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Deep convolutional neural networks (DCNNs) and the ventral visual pathway share vast
architectural and functional similarities in visual challenges such as object recognition.
Recent insights have demonstrated that both hierarchical cascades can be compared in
terms of both exerted behavior and underlying activation. However, these approaches
ignore key differences in spatial priorities of information processing. In this proof-of-
concept study, we demonstrate a comparison of human observers (N = 45) and
three feedforward DCNNs through eye tracking and saliency maps. The results reveal
fundamentally different resolutions in both visualization methods that need to be
considered for an insightful comparison. Moreover, we provide evidence that a DCNN
with biologically plausible receptive field sizes called vNet reveals higher agreement with
human viewing behavior as contrasted with a standard ResNet architecture. We find that
image-specific factors such as category, animacy, arousal, and valence have a direct
link to the agreement of spatial object recognition priorities in humans and DCNNs,
while other measures such as difficulty and general image properties do not. With this
approach, we try to open up new perspectives at the intersection of biological and
computer vision research.

Keywords: seeing, vision, object recognition, brain, deep neural network, eye tracking, saliency map

INTRODUCTION

In the last few years, advances in deep learning have turned rather simple convolutional neural
networks, once developed to simulate the complex nature of biological vision, into sophisticated
objects of investigation themselves. Especially the increasing synergy between neural and computer
sciences has facilitated this interdisciplinary progress with the aim to enable machines to see and
to further the understanding of visual perception in living organisms along the way. Computer
vision has given rise to deep convolutional neural networks (DCNNs) that exceed human
benchmark performance in key challenges of visual perception (Krizhevsky et al., 2012; He et al.,
2015). Among them, the fundamental ability of core object recognition, which allows humans
to identify an enormous number of objects despite their substantial variations in appearance
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(DiCarlo et al., 2012) and thus to classify visual inputs into
meaningful categories based on previously acquired knowledge
(Cadieu et al., 2014).

In the brain, this information processing task is solved
particularly by the ventral visual pathway (Ishai et al., 1999),
which passes information through a hierarchical cascade of
retinal ganglion cells (RGC), lateral geniculate nucleus (LGN),
visual cortex areas (V1, V2, and V4), and inferior temporal
cortex (ITC) (Tanaka, 1996; Riesenhuber and Poggio, 1999;
Rolls, 2000; DiCarlo et al., 2012). This organization shares vast
similarities with the purely feedforward architectures of DCNNs
in a way that visual information can pass through by means
of a single end-to-end sweep (see Figure 1). While in most
cases this processing mechanism seems to suffice for so called
early solved natural images, a substantial body of literature
proposes that especially late-solved challenge images benefit from
recurrent processing through neural interconnections and loops
(Lamme and Roelfsema, 2000; Kar et al., 2019; Kar and DiCarlo,
2020). Moreover, electrophysiological findings therefore suggest
that recurrence may set in increasingly after around 150 ms
to stimulus onset (DiCarlo and Cox, 2007; Cichy et al., 2014;
Contini et al., 2017; Tang et al., 2018; Rajaei et al., 2019; Seijdel
et al., 2020). Interestingly, DCNNs seem to face difficulties
in recognizing exactly these late-solved (Kar et al., 2019) and
manipulated challenge images (Dodge and Karam, 2017; Geirhos
et al., 2017, 2018b; van Dyck and Gruber, 2020), which may
require additional recurrent processing.

Naturally, images of objects, regardless of whether represented
on a biological retina or in a computer matrix, are highly
complex. Therefore, in the brain, object recognition is influenced
by a number of bottom-up (Rutishauser et al., 2004) and top-
down processes (Bar, 2003; Bar et al., 2006). In simplified
terms, however, it is thought to solve this challenge by
transferring given two-dimensional information into an invariant
three-dimensional representation, encoded in an even higher-
dimensional neuronal space (DiCarlo et al., 2012). As pointed
out by Marr (1982), the two-dimensional image allows first and
foremost the extraction of shape features such as edges and
regions, the precursors of the so-called primal sketch (Marr, 1982,
p. 37). Then, when textures and shades start to enrich the outline,
a 2.5D sketch (Marr, 1982, p. 37) emerges. Finally, in combination
with previously acquired knowledge, the representation of an
invariant 3D model can be inferred (Marr, 1982, p. 37). These
processing steps are reflected not only by the architecture of
the ventral visual pathway but can also be found in its artificial
replica. While in DCNNs, earlier layers are mostly sensitive to
specific configurations of edges, blobs, and colors (e.g., the edge
of an orange stripe), the following convolutions start to combine
them into texture-like feature groups (e.g., an orange-white
striped pattern), until later layers assemble whole object parts
(e.g., the fin of an anemone fish) and eventually infer the object
class label (e.g., an anemone fish). Interestingly, recent literature
suggests that DCNNs trained on the ImageNet dataset (Deng
et al., 2009; Russakovsky et al., 2015) are strongly biased toward
texture and use it more frequently rather than shape information
to classify images (Geirhos et al., 2018a). This preference seems
to contradict findings in humans that clearly identify shape as the

single most important cue for object recognition (Landau et al.,
1988). In addition, several studies have examined the effect of
context in human object recognition (Oliva and Torralba, 2007;
Greene and Oliva, 2009). Contextual cues are representational
regularities such as spatial layout (e.g., houses are usually located
on the ground), inter-object dependencies (e.g., houses are
usually attached to a street), point of view (e.g., houses are
usually looked at from a specific perspective), and other summary
statistics (i.e., entropy and power spectral density). Likewise,
these same cues are certainly not meaningless to DCNNs. In
fact, mainly work around removing or manipulating one of
these hints such as the object’s regular pose (Alcorn et al.,
2019) or background (Beery et al., 2018) have demonstrated that
indeed contextual learning, which is common practice in learning
systems, can be found here as well (Geirhos et al., 2020).

Nevertheless, a key difference between humans and DCNNs
lies within the modulating effects of appraisal. While millions
of years of evolution have tuned in vivo object recognizers such
as humans to seek and avoid different kinds of stimuli (e.g.,
find nourishment and avoid dangers quickly), this subjective
experience of for example arousal and valence is lacking
completely in in silico models. Furthermore, the neuroscientific
literature contains many examples suggesting that particularly
the automatic detection of fear-relevant and threatful objects is
solved by an even faster subcortical route, which skips parts of
the ventral visual pathway through shortcuts to the amygdala
(Öhman, 2005; Pessoa and Adolphs, 2010). This for example
might enable threat-superiority effects in terms of reaction
times and reduced position effects in a visual search paradigm
(Blanchette, 2006). While the plausibility of this so-called low
road is highly discussed (Cauchoix and Crouzet, 2013), the
differences in performance are well-documented.

As an interim summary, it can be noted that the ventral
visual pathway and DCNNs suggest conceptual overlaps but
also substantial differences in many regards. Hence, more recent
evidence from Mehrer et al. (2021) further highlights the
importance of biological plausibility for the fit between brain and
DCNN activity, as their novel architecture called vNet simulates
the progressively increasing foveal receptive field size (hereafter
abbreviated as RFS) along the ventral visual pathway (Wandell
and Winawer, 2015; Grill-Spector et al., 2017). However, as
their analyses point out, this modification does not lead to
higher congruence with for example fMRI activity of human
observers when compared to a standard architecture such as
AlexNet (Krizhevsky et al., 2012). This raises many questions
about the definite impact of this RFS modification. Therefore,
as vNet’s hierarchical organization is designed to resemble that
of the ventral visual pathway more accurately as compared to a
standard DCNN, here we hypothesize that the major advantage
of vNet may not be visible within more brain-like activations,
as also not found by Mehrer et al. (2021), but rather more
similar spatial priorities of information processing compared
through eye tracking and GradCAM. Consequently, following
an important distinction in human-machine comparisons by
Firestone (2020), we believe that this resemblance in underlying
competence should lead to higher similarity in object recognition
behavior and further observable performance. As in this specific
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FIGURE 1 | Object recognition in the human brain and DCNNs. (A) In the brain, visual information enters via the retina before it passes through the ventral visual
pathway, consisting of the visual cortex areas (V1, V2, and V4) and inferior temporal cortex (ITC). After a first feedforward sweep of information (∼150 ms), recurrent
processes reconnecting higher to lower areas of this hierarchical cascade become activated and allow more in-depth visual processing. (B) ResNet18 (He et al.,
2016) is a standard DCNN with 5 convolutional layers. (C) vNet (Mehrer et al., 2021) is a novel DCNN with 10 convolutional layers and modified effective kernel sizes,
which simulate the progressively increasing receptive field size (RFS) in the ventral visual pathway. (D) Schematic overview of convolutions with a constant and
increasing RFS. An increasing RFS raises the number of pixels represented within individual neurons of the later layers. Below individual layer names, the first number
represents the feature map size while the second and third indicate the obtained output size.

human-machine comparison rather divergent architectures are
compared, we believe that a RFS modification can result in more
similar spatial priorities of information processing and likewise
object recognition behavior, without immediately suggesting a
higher match between activity patterns of neural components and
individual DCNN layers.

As DCNNs are getting more and more complex, several
attribution-tools have been developed to understand (to
some extent) their classifications. At first glance, these new
visualization algorithms, also called saliency maps, resemble
well-established methods in cognitive neuroscience. In eye
tracking, the execution of a visual task is analyzed by mapping
gaze behavior onto specific regions of interest, which receive
special cognitive or computational priorities during information
processing. While eye tracking and saliency maps share
this concept, the methodological way this is achieved seems
fundamentally different. In eye tracking measurements, a human
observer is presented with a stimulus, which is only presented for
a limited time, while viewing behavior is being recorded. Saliency
maps such as Gradient-weighted Class Activation Mapping,
also known as GradCAM (Selvaraju et al., 2017), extract class
activations within a specific layer of the DCNN to explain
obtained predictions. Therefore, the algorithm uses the gradient
of the loss function to compute a weight for every feature map.

The weighted sum of these activations is class-discriminative
and hence allows the localization and visualization of all relevant
regions that contributed to the probability of a given class.
However, DCNNs do not operate on a meaningful time scale
(other than related to computational power) when trying to
classify images. Despite the conceptual similarity between eye
tracking and saliency maps, only a few attempts have been
made to draw this comparison of black boxes (Ebrahimpour
et al., 2019). Importantly, a major challenge in this field is to
encourage and conduct fair human-machine comparisons, as
it is only possible to infer similarities and differences if there
are no fundamental constraints within the comparison itself
(Firestone, 2020; Funke et al., 2020). In this study, we compare
human eye tracking to DCNN saliency maps in an approximately
species-fair object recognition task and examine a wide range of
possible factors influencing similarity measures.

MATERIALS AND METHODS

General Procedure
In order to test our hypotheses, we designed a fair human-
machine comparison that allowed us to investigate behavioral,
eye tracking, and physiological data from human observers
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FIGURE 2 | Object recognition paradigm. (A) During categorization trials, human observers had to focus on a fixation cross (500 ms, including a 150 ms fixation
control) before an image was presented on either the left or the right side (150 ms), followed by a visual backward mask (150 ms, 1/f noise), and a forced-choice
categorization (self-paced, max. 7,500 ms). (B) During rating trials and after the fixation cross, an image was presented again on the left or the right side (3,000 ms),
followed by an arousal rating and valence rating (both self-paced, max. 7,500 ms each). As conditions were pseudo-randomized, human observers were not able to
anticipate, whether an image needed to be categorized or rated until the initial 150 ms had elapsed. This allows the assumption that in the first 150 ms the
conditions should not vary in viewing behavior.

performing a laboratory experiment, as well as predictions and
activations of three DCNN architectures on identical visual
stimuli and under roughly similar conditions. The main task in
this experiment was to categorize briefly shown images based on a
forced-choice format of 12 basic-level categories, namely human,
dog, cat, bird, fish, snake, car, train, house, bed, flower, ball (see
section Methods). Basic-level categories (e.g., dog) were chosen
over detailed category concepts which are more often used in
the field of computer vision (e.g., border collie), as they are more
naturally utilized in human object classification (Rosch, 1999).

Human Observers—Eye Tracking
Experiment
A total of 45 valid participants (28 female, 17 male) with an age
between 18 and 31 years (M = 22.64, SD = 2.57) were tested in
the eye tracking experiment. Participants were required to have
normal or corrected-to-normal vision without problems of color
perception and other eye diseases. Two participants with contact
lenses had to be excluded from further analyses due to insufficient
eye tracking precision. The experimental procedure was admitted
by the University of Salzburg ethics committee, in line with the
declaration of Helsinki and agreed to by participants via written
consent before the experiment. Psychology students received
accredited participation hours for taking part in the experiment.

The experiment consisted of two main tasks (see Figure 2).
Participants had to concentrate on a fixation cross for 500 ms
until an image appeared at center 12.93 degrees of visual angle
away on the left or right side. If, as in one condition, the
image was presented for a short duration of 150 ms, a visual
backward mask (1/f noise) followed for the same duration, and
the participant had to classify the presented object based on a
forced-choice format of 12 basic-level categories by clicking on

the respective class symbol. If, as in the other condition, the image
was presented for a long duration of 3000 ms, participants had
to rate it afterward in its arousal (1 = Very low, 4 = Neither
low nor high, 7 = Very high) and valence (1 = Very negative,
4 = Neutral, 7 = Very positive) on a scale from 1 to 7. As both
classification and rating tasks were balanced out in occurrence
and previously pseudo-randomized, it was impossible for the
observers to differentiate between the two conditions before the
short presentation time was exceeded. Based on this central
assumption, both conditions should not vary in viewing behavior.
Participants were familiarized with the experimental procedure
during training trials which were excluded from further analyses.
The whole experiment consisted of 420 test trials (210 per
condition), took about 1 h to complete, and was divided into
three blocks with resting breaks in between. In this way, a
single participant classified one half of the entire dataset and
rated the other half. To obtain categorization and rating results
for all images, there were two versions of the experiment with
interchanged conditions for both halves.

The participants performed the experiment in a laboratory
room, where they were seated in front of a screen (1,920 ×
1,080 pixels, 50 Hz) and had to place their head into a chin rest
located at a distance of 60 cm. The right eye was tracked and
recorded with an EyeLink 1000 (SR Research Ltd., Mississauga,
ON, Canada) desktop mount, at a sampling rate of 1,000 Hz.
For presentational purposes, original images were scaled by
factor two onscreen (448 × 448) but stayed unchanged in image
resolution (224 × 224). This way, the presented images had
11.52 degrees of visual angle in size. Recorded eye tracking
data were preprocessed using DataViewer (Version 4.2, SR
Research Ltd., Mississauga, ON, Canada) and analyzed after
the participants gaze crossed an invisible boundary framing the
entire image. In this way, participants were able to process
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appearing images already peripherally for the first couple of
milliseconds to allow a meaningfully programmed first fixation
(see Figure 3). Fixations were compiled for the first 150 ms
within the image. Here, x- and y-coordinates were downscaled
again from expanded presentation size (448 × 448) to original
image size (224 × 224). Average heatmaps were computed
from individual sampling points of either the first 150 ms
( = feedforward) or the entire presentation time after 150 ms
( = recurrent) within the image using in-house built MATLAB
scripts. The obtained heatmaps for all participants were averaged
per image, Gaussian filtered with a standard deviation of 15
pixels, and normalized.

Additionally, before the eye tracking experiment started,
participants were wired with ECG and SCL electrodes.
Physiological measurements were collected using a Varioport
biosignal recorder (Becker Meditec, Karlsruhe, Germany) and
analyzed with ANSLAB (Blechert et al., 2016) (Version 2.51,
Salzburg, Austria). Here, the relative change in mean activity
from a baseline of 1000 ms before the image presentation to the
time window of 3000ms during the image presentation was used.

Deep Convolutional Neural Network
Training and GradCAM Saliency Maps
Our implementation (in PyTorch) of vNet follows the original
GroupNorm variant of vNet from Mehrer et al. (2021), the
ResNet18 architecture follows the original proposal from He et al.
(2016). For training both network types, we use the (publicly
available) Ecoset training set, constrained to the 12 categories
described in section Methods below. As the number of images
differs significantly across categories, we artificially balance the
corpus by drawing (uniformly at random) N images per category,
where N corresponds to the number of images in the smallest
category (i.e., fish). During training, all (∼15 k) images are first
resized to a spatial resolution of 256× 256, then cropped to the
center square of size 224 × 224 and eventually normalized (by
subtracting the channel-wise mean and dividing by the channel-
wise standard deviation, computed from the training corpus).
Note that no data augmentation is applied across all experiments.
We minimize the cross-entropy loss using stochastic gradient
descent (SGD) with momentum (0.9) and weight decay (1e–
4) under a cosine learning rate schedule, starting at an initial
learning rate of 0.01. We train for 80 epochs using a batch
size of 128. Results for the fine-tuned ResNet18 are obtained
by replacing the final linear classifier of an ImageNet-trained
ResNet18, freezing all earlier layers, and fine-tuning for 50 epochs
(in the same setup as described before). When referring to early,
middle, and late layers in the manuscript, we refer to GradCAM
outputs generated from activations after the 2nd, 6th, and 9th
layer for vNet, and activations after the 1st, 3rd, and 4th ResNet18
block (as all ResNet architectures total four blocks). Eventually,
if the aim is to investigate the similarity in spatial priorities of
information processing that underlie object recognition behavior
with the demonstrated approach, the output layer of a DCNN
would suffice for the comparison. In this proof-of-concept study,
however, we also include earlier layers for sanity checks and
further model comparisons.

Dataset
Images were part of 12 basic-level categories from the ecologically
motivated Ecoset dataset, which was created by Mehrer et al.
(2021) in order to better capture the organization of human-
relevant categories. The dataset consisted of 6 animate (namely
human, dog, cat, bird, fish, and snake) and 6 inanimate categories
(namely car, train, house, bed, flower, and ball) with 30 images
per category. During preprocessing, images were randomly
drawn from the test set, cropped toward the biggest possible
central square, and resized to 224 × 224 pixels. All images
were visually checked and excluded if multiple categories (e.g.,
human and dog), overlayed text, or image effects (e.g., grayscale
images) were visible or the object was fully removed during
preprocessing steps. In categories where less than 30 images from
the test set remained, Ecoset images were complemented with
ImageNet examples (n = 28, across 4 categories). Additionally,
in 3 animate (namely human, dog, and snake) and 3 inanimate
categories (namely car, house, flower), 10 images per category
of the respective objects were added from the Open Affective
Standardized Image Set (OASIS) (Kurdi et al., 2017). Here,
arousal and valence ratings from a large number of participants
(N = 822) were already available and increased the variability
while serving as a sanity check for own ratings. In total, the
dataset consisted of 420 test images.

RESULTS

Performance
The first set of analyses investigated object recognition
performance in human observers and DCNNs. Therefore,
human predictions obtained during categorization trials (see
section Methods) were compared against model predictions.
Generally, as the categorization data were not normally
distributed, non-parametric tests were applied to compare
the human observer sample against fixed-accuracy values of
individual DCNNs. On average, human observers reached a
recognition accuracy of 89.96%. One-sample Wilcoxon tests
indicated that human observers were significantly outperformed
by fine-tuned ResNet18 with 95.48% [V = 0, CI = (89.52, 91.43),
p < 0.001, r = 0.85] but significantly more correct than both
trained-from-scratch ResNet18 [V = 1,035, CI = (89.52, 91.43),
p < 0.001, r = 0.85] and vNet [V = 1,034, CI = (89.52, 91.43),
p < 0.001, r = 0.85] with accuracies of 70.48 and 76.43%,
respectively. The results endorse both sides of the literature by
demonstrating that especially DCNNs trained on large datasets
can exceed human benchmark performance (Krizhevsky et al.,
2012; Szegedy et al., 2015; He et al., 2016; Huang et al., 2017), but
also simultaneously reminds of possible limits due to the amount
of provided training data. Nevertheless, following analyses focus
predominantly on the two equally trained DCNNs, as they are
more suitable for a fair comparison of architectures.

Remarkably, vNet outperformed ResNet18 throughout all
grouping variables (animacy, arousal, valence, and category) and
generally seemed to be closer to the human benchmark level
of accuracy (see Figure 4). However, across categories, applied
Kruskal Wallis tests revealed that both ResNet18 [X2(29) = 60.18,
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FIGURE 3 | Dispersion of eye tracking fixations along x- and y-coordinates across categories. Root Mean Squared Errors (RMSEs) were computed for individual
images and indicate the magnitude of deviation among the fixations of individual participants on a single image. Generally, the fixations seemed to be rather precise
on an image-by-image level with an average dispersion of below 30 pixels across all participants. This suggests that meaningful features were targeted and that the
centroids, which were used for further analyses, can be regarded as characteristic for the human observer sample. The dispersion along (A) x-coordinates was
slightly higher as compared to (B) y-coordinates, which is thought to reflect the reported central fixation and saccadic motor biases. The dispersion of an image can
also be increased by the presence of multiple meaningful features, without any loss of precision. However, this problem should occur rarely, as most of the images
showed only one dominant object.

FIGURE 4 | Object recognition accuracy of the human observer sample, fine-tuned ResNet18 (marked as FT), and both trained-from-scratch ResNet18 and vNet.
Remarkably, vNet is more accurate then ResNet18 across all grouping variables. (A) Human observers were outperformed by fine-tuned ResNet18 but more
accurate than both ResNet18 and vNet. (B) Human observers were better at recognizing inanimate compared to animate objects. This relationship held for DCNNs
as well. (C) The effect of arousal on human observers indicated more inaccurate recognition with increasing arousal. (D) The effect of valence on human observers
indicated more accurate recognition with increasing valence. (E) Human observers showed a small effect of category, while both trained from scratch DCNNs faced
large variability between individual categories. Confidence intervals for the human observer sample were estimated with Hodges-Lehmann procedure on a
significance level of p = 0.05.
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p < 0.001, r = 0.14] and vNet [X2(33) = 58.65, p < 0.001, r = 0.11]
performed significantly dissimilar to human observers and each
other [X2(33) = 62.76, p = 0.001, r = 0.61]. Moreover, based
on previous findings, we hypothesized that human observers
should be significantly better at recognizing animate compared
to inanimate objects (New et al., 2007). However, Wilcoxon
rank sum tests indicated the existence of this effect but in
the opposite direction, as human observers were significantly
more accurate in recognizing inanimate (Median = 93.27)
compared to animate objects (Median = 88.68; W = 345.5,
p < 0.001, r = 0.55). Additionally, ResNet18 and vNet mirrored
this behavior with a substantial increase in accuracy from
animate (ResNet18: 61.90%/vNet: 68.10%) to inanimate objects
(ResNet18: 79.05%/vNet: 84.76%).

Furthermore, low, medium, and high arousal and valence
groups, obtained by tertile splits of human observer ratings
(33rd and 66th percentile, see section Methods), revealed a
significant, negative Spearman rank correlation between human
accuracy and arousal (rho = −0.22, p < 0.001). Interestingly,
this relationship did not disappear when partial correlations
controlling for animacy were computed (rho =−0.20, p = 0.001).
Subsequent Kruskal Wallis tests hinted at an effect of arousal
[X2(2) = 38.51, p < 0.001, r = 0.50] and Bonferroni-
corrected, pairwise Wilcoxon tests revealed a significant decrease
of accuracy between all three increasing levels of arousal.
A significant positive correlation (rho = 0.34, p < 0.001), partial
correlation controlling for animacy (rho = 0.37, p < 0.001),
and an effect [X2(2) = 36.90, p < 0.001, r = 0.48] with a
significant increase of accuracy between low and medium levels
in Bonferroni-corrected post-hoc tests were found for valence.
Similarly, the accuracies of ResNet18 and vNet seemed to follow
both effects. Images that were assessed as more calm and positive
by human observers during rating trials lead to better recognition
performance in human observers and DCNNs.

It is fundamental to note that only the performance of vNet
exhibited a significant, positive Spearman rank correlation with
human observer performance (see Table 1; rho = 0.14, p = 0.009),
which may indicate a better fit to human categorization
behavior. Contrary to our expectations, image properties (namely
entropy, shape, texture, and power spectral peak-to-mean
ratio) seemed to be rather unrelated to performance. Yet,
as expected, the parameters were highly correlated among

each other and demonstrated the statistical regularities of
complex natural images.

In order to shine more light on the classification errors
made by human observers and DCNNs, which underlie the
reported performances, categorization patterns were investigated
(see Figure 5). Interestingly, as human observers seemed to have
difficulties with relatively common classes (such as dog and cat
or fish and snake), their classification behavior suggests that
these conceptually similar classes could have lead to confusions.
It should also be taken into account that other top-down and
bottom-up influencing factors such as contextual cues may be
especially similar between these classes. Moreover, both trained-
from-scratch ResNet18 and vNet were found to misclassify
images in similar ways.

Fixations—Feedforward vs. Feedforward
Processing
In an attempt to identify priorities during feedforward
information processing in human observers and DCNNs,
we inspected human fixations and global maxima of saliency
maps. Fixations were compiled for the first 150 ms, the theoretical
time of a feedforward pass, and assigned to 1 out of 16 equally
sized target blocks. Similarly, for GradCAM, the centroid of the
single highest scoring patch was defined as the global maximum
and used as an equivalent with the respective target block. As
displayed in Figure 6, we found that human fixations were
subject to a central fixation bias (Tatler, 2007; Rothkegel et al.,
2017), as most individual and almost all average fixations were
located within the center blocks. Furthermore, a saccadic motor
bias was visible, as average fixations of images presented on
the left side were predominantly located on the right side of
the image and vice versa. This pattern is thought to reflect the
preference of the saccadic system for smaller amplitude eye
movements over larger ones (Tatler et al., 2006). In most cases,
however, meaningful fixations on object features could be clearly
identified on the individual level.

Although we hypothesized GradCAM maxima to differ
substantially from human fixations, the results of ResNet18 and
vNet across early, middle, and late layers proposed fundamentally
diverging distributions deeper down the architectures. While
human fixations were found to be normally distributed on a

TABLE 1 | Spearman rank correlation between human observer accuracy, DCNN accuracy, and image properties.

Human Acc. ResNet18 (FT) Acc. ResNet18 Acc. vNet Acc. Entropy Shape Texture

Human Acc.

ResNet18 (FT) Acc. 0.071

ResNet18 Acc. 0.030 0.236***

vNet Acc. 0.127** 0.203*** 0.551***

Entropy 0.041 −0.071 −0.053 0.027

Shape 0.016 −0.096* −0.025 −0.019 0.299***

Texture 0.036 −0.056 −0.044 0.000 0.432*** 0.763***

Peak-to-Mean 0.015 0.058 0.072 0.048 −0.271*** −0.591*** −0.874***

Acc. stands for Accuracy. Peak-to-Mean stands for Power Spectral Peak-to-Mean Ratio. Computed correlation used spearman-method with listwise-deletion. *p < 0.05,
**p < 0.01, ***p < 0.001.

Frontiers in Neuroscience | www.frontiersin.org 7 October 2021 | Volume 15 | Article 750639

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-750639 September 30, 2021 Time: 15:32 # 8

van Dyck et al. Comparing Human and DCNN Vision

FIGURE 5 | Categorization matrices reveal the classification patterns of true vs. predicted labels that underly raw object recognition performances and thereby help
to understand especially classification errors. The off-diagonal misclassifications show that human observers seemed to have problems with conceptually similar
classes (such as dog and cat or fish and snake). Interestingly, especially both trained-from-scratch ResNet18 and vNet made similar mistakes.

continuous scale of coordinates, GradCAM maxima, especially in
middle and late layers, were located on discrete grids of different
sizes. As these grids of possible maxima (ResNet18 Late = 7 ×
7 and vNet Late = 4 × 4) were identical with the output sizes
of the respective layers (see Figures 1B,C), we attributed this
behavior to both the agglomerative nature of convolutions and
the resulting technical aspects of how the GradCAM algorithm
extracts class activations from layers.

To our knowledge, this characteristic of DCNN attribution
methods has not been explicitly considered during previous
human-machine comparisons so far. Since these findings restrict
further comparisons of Euclidean distance measures between
human fixations and GradCAM maxima, we proceeded by
investigating only the specific target blocks, in which the
respective fixations or maxima fell. As displayed in Figure 7,

this analysis promoted more similar object recognition priorities
between human observers and vNet.

In principle, the agreement between human observers and
DCNNs in target blocks (see Figure 7) was rather low. The results
indicated persisting differences after correcting for the discovered
mismatches in resolution, as vNet coincided with human target
blocks in 17.14% compared to ResNet18 with 11.67%. Generally,
the agreement seemed to be higher for animate objects compared
to inanimate objects and vNet prioritized especially more human
target blocks on images of specific animate objects (especially
human and dog). These findings further strengthened our
confidence that vNet compared to ResNet18 indeed utilizes
spatial priorities that are more similar to those of human
observers during feedforward object recognition. These insights
offer compelling evidence for a more human-like vNet and
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FIGURE 6 | Uncorrected spatial priorities during feedforward object recognition in human observers and DCNNs. (A) Human fixations were affected by a central
fixation and saccadic motor bias, while being normally distributed on a continuous scale. (B,C) ResNet18 and vNet GradCAM maxima displayed a near uniform
distribution in early and middle layers with a 7 × 7 and 4× 4 grid in the late layers. Generally, maxima followed a discrete segmentation that was identical to the
output size of the respective layer.

generally the impact of a RFS modification in terms of fit to
human eye tracking data.

Heatmaps—Recurrent vs. Feedforward
Processing
Further analyses were conducted to compare human observers
and DCNNs based on eye tracking and saliency heatmaps. Here,
the focus was shifted away from feedforward mechanisms, as
additionally recurrent processes with human eye movements
after 150 ms were investigated. We hypothesized that differences,
which had already existed during early processing (i.e., effects
of animacy, arousal, and valence), should be amplified in the
brain due to mostly top-down processes setting in during this
time window. It is important to note that this analysis is rather
unfair in its nature, as it compares feedforward processing
in DCNNs with additional recurrent processing in humans.
However, in the light of this knowledge, it is entirely possible
to test further hypotheses. Generally speaking, the obtained
heatmaps illustrated the expected idiosyncrasies. With a few
exceptions, human observers fixated the specific object within the
first milliseconds and later shifted their attention to more relevant
features (such as faces or arousing image parts). In contrast,
DCNNs displayed their hierarchical organization with activation
of especially specific shape and texture features in early, feature
groups in middle, and whole objects in late layers (see Figure 8).

Mean absolute error (MAE), defined as the individual
deviation of a GradCAM from its human heatmap equivalent,
was computed for all individual images. On average, MAEs of
0.29 for ResNet18, and 0.22 for vNet were found. These results

fit well with previous findings by Ebrahimpour et al. (2019), who
reported values of around 0.40 for a scene viewing task, and our
previous outcomes promoting vNet as a better model for human
eye tracking heatmaps. On top of that, MAE did not seem to be
associated with general performance, as the fine-tuned ResNet18,
which significantly outperformed human observers, reached only
0.32.

MAE =
1

Wx H

W∑
x=1

H∑
y=1

|E
(
x, y

)
− S

(
x, y

)
| (1)

Equation 1 mean absolute error (MAE) where W and H are
the width and height of the original image in pixels (here 224 ×
224), while E and S are the eye tracking heatmap and saliency map
of the same image.

In order to link these results to the aforementioned control
vs. challenge distinction by Kar et al. (2019), we treated images
which were categorized correctly by human observers (avg.
accuracy = 100%) and DCNNs as control images (n = 145) and
images which were categorized correctly by human observers
(avg. accuracy = 100%) but categorized incorrectly by ResNet18
and vNet as challenge images (n = 60). Analyses across
individual layers showed that the reported difference in MAE
between both DCNNs seemed to emerge in late layers (see
Figure 9). These findings suggest that control and challenge
images do not seem to be treated differently by the visual
system in terms of their spatial priorities of information
processing. Taken together with the findings of Kar et al.
(2019) this means that the match between eye tracking and
GradCAM data was not influenced by this distinction based on
their difficulty.
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FIGURE 7 | Corrected spatial priorities during feedforward object recognition in human observers and DCNNs’ late layers. As the smallest resolution of output sizes
allowed this resolution, all fixations and maxima were assigned to respective target blocks accordingly. (A) The target block percentages implied more similar spatial
priorities between human observers and vNet, as mostly center blocks were targeted. In contrast, both ResNet18 models focused more on marginal target blocks.
(B) Match between human and DCNN late layer target blocks across different grouping variables. vNet matched human target blocks more frequently. (C–E) DCNNs
had a higher agreement on images of animate objects, with higher arousal ratings, and higher valence ratings. (F) vNet obtained especially high agreement on
specific categories such as human and dog, while fine-tuned ResNet18 seemed to systematically choose different target block in house images. (G) Surprisingly,
GradCAM maxima matched most frequently with human fixations in early, decreased in middle, and increased again in late layers. The dotted line represents chance
level at 6.25%.

Arousal and Valence
On average, human observers rated images with median scores
of 4.04 in arousal and 4.27 in valence (see Figure 10). In
terms of arousal, Kruskal Wallis tests suggested that animate
objects received significantly higher scores (Median = 4.41)
compared to inanimate objects (Median = 3.59; W = 37971,
p < 0.001, r = 0.28), whereas for valence, no significant
difference was discovered (W = 22555, p = 0.685, r = 0.02).
Here, a substantial disagreement is evident, as mean heart rate
[arousal: X2(2) = 0.62, p = 0.732, r = 0.02/valence: X2(2) = 5.40,
p = 0.067, r = 0.05] and skin conductance response [arousal:
M = X; X2(2) = 4.26, p = 0.119, r = 0.04/valence: M = X;
X2(2) = 0.53, p = 0.768, r = 0.03] did not differ substantially
between images of low, medium, and high arousal and valence
ratings. However, available ratings from the OASIS dataset

(arousal: Median = 4.06/valence: Median = 3.92) were more or
less consistent with our ratings.

DISCUSSION

In this proof-of-concept study, we investigated the similarity
of information processing in human observers and feedforward
DCNN models during object recognition. For this purpose,
human eye tracking heatmaps were compared to saliency maps of
GradCAM, a customary attribution technique. Most importantly,
during this endeavor, we found that GradCAM outputs, unlike
eye tracking heatmaps, are produced on a discrete scale. While
this is clear given the construction of DCNNs, to the best of
our knowledge, this phenomenon has neither been regarded
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FIGURE 8 | Examples of human observer heatmaps and DCNN GradCAMs of different layers. Images with (A) the highest and (B) the lowest correlation between
human observers and ResNet18. Images with (C) the highest and (D) the lowest correlation between human observers and vNet. Images highlighted in green were
categorized correctly while images highlighted in red were categorized incorrectly.

FIGURE 9 | Mean absolute error (MAE) of ResNet18 and vNet from human observer heatmaps for individual images. Control images were categorized correctly by
human observers, ResNet18, and vNet, while challenge images were categorized correctly by human observers but categorized incorrectly by ResNet18 and vNet.
(A,B) MAEs seemed to be lowest in early layers. Here, the funnel shaped distribution hinted toward a lower boundary which may be a consequence of the discrete
scale of GradCAMs. (C) As the distribution spread apart in later layers, the clearly smaller MAE of vNet became visible as more images could be found below the
diagonal break-even line.

in previous studies nor stated explicitly in the literature of
the field. As a natural consequence, this finding constrains
several established results, as for example by Ebrahimpour et al.
(2019), and also our own heatmap comparisons, as different
resolutions underlying these visualizations pose an evident
challenge. Therefore, it seems necessary to draw attention to
this fact, as it might endanger the fairness of human-machine
comparisons (Firestone, 2020; Funke et al., 2020). We even
believe to find more evidence for this problem as displayed in
Figure 9, where especially in earlier layers MAE values seemed
to hit a lower boundary which was possibly due to fundamental
mismatches in resolution and therefore impossible to undercut.
Nevertheless, final comparisons of fixations and maxima were not
influenced by this effect, as we controlled for spatial inaccuracy

by proceeding with analyses on the target block level of the
lowest maxima grid.

Generally, our results corroborate the assumption that the
novel vNet architecture by Mehrer et al. (2021) captures human
object recognition behavior more accurate compared to standard
DCNNs commonly used throughout computer vision problems.
Interestingly, this seemed to be the case on a performance level,
as only vNet’s performance was significantly correlated to human
performance, and on a functional level of both before 150 ms,
as it matched target blocks of human fixations spatially more
consistent, and after 150 ms, where it yielded a lower MAE in
late layers. On top of that, we argue that this higher similarity
was not a side effect of higher performance compared to the
equally trained ResNet18, as the fine-tuned ResNet18 model even
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FIGURE 10 | Human observers’ arousal and valence ratings across categories. (A) Arousal ratings showed that animate categories were perceived as more
arousing when compared to inanimate categories. (B) Valence ratings suggest category-specific effects (i.e., snake), as with a few exceptions most images were
rated as rather positive. The dotted line represents neutral scores.

outperformed human observers significantly and yet agreed the
least with human fixations during feedforward processing. As
already stated in previous literature (i.e., Dodge and Karam,
2017), the covariation in performance of human observers and
DCNNs was found to be rather small. Nevertheless, these findings
should be examined in the light of their relative impact, as vNet’s
correlation with human accuracy was not only of statistically
significant importance, but also substantially higher. However,
the reported effects should be treated with caution, as human-
machine comparisons are prone to a wide range of confounding
factors, either related to human cognition, such as the reported
top-down and bottom-up processes, or related to deep learning
problems, such as training settings and learning algorithms.
We are aware of the fact that the number of parameters of
both ResNet18 models and vNet is of necessity substantially
different. In our view, these results emphasize the validity of
a RFS modification as a method for designing more human-
like models in computer vision. Moreover, as demonstrated by
Luo et al. (2016), effective RFS follows a Gaussian distribution
and become heavily increased by deep learning techniques such
as subsampling (in most cases average or max pooling) and
dilated convolutions, which are all commonly used in current
architectures. Hence, as in contrast to DCNN saliency maps,
human viewing behavior is highly focal, it would be interesting
to see if the match of spatial priorities can be further increased
in models that lack these computations. At the same time, future
studies should target this topic by comparing DCNNs that only
differ in RFS along their hierarchical architecture.

Moreover, we were able to identify control and challenge
images based on the notion of Kar et al. (2019). Our analyses

suggested no effect of image difficulty on the similarity between
eye tracking heatmaps and saliency maps. While the authors’
original findings on neural activity show that control and
challenge images are processed differently especially during
late time periods (>150 ms), their results also propose that
the two image groups share a similar early response and
may not be treated differently by the visual system via
the retina at all. Our reported null result regarding the
viewing behavior may complement this line of argument well,
as the authors even mentioned that on visual inspection
no specific image properties differed between the groups.
Unfortunately, in this case, the allocation to early- and late-
solved images through neural recordings was not possible in the
experimental setup at hand.

Surprisingly, in contradiction with earlier findings in humans
(New et al., 2007), our results indicated that both human
observers and DCNNs were more accurate in recognizing
inanimate compared animate objects. This advantage for
inanimate objects has been also reported on the level of
basic categories by other studies before (Praß et al., 2013).
Meanwhile, we discovered substantially more agreement
between human and DCNN target blocks for animate
objects. In turn, this suggests that both human observers
and DCNNs were prioritizing more similar features during
object recognition of animate objects. Therefore, we believe
that this effect may be due to high efficient face processing
mechanisms (Crouzet et al., 2010), which could have led
to more similarity in specific face-heavy categories (such
as human and dog). Furthermore, as animacy could not
fully explain arousal and valence effects on a behavioral and
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functional level of DCNNs, we argue that these effects could be
a consequence of naturally learned optimization effects in visual
systems, which have also been reported for image memorability
judgments that automatically develop in DCNNs trained on
object recognition and even predict variation in neural spiking
activity (Jaegle et al., 2019; Rust and Mehrpour, 2020). This
interpretation, however, needs to be treated with caution, as
arousal and valence scores were obtained by human ratings
which again underlie a wide range of effects such as for example
acquired knowledge, attention, and memorability.

To summarize, in this paper we outline a novel concept
of comparing human and computer vision during object
recognition. In theory, this approach seems suitable for
evaluating similarities and differences in priorities of information
processing and may help to further pinpoint the specific impact
of model adjustments toward more biological plausibility. We
demonstrate this by showing that a RFS modification, which
agrees conceptually with the ventral visual pathway, increases the
model fit to human viewing behavior. Practically, we believe that
our method will be improved by including different attribution
techniques such as Occlusion Sensitivity (Zeiler and Fergus,
2014), which estimates class activations through a combination of
occlusions and classifications, and thereby allow more adequate
and comparable resolutions in the future. Furthermore, we hope
that our idea will open up new perspectives on comparative
vision at the intersection between biological and computer
vision research.
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