (18)

σki =
h
∑N

i=1 µki(xij − vki )
2∑N

i=1 µki
, (19)

where h is a user-defined parameter. Based on the subspace
clustering technique, the training algorithm of the TSK fuzzy
classifier is listed as follows. Notably, the stopping threshold
ε is set to 1e-5. Detailed algorithm steps are shown in
Algorithm 1.
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Algorithm 1 | Subspace clustering-based TSK fuzzy system.

Input:
X = [x1, x2, . . . , xn], y = [y1, y2, . . . , yn]

T , number of fuzzy rules K, fuzzy exponential m
Output:
Antecedent parameters vk

i and σk
i

Consequent parameters pT
g

Procedure:
Stage-1: Antecedent learning

1 Initialize U(0)
2 Initialize V(0)
3 Initialize W(0)
4Set t← 1
Repeat

5Update U(t) by using (16)
6Update V(t) by using (17)
7Update W(t) by using (14)
8Update δc(t) by using (15)
9 t← t+ 1

Until ||U (t+ 1)−U(t)||2 < ε
10Use (18) and (19) to compute vk

i and σk
i

Stage-2: Consequent learning
1Use (6)–(10) to get pT

g and xg
2Construct a quadratic programming problem and solve it to get pT

g

RESULTS

Setups
In our experiments, the fuzzy exponential m is set to 2, the
number of fuzzy rules is set to 15, h in (19) is set to 0.5. The
original number of features we obtained via the pipeline in
Figure 1 is 93. We use the feature selection method proposed in
Jiang et al. (2020b) to reduce the dimension to 15.

To highlight the interpretability and performance of the
subspace-based TSK fuzzy classifier, we introduce the classical
one order TSK fuzzy classifier (1-TSK-FC) (Jiang et al.,
2016) for comparison.

We introduce accuracy (ACC) and model complexity (MC)
to evaluate the performance and interpretability, where ACC
is defined as the ratio of correctly classified samples to the
total number of samples, and MC is defined as the number of
parameters participating the training phase.

Experimental Results
We report the experimental results from 3 aspects. The first
one is the feature activation results, as shown in Figure 3,
regarding the subspace clustering for antecedent learning. In
Figure 3, each subpanel represents the activated features for
each fuzzy rule under different thresholds, the brighter the
color, the greater the corresponding weight of each feature in
each fuzzy rule. It observes that as the threshold increases,
the number of activated features contained in each rule
begins to decrease.

The second one is the relationship between model complexity
and accuracy, which is illustrated in Figure 4. As we stated
before, model complexity can be quantificationally measured by
the involved number of parameters during antecedent learning
and consequent learning. For example, when the threshold is
set to 0.06, based on the feature reduction result shown in

Figure 3B, the number of features involved in each feature
is 1, 3, 1, 1, 5, 1, 1, 1, 4, 2, 1, 1, 3, 5, and 1, respectively.
According to (5), we know that each feature needs two
parameters, so, during the antecedent learning phase, the number
of parameters each feature needs is 2, 6, 2, 2, 10, 2, 2, 2,
8, 4, 2, 2, 6, 10, and 2, respectively. During the phase of
consequent learning, according to (1), we know that each feature
needs d + 1 parameters, where d is the current dimension
after feature reduction. That is, each feature needs 2, 4, 2,
2, 6, 2, 2, 2, 5, 3, 2, 2, 4, 6, and 2 parameters, respectively.
Therefore, model complexity under threshold being 0.06 is 108.
When the threshold is set to 0, it means that the classifier
degenerates into 1-TSK-FS. From Figure 4, it observes that model
complexity of 1-TSK-FS is 690, which is seriously higher than
that of subspace clustering-based learning. What is more, the
classification performance does not reduce significantly with the
decreasing of model complexity. For example, when the model
complexity is 75, the corresponding performance still keeps in a
reasonable level.

The third one is the results of model interpretability.
In Figure 5, we assign linguistic terms “Low, Lower,
Medium, Higher, and High” to each feature according to
the antecedent parameters. Based on this assignment and
the consequent parameters, Table 1 shows the rule base
consisting of 15 fuzzy rules. It is easy to find that the
antecedent of each fuzzy rule is very concise. Please note
that the assignment of linguistic terms is based on the knowledge
of expert. Different experts from different domain may have
different assignment.

DISCUSSION

Although there have many excellent models that can be used
for AD detection based on neuroimages, most of them omit
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the interpretability that is a very important factor regarding
the confidence of a model. TSK fuzzy systems are rule-based
inference models which can illustrate the reasoning process of the
generated results. Therefore, owning to the high interpretability,
they are widely used in many application scenarios. In this
study, we introduce a subspace clustering technique and embed
it into the antecedent learning phase to address the issue of rule
complexity caused by the high-dimensional input feature space.

The subspace clustering technique uses a weighting strategy to
measure the weight of each feature in each cluster. We know that
when the clustering technique is used for antecedent learning of
TSK fuzzy systems, the number of clusters is set to the number
of fuzzy rules. Hence, the weight of each feature in each cluster
corresponds to the compatible degree of each feature in each
fuzzy rule. In this study, we define a threshold to reduce the
irrelevant feature to keep the antecedent concise.

Definitely, we can use different thresholds to control the
feature distribution. From Figure 3, we can find that the
greater the threshold, the sparser distribution of the features
in each fuzzy rule. In theory, the fewer features, the more
succinct the antecedent of the rule, and therefore the stronger
the interpretability of the fuzzy rule. However, too few
features will affect the reasoning process and thus affect the
classification accuracy. As can be seen from Figure 3 that
when the threshold is set from 0.06 to 0.2, the classification
performance in terms of accuracy decreases from 0.8614
to 0.8321. Therefore, the threshold should be elastically set
to keep the balance between classification performance and
interpretability.

Overall, from the experimental results, we find that subspace
clustering-based TSK fuzzy classifiers cannot only ensure
promising performance but also guarantee concise antecedents
of fuzzy rules. Compared with classical clustering methods, like
fuzzy c-means (FCM), our method is more flexible.

CONCLUSION

In this study, we employ an interpretable model to achieve the
detection of AD patients based on neuroimages. Compared with
existing models, it merits lie in that it can generate fuzzy rules
for reasoning. What’s more, we introduce a subspace clustering
technique to keep the fuzzy rule concise. In our future work, we
can design more strategies to reduce the superfluous fuzzy rules
to further improve the interpretability of the model.
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