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Andrew Vakulin, Peter Catcheside and Danny J. Eckert*

Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia

Current approaches to quantify and diagnose sleep disorders and circadian rhythm
disruption are imprecise, laborious, and often do not relate well to key clinical and
health outcomes. Newer emerging approaches that aim to overcome the practical
and technical constraints of current sleep metrics have considerable potential to better
explain sleep disorder pathophysiology and thus to more precisely align diagnostic,
treatment and management approaches to underlying pathology. These include more
fine-grained and continuous EEG signal feature detection and novel oxygenation
metrics to better encapsulate hypoxia duration, frequency, and magnitude readily
possible via more advanced data acquisition and scoring algorithm approaches. Recent
technological advances may also soon facilitate simple assessment of circadian rhythm
physiology at home to enable sleep disorder diagnostics even for “non-circadian rhythm”
sleep disorders, such as chronic insomnia and sleep apnea, which in many cases
also include a circadian disruption component. Bringing these novel approaches into
the clinic and the home settings should be a priority for the field. Modern sleep
tracking technology can also further facilitate the transition of sleep diagnostics from
the laboratory to the home, where environmental factors such as noise and light could
usefully inform clinical decision-making. The “endpoint” of these new and emerging
assessments will be better targeted therapies that directly address underlying sleep
disorder pathophysiology via an individualized, precision medicine approach. This review
outlines the current state-of-the-art in sleep and circadian monitoring and diagnostics
and covers several new and emerging approaches to better define sleep disruption and
its consequences.

Keywords: sleep disordered breathing, sleep apnea, insomnia, circadian rhythm, polysomnography, signal
processing, apnea/hypopnea index, precision medicine

INTRODUCTION

Sleep, along with diet and exercise, is essential for optimal health and wellbeing. However, globally,
nearly 2 billion people are estimated to have one or both of the two most common clinical sleep
disorders-sleep apnea (Benjafield et al., 2019) and insomnia (Roth et al., 2011). Most people with
sleep disorders remain undiagnosed and untreated, and thus vulnerable to the major adverse health
and safety consequences associated with untreated sleep disorders.

Frontiers in Neuroscience | www.frontiersin.org 1

October 2021 | Volume 15 | Article 751730


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.751730
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.751730
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.751730&domain=pdf&date_stamp=2021-10-07
https://www.frontiersin.org/articles/10.3389/fnins.2021.751730/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Lechat et al.

Redefining Sleep Disruption to Improve Outcomes

Current sleep apnea diagnostic approaches rely on traditional
labor-intensive overnight sleep tests and subjective manual
scoring approaches developed around the constraints of paper-
based methods from the 1960s. This approach, in combination
with the advent of continuous positive airway pressure (CPAP)
to reverse airway collapse during sleep (Sullivan et al., 1981),
led to rapid advances in the modern field of sleep medicine.
Although efficacious irrespective of underlying mechanisms,
sub-optimal patient acceptance and use of CPAP remain
problematic and warrant personalized treatments that better
target underlying causal mechanisms. However, traditional sleep
assessment methods fail to identify the specific underlying causes
and consequences of sleep disorders for individual patients. For
example, relationships between perceived sleep quality and/or
sleepiness and objective sleep measures derived from traditional
gold-standard polysomnography are either absent, weak, or
inconsistent (Buysse et al., 2008; Sforza et al., 2015; Adams
et al., 2016). In the case of insomnia, diagnosis relies on clinical
evaluation since traditional objective sleep measures do not relate
to disorder incidence, severity, or recovery. While the gold
standard treatment, cognitive behavioral therapy for insomnia
(CBT-I) is efficacious for many, it is ineffective or only partially
effective for some patients (Trauer et al., 2015). This is potentially
because, like CPAP for sleep apnea, CBT-I is a one-size-fits-
all treatment regardless of the underlying causal mechanisms
(Harvey and Tang, 2003). As such, usual care for sleep disorders
typically relies on a trial-and-error treatment approach which
often fails to identify the underlying causes of sleep disruption or
adequately address patient symptoms and health consequences
for which individuals seek treatment. Accordingly, this review
focuses on highlighting new and emerging approaches to
better define sleep and circadian disruption that underpins
sleep disorders based on their underlying pathophysiology and
accompanying health impacts.

CURRENT STATE OF THE ART FOR
SLEEP RECORDING

Current gold-standard methodology to quantify sleep relies
on overnight polysomnographic (PSG) recordings. This
includes collection of a wealth of neurophysiological data
from electroencephalography (EEG), electrooculography
(EOG), electromyography (EMG), electrocardiography (ECG),
body position and movement, and respiratory-related signals
including airflow, chest and abdominal motion, and oximetry.
These signals are then manually reviewed and analyzed to classify
wake, light through to deep non-rapid eye movement (NREM)
(N1, N2, and N3), and rapid eye movement (REM) sleep in
30-s epochs. Transient cortical arousals (3-15 s) and longer
awakening (>15 s) events are also manually scored on the basis
of internationally standardized American Academy of Sleep
Medicine (AASM) EEQG criteria (Berry et al., 2017).

Traditional polysomnography scoring evolved from
observations of behavioral responsiveness changes coincident
with changes in EEG patterns of activity at a time when
chart recorders necessitated manual scoring, quite literally

page-by-30-s-page (Rechtschaffen, 1968). This pattern-matching
“bottom-up” approach to sleep medicine was based on the
practical constraints with the technology available at the time,
rather than being driven by an understanding of underlying sleep
neurobiology. Although computerized systems have replaced
paper-based recordings, and despite exponential advances in
modern computing, sleep medicine remains predominantly
based on these manual scoring methods from the 1960s. Manual
scoring is labor intensive, and therefore costly, and captures
only gross visually discernible EEG features with much poorer
time and frequency resolution than is available within the data
(Figure 1). Thus, EEG scoring into discrete 30-s epochs ignores
that wake and sleep are continuous and dynamic states, whereby
physiological features within epochs classified as wake can be
present during sleep, and vice versa (Prerau et al.,, 2014; Scott
et al., 2020). Manual scoring also has large intra- and inter-scorer
variability, which remains problematic in sleep medicine despite
AASM scoring criteria updates that attempt to reduce scoring
variability (Ruehland et al., 2009; Magalang et al., 2013).

A New Way of Thinking: Top-Down Sleep
Signal Features Based on Underlying
Neurobiology Rather Than Bottom-Up
Measurement Convenience Guided
Approaches

Automated sleep scoring methods using advanced signal
processing and machine learning approaches to analyze
polysomnography signals have been widely developed and can
achieve good agreement against consensus-based traditional
human scoring (Fiorillo et al., 2019). However, most of the
focus has been on reproducing existing manual approaches
(Tsinalis et al., 2016; Supratak et al., 2017; Chambon et al., 2018;
Olesen et al, 2021). Thus, while these approaches are more
standardized and time efficient, the fundamental limitations of
traditional sleep metrics remain. Robust evidence to support
causal relationships and clinical utility of most existing sleep
metrics also remains sparse. Thus, the finer-grained quantifiable
features within polysomnography data that may ultimately be
more informative regarding underlying sleep mechanisms and
quality continue to be largely ignored.

For example, EEG delta waves are tightly coupled in
time and precede pulsatile changes in cerebral blood volume
and cerebrospinal fluid flow during deep sleep (Fultz et al.,
2019). Furthermore, a single night without sleep in healthy
volunteers leads to P-amyloid accumulation (Shokri-Kojori
et al., 2018). These findings support that delta waves during
deep NREM sleep are a major driver of glymphatic clearance
of metabolites from the central nervous system (Benveniste
et al, 2020; Braun and Iliff, 2020). Wake/sleep transitions,
such as potentially fatal microsleeps while driving, and a range
of other physiological changes during sleep also occur on
shorter timescales than assessed through traditional manual
sleep scoring methods. For example, traditional scoring most
likely misses potentially clinically informative neurophysiological
features of synaptic downscaling, re-organization, memory
and learning processes thought to occur during NREM and
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REM sleep (Tononi and Cirelli, 2006). Thus, conventional
sleep scoring can only provide relatively superficial insights
into brain activity and other physiological changes during
sleep that are unlikely to be as sensitive or specific to
underlying mechanisms as shorter-time scale features of
sleep. Accordingly, a more physiologically guided, top-down
measurement approach is clearly needed to provide greater
neurobiological insight into sleep health and disease, and how
sleep disturbance features relate to clinically relevant outcomes
(Léger et al., 2018).

Defining evidence-based electrophysiological sleep markers is
important in the age of precision medicine, particularly following
rapid growth in minimally intrusive recording and consumer
wearable devices that allow for sleep-related monitoring over
prolonged periods in the home environment (Liu et al., 2017;
Kim et al, 2019). These and other emerging technologies are
likely to change many aspects of polysomnography, such as via
printed electrodes (Norton et al., 2015) or tripolar concentric
ring EEG (Besio et al., 2006), by helping to uncover aspects of
sleep health not routinely measured. For example, markers of
circadian misalignment are technically difficult to monitor, so
remain notably absent from conventional sleep studies. Emerging
evidence highlights the potential to estimate circadian phase
using non-intrusive physiological data such as skin temperature,

heart rate variability and activity (Sudrez et al., 2020; Cheng
et al., 2021). Blood pressure surges along with vasoconstriction
and heart rate responses occur frequently during sleep, especially
with swallowing (Burke et al., 2020), but are not currently
routinely captured or assessed. Continuous measurement of a
range of biomarkers such as cortisol secretion during sleep
through skin sensor devices (Parlak et al., 2018) may also have
clinical utility.

Together, a range of new and emerging devices could routinely
generate large volumes of sleep measurements over extended
periods. This approach will require evidence to support clinical
use and value, and software tools to assist clinicians to assess,
analyze, and interpret sleep-omics (Redline and Purcell, 2021). To
increase the uptake of new technologies in research and clinical
settings, greater communication between sleep medicine experts
and device manufacturers is needed. Rigorous standards for
validation and evidence-based advances in medicine are required
to ensure that new methods provide clinically useful insights
that effectively and cost-effectively improve key patient outcomes
(Depner et al., 2020). While not a complete list of all available
approaches, the sections below highlight several examples of
existing approaches and notable promising new and emerging
methods based on underlying pathophysiology/neurobiology
to move beyond key limitations of current sleep metrics.
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A schematic representation of some of these examples is provided
in Figure 2.

KEY COMPONENTS OF THE
POLYSOMNOGRAPHIC

Electroencephalography

This review focuses on novel sleep metrics derived from
EEG collected clinically using routine polysomnography. Other
reviews regarding potential neurobiological insights of sleep

physiology and circadian rhythms through high density EEG and
intra-cranial/depth EEG are available elsewhere (Mosqueiro et al.,
2014; Saper and Fuller, 2017; Scammell et al., 2017).

Slow Waves

Slow waves (0.5-4.5 Hz) are the main feature of deep
sleep and one of the fundamental electrophysiological features
of synchronous neuronal “down states” of relative neuronal
inactivity and “up states” as activity resumes (Nir et al., 2011).
These waves are thought to play a major role in synaptic recovery
and down-scaling to compensate for daily high neuronal activity

CURRENT APPROACHES

Advantages: Lots of detailed rich neurophysiological data
collected.

Disadvantages: Most of the collected information is currently
ignored, traditional metrics are imprecise and do not predict
treatment response or relate well to key clinical and health
outcomes.
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FIGURE 2 | Schematic overview of the current metrics derived from standard polysomnography and the potential to make better use of these extensive
neurophysiological signals provide novel insight into sleep neurobiology, treatment prediction and to better link with key clinical and health outcomes. Refer to the
text for further detail. CPAP = continuous positive airway pressure, CV = cardiovascular, EEG = electroencephalography, EMG = electromyography,

EOG = electrooculography, ECG = electrocardiography, HGNS = hypoglossal nerve stimulation, MAS = mandibular advancement splint,

PPG = Photoplethysmography, REM = rapid eye movement, SpO, = estimated arterial blood oxygen saturation and UA = upper airway.

EMERGING APPROACHES

Advantages: Makes use of routinely collected data to provide novel
insight into sleep neurobiology and treatment prediction to better link
with key clinical and health outcomes.

Disadvantages: Most approaches are still at the research and develop-
ment phase and are not currently available for clinical use at scale.
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and synaptic potentiation during wake (Tononi and Cirelli, 2006)
and glymphatic system removal of metabolic waste products
from the central nervous system (Benveniste et al., 2020; Braun
and Tliff, 2020). Slow waves are ubiquitous during sleep, and
decrease in quantity and magnitude with age (Chinoy et al,
2014). Several techniques have been developed to study specific
aspects of slow waves, such as slow wave slope, absolute power,
amplitude and phase in response to a range of experimental
or naturalistic (e.g., aging) conditions (Massimini et al., 2004;
Bersagliere and Achermann, 2010; Lazar et al., 2015; Lendner
et al., 2020; Djonlagic et al., 2021). For example, the slope of
half slow-waves (i.e., the slope between the up- and down-
states) and slow wave amplitude/absolute power increase with
sleep restriction and decrease with circadian phase, suggesting
that sleep need and circadian rhythms have an effect on the
shape and distribution of slow oscillations (Massimini et al.,
2004; Bersagliere and Achermann, 2010; Lazar et al, 2015).
Using the same features, reduced slow oscillations during sleep
(low amplitude/absolute power) have recently been associated
with poorer cognitive performance on a digit symbol coding
test and the Trails B test in a large cross-sectional study of
~3800 participants (Djonlagic et al., 2021). Many of these tools
are available in open-source packages. With standardization,
clinical validation and implementation, these novel metrics
have substantial potential to provide unique insight into inter-
individual vulnerability to specific health consequences in people
with sleep disruption (Léger et al., 2018).

K-complexes

K-complexes are a form of isolated slow waves that provide
unique insight into sleep stability and sleep disruption. They
can occur spontaneously during sleep. However, K-complexes
can also provide a sensitive marker of sensory disturbance to
noise, respiratory and vibratory stimuli during sleep (Colrain,
2005; Scott et al., 2020; Lechat et al., 2021). Abnormal K-complex
morphology (lower amplitude) and lower K-complex density
(# per minutes) have been associated with the progression
of amnestic mild cognitive impairment (pre-clinical phase of
Alzheimer’s disease) in ~70 patients (Liu et al., 2020). Abnormal
K-complex morphology has also been associated with greater
lapses in next-day alertness as measured using a psychomotor
vigilance task (Parekh et al, 2019, 2021). At a population
level, cross-sectional studies have suggested that a decrease in
K-complex density may be a biomarker of sleep disorders, such
as sleep apnea (Lechat et al., 2020). Further evidence regarding
the functional significance of K-complexes is still emerging and
warrants future investigation. This is likely to be facilitated
via recent open-source tool developments (Parekh et al., 2015;
Lechat et al., 2020).

Sleep Spindles

Sleep spindles are bursts of 11-15 Hz EEG activity and are
another characteristic feature of NREM sleep that may provide
a useful biomarker of sleep regulation and cognitive functioning
(Diekelmann and Born, 2010; Djonlagic et al., 2021). Sleep
spindles are influenced by genetics and vary widely across the
lifespan and different demographics (Purcell et al., 2017). Higher

spindle occurrence (and density) have been associated with
better memory performance and vigilance (Lafortune et al., 2014;
Hennies et al., 2016) in cross-sectional studies with moderate
sample sizes (n < 100). In a clinical population of 47 patients
with obstructive sleep apnea (OSA), greater sleep spindle activity
was associated with better implicit learning (Stevens et al,
2021). A recent analysis of two large US-cohorts (n~3800) also
supported an association between higher spindle occurrence and
spindle power with greater performance on multiple cognitive
tests (Djonlagic et al., 2021). In addition, the coupling (proximity
and phase differences) between slow oscillations and spindles
was also predictive of cognitive performance, further supporting
a role of spindles in memory formation (Hahn et al., 2020)
and consolidation (Helfrich et al., 2019; Muehlroth et al.,
2019). Together, these results may explain, at least in part, the
association between abnormal spindle activity during sleep and
neurodegenerative diseases such as Alzheimer’s disease (Gorgoni
et al., 2016) and Parkinson’s diseases (Christensen et al., 2015).
However, spindle detection is still a challenge and algorithm
refinements on public benchmark datasets remain warranted
(Warby et al., 2014; Lacourse et al., 2020). Furthermore, recent
evidence suggests that the current definition of sleep spindles may
be too restrictive and traditionally defined spindles may only be
a small subset of a more generalized class of sigma oscillations
during sleep (Dimitrov et al., 2021).

Fourier-Based Analysis of Sleep Signals: Quantitative
Electroencephalography

Sleep EEG is ideally suited to frequency and time-frequency
analysis, since different stages or micro-elements (such as
spindles, K-complexes, slow waves) have specific frequency
characteristics (Steriade, 2006; Scammell et al., 2017), as shown
in Figure 3. Power spectral analysis of EEG (sometimes referred
to as quantitative EEG [qEEG]) provides a more sensitive and
objective marker of neurophysiological features of sleep, some of
which may be unique to specific patient phenotypes. For example,
several studies have used qEEG to calculate the mean absolute
power of given frequency bands (delta, alpha, theta, sigma, and
beta), usually averaged over NREM and REM sleep, some of
which have been shown to be predictive of insomnia (Krystal
et al., 2002; Krystal and Edinger, 2010; Lunsford-Avery et al.,
2021; Zhao et al., 2021) and OSA (D’Rozario et al., 2017; Appleton
etal., 2019). Emerging evidence also suggests that qEEG markers
are associated with vigilance and cognitive performance (Vakulin
et al.,, 2016; Djonlagic et al., 2021; Mullins et al., 2021).

The Odds Ratio Product

The odds ratio product (ORP) is a novel EEG-derived metric
that provides a continuous index of sleep depth and alertness
(Younes et al., 2015; Younes and Hanly, 2016). ORP is calculated
as a ratio of absolute power of different frequency bands over
3-s segments. The ratio ranges from 0 to 2.5, where 0 indicates
very deep sleep and 2.5 is wide awake, and correlates well with
the visual appearance of EEG across the night (Younes et al,
2015, 2020). ORP derived metrics may be useful for a wide range
of clinical applications, such as phenotyping sleep disorders and
associated health consequences (Younes and Giannouli, 2020;
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FIGURE 3 | Spectrogram of sleep EEG signals using methods developed in Prerau et al. (2017). A transition from slow wave sleep (1) to N2 sleep (3) with an arousal
in the middle (2) is observed. Slow wave sleep is characterized by high absolute power at frequencies less than 4 Hz and very little power at high frequencies, thus
making identification of high frequency (8-16 Hz) arousals straight-forward. The transition from arousal to N2 sleep is also very specific, with a reduction in high
frequency power, a sparse low frequency burst (likely reflecting K-complexes), sometimes followed by a burst of 12-16 Hz activity.

Azarbarzin et al., 2021; Younes et al., 2021). For example, sleep
depth coherence between C3 and C4 channels measured using the
ORP is associated with risk of motor vehicle crashes (Azarbarzin
etal, 2021). A higher ORP during NREM sleep is also associated
with the presence of OSA and insomnia, consistent with a
more “alert” brain during NREM sleep in people with OSA and
insomnia (Younes et al., 2021).

Scale-Free/Rapid Eye Movement Biomarkers

The scale-free component of neural activity (sometimes called
“background brain activity” or “1/f” activity) is a further EEG
component that may be an important biomarker of arousal level
in human sleep (Lendner et al., 2020). Consistent with neuronal
homeostatic and synaptic reorganization activity that takes place
during REM sleep, 1/f activity is higher during REM sleep
episodes. This observation may be especially important given the
lack of targeted metrics designed to capture key physiological
features of REM sleep. Eye movements, theta waves and atonia
components require further investigation to test for relationships
more comprehensively against other markers of REM sleep
homeostasis and key clinical outcomes.

A limitation of all current biomarkers is the reliance on
traditional manual scoring to express and evaluate summary
values against conventional metrics with uncertain relationships
with clinical endpoints. For example, absolute delta power, or
ORP values, are usually averaged in NREM sleep. Spindles
may be only detected in N2 sleep, and K-complex densities
calculated in N2 and N3 sleep do not consider fluctuations in
neurophysiological features across sleep cycles. EEG dynamics
across sleep cycles are highly likely to be regulated by
physiological processes such as circadian rhythms, brain
metabolism, motor control learning, and memory consolidation
processes (e.g., Figure 4). While averaging over traditionally
scored sleep stages is convenient, it likely masks more subtle and
potentially functionally important sleep-dependent changes over
both short (<30 s) and longer cumulative time scales (minutes
or hours). Secondly, current clinical utility of these biomarkers
has mainly been studied cross-sectionally. Thus, well-designed
randomized trials to investigate their potential additive benefit

Decreased sleep pressure
Slow waves more localised

Normalised delta
power

REM
WAKE
NREM

FIGURE 4 | Cyclical variation in delta power across the night.

to sleep disorders management to improve health outcomes is
warranted. Thirdly, methodologies used to calculate qgEEG, ORP
and other more fine-grained EEG elements are not standardized
across research groups. Some methods are also not available
under common license terms and therefore, independent cross-
validation remains challenging.

Oxygenation Measures

Pulse oximeters can continuously and minimally intrusively
estimate blood hemoglobin oxygen saturation (SpO;) and are an
almost ubiquitous device in the hospital environment (Jubran,
2004). Overnight pulse oximetry also provides a key requisite
measure for the evaluation of sleep apnea (Netzer et al., 2001;
Terrill, 2020). Standard traditional time-series measures derived
from the oxygen saturation signal include mean and nadir
overnight SpO,, time spent below SpO, of 90% and the oxygen
desaturation index (ODI), typically calculated as the number
of 3 or 4% desaturations below baseline levels per hour of
sleep. However, these metrics have their limitations and agreed
standards for their calculation remain lacking. For example,
the ODI is partly dependent on the criteria used to define
SpO, dip onsets, offsets, and duration. The ODI also only
reflects the frequency of hypoxemic events and fails to reflect
the degree and duration of hypoxemia and further oxidative
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stress through rapid reoxygenation (Punjabi et al., 2008). The
physiological consequence of a 3 or 4% drop is also likely
dependent on the baseline saturation level and temporal pattern
of desaturation which can vary widely between individuals and
comorbidities (Ayache and Strohl, 2018). Nonetheless, worse
overnight hypoxemia derived from these traditional metrics has
been associated with adverse health outcomes, such as increased
blood pressure (Pengo et al, 2016; Su et al., 2021) and more
recently atrophy of cortical and subcortical brain areas (Marchi
et al., 2020). However, relationships with traditional hypoxia
measures and important health/physiological outcomes are often
weak, with inconsistent reproducibility between studies and
cohorts (Pretto et al., 2014; Baumert et al., 2020; Linz et al., 2020;
Terrill, 2020).

Other non-traditional parameters from SpO; such as the delta
index measures the mean absolute difference between successive
points at constant time intervals (Levy et al., 1996; Magalang et al.,
2003; Lin et al., 2009), saturation impairment index computed
as the time integral over which SpO, is below certain threshold
levels (i.e., baseline, 90, 80, 70, 60, and 50% saturation) (Kirby
et al,, 1992), and the hypoxic burden index computed as the
area under the time versus desaturation curve (SpOy < 90%)
divided by total sleep time (Azarbarzin et al., 2019; Baumert
et al., 2020) have been derived and used in research settings.
Some of these parameters have been associated with important
health outcomes. For example, hypoxic burden measures that
incorporate frequency, duration and magnitude of hypoxemia
have recently been shown to predict cardiovascular disease
mortality in different cohorts, whereas traditional PSG metrics
such as the AHI and ODI do not (Azarbarzin et al., 2019; Baumert
et al, 2020). Quantification of an easily measured index of
sleep apnea-related hypoxemia has recently been used to predict
incident heart failure (Azarbarzin et al, 2020). Accordingly,
there remains considerable scope to better understand the
precise mechanisms and characteristics by which hypoxemic and
reoxygenation events during sleep contribute to cardiovascular
and other end-organ damage, and to derive sensitive metrics
to quantify these and other important health consequences.
These recent findings highlight the potential for improvement
beyond current traditional metrics. Through pulsatile changes in
light absorption, oximeters can also provide potentially clinically
useful markers of vasoconstriction responses during sleep
(Catcheside et al., 2001; Jordan et al., 2003) that may be clinically
useful predictors of cardiovascular risk (Hirotsu et al., 2020).

Autonomic Signals

Assessment of autonomic nervous system activity during sleep
is facilitated using photoplethysmography and ECG. The use of
these signals in sleep medicine including new analytical methods
and the potential insights they can provide has been covered in
recent in-depth reviews (Fischer and Penzel, 2019; Ucak et al,,
2021).

High increases in heart rate following apneic events are
associated with 30-60% increases in mortality risk and non-
fatal/fatal cardiovascular disease compared to normal heart
rate responses (Azarbarzin et al, 2020). New evidence also
suggests that heart rate variability during wakefulness could

be a useful marker of OSA severity and excessive daytime
sleepiness, whereby OSA severity is associated with reduced and
less complex dynamics of heart rate variability (Qin et al., 2021).
Pulse wave amplitude (a marker of vasoconstriction in the finger)
features (e.g., amplitude, frequency) have been associated with
hypertension, cardiovascular events and diabetes (Hirotsu et al.,
2020). Similarly, a decrease in pulse arrival time (time delay
of pulse propagation between two points such as heart and
finger) as a result of apneic events, is a predictor of subclinical
cardiovascular disease and future cardiovascular events (Kwon
et al., 2021). Pulse wave amplitude and heart rate responses are
also sensitive markers to sensory disturbances during sleep such
as noise (Catcheside et al., 2002; Griefahn et al., 2008) and may
therefore provide unique insights into downstream health effect
of environmental sleep disturbances.

Signal Coupling and Other Approaches
While an exhaustive list of sleep metrics is not the objective of
this review, and recent detailed reviews are available elsewhere
(Mendonga et al, 2019; Lim et al, 2020), a few key metrics
warrant brief coverage.

Motor system disorders such as periodic limb movement
(PLM) and REM sleep behavior disorders (RBD) are associated
with adverse outcomes. For example, PLMs are associated
with stroke and cardiovascular risk factors in certain patient
populations (Lindner et al., 2012). RBD may be an early
biomarker of subsequent synucleinopathies such as Parkinson’s
disease (Claassen et al., 2010) and may increase the risk of
stroke (Ma et al., 2017). RBD in people with Parkinson’s disease
is also associated with faster motor progression and cognitive
decline (Pagano et al., 2018). However, diagnosis of motor
system disorders can be challenging. For example, screening
questionnaires for RBD have variable sensitivity and specificity
(Stiasny-Kolster et al., 2007; Li et al., 2010; Boeve et al., 2011).
Thus, there is a need for better diagnostic approaches for motor
system disorders. These include leg actigraphy for PLMs (Plante,
2014), more standardized quantifiable approaches using EMG
signals during polysomnography (Frauscher et al., 2012) and
novel 3D video analysis approaches (Waser et al., 2020).

The cyclic alternating pattern (CAP) is an additional sleep
scoring system beyond traditional AASM sleep scoring which
aims to quantify NREM discontinuity by characterizing phases
of activation (A phases) and periods of inactivity (B phases)
(Terzano et al.,, 2001). Automatic methods of CAP scoring have
been proposed (Hartmann and Baumert, 2019) and have been
applied to study and define NREM instability in large population-
based studies (Buysse et al., 2010; Hartmann et al.,, 2020) and
may provide unique insight into sleep neurobiology. CAP and
its potential utility is discussed in detail in recent comprehensive
reviews (Mendoncga et al., 2019; Lim et al., 2020).

Several research groups have investigated the coupling
between multiple physiological signals, such as heart rate with
respiratory signals (named cardio-pulmonary coupling) (Thomas
et al., 2005, 2018; Bartscha et al., 2012; Penzel et al., 2016).
Coupling-based analyses have also been applied between sleep
EEG and heart rate (Brandenberger et al., 2001). The theoretical
concept of coupling-functions between different physiological
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systems has been recently generalized under the framework of
network physiology (Bashan et al., 2012; Ivanov et al, 2016).
A more in-depth review of these techniques and their potential
to provide insight into sleep neurobiology and consequences of
impaired coupling is available in the literature (Ivanov et al., 2016;
Penzel et al., 2016; de Zambotti et al., 2018b).

OSA ENDOTYPES

The underlying causes of the most common sleep-related
breathing disorder, OSA, vary considerably between patients.
Current evidence indicates that there are at least four
key pathophysiological “phenotypes,” more recently termed
“endotypes,” that contribute to OSA pathophysiology (Eckert
et al., 2013; Eckert, 2018a; Malhotra et al., 2020). While
impaired pharyngeal anatomy is the most influential endotype,
the magnitude of impaired pharyngeal anatomy varies widely
between patients. In addition, approximately 70% of patients also
have one or more non-anatomical endotypes that contribute to
their OSA (Eckert et al., 2013; Eckert, 2018a). These include
impaired pharyngeal dilator muscle function during sleep,
unstable control of breathing (high loop gain) and waking up
too easily to minor airway narrowing events during sleep (low
respiratory arousal threshold) (Figure 5). These advances in
knowledge in OSA pathophysiology have major implications for
targeted therapy through “precision medicine.” For example,
detailed physiological studies in which the key OSA endotypes
have been quantified and non-CPAP interventions delivered to
improve one or more of the non-anatomical treatable traits
can reduce OSA severity (Eckert et al., 2011; Edwards et al,
2012, 2016b; Sands et al., 2018a; Aishah and Eckert, 2019;
Taranto-Montemurro et al., 2019; Op de Beeck et al., 2021).
Identification of patients with a low respiratory arousal threshold
endotype may be an important physiological predictor of CPAP
treatment failure (Gray et al., 2017; Zinchuk et al., 2021) and the
presence of a low arousal threshold endotype is associated with
mortality (Butler et al., 2019). Similarly, identification of patients
impairment in endotypes such as high loop gain and highly
collapsible pharyngeal airways may be important predictors for
non-CPAP treatment failure including upper airway surgery,
mandibular advancement splint therapy, hypoglossal nerve
stimulation, pharmacotherapy (Edwards et al., 2016a; Li et al,
2017; Aishah and Eckert, 2019; Op de Beeck et al., 2021) and
potentially positional therapy (Eckert, 2018b).

However, current detailed physiological quantification
of OSA endotypes is intrusive and far more complex and
time-consuming to perform and analyze than standard
polysomnography (Eckert, 2018a). Thus, this approach is
impractical for clinical use. Accordingly, novel approaches to
estimate the key OSA endotypes have been developed. These
include more scalable advanced signal processing techniques
(Sands et al., 2018a,b), machine learning approaches (Dutta et al.,
2021) and algorithms (Edwards et al., 2014) which simply make
better use of the existing rich neurophysiological and respiratory
information acquired from diagnostic polysomnography
recordings and standard clinical metrics such as age and BMI.

Other strategies to estimate specific OSA endotypes include
estimates based on a simple intervention during a CPAP titration
study (Osman et al., 2020), the therapeutic CPAP level (Landry
et al., 2017) and wakefulness upper airway physiology testing
(Wang et al,, 2018; Osman et al., 2019). These principles and
recent proof-of-concept findings have opened multiple new lines
of investigation for the development of more clinically feasible
and scalable approaches to help better guide targeted therapy
and precision medicine for OSA.

CIRCADIAN RHYTHMS

The Need to Assess Circadian Rhythms
to Define Sleep Disruption

Aside from advances in PSG sleep and breathing metrics,
new approaches are emerging in the assessment of circadian
rhythms; another key determinant of sleep and its disorders
(Borbély, 1982; Daan et al., 1984). These endogenous rhythms are
ubiquitous, with nearly every cell in the human body influenced
by a biological “clock.” The suprachiasmatic nucleus in the
hypothalamus, colloquially termed the “master” clock, governs
the timing of many circadian rhythms influential for sleep,
including melatonin secretion, core body temperature (Cajochen
et al., 2003), gene transcription and translation regulated clock
behavior of nucleated cells throughout the body (Kondratova
and Kondratov, 2012). Even non-nucleated red blood cells show
circadian cycling of redox activity (O'Neill and Reddy, 2011).
The effects of circadian rhythms on sleep disruption are most
evident in circadian rhythm sleep disorders, such as delayed
and advanced sleep-wake phase disorder, shift-work disorder,
and non-24-h sleep disorder where the circadian phase (timing
relative to clock time), amplitude of the rhythm, and/or period
(duration of the circadian cycle) are poorly aligned with wake
activities and environmental time cues, leading to disrupted
sleep (Micic et al., 2016; James et al., 2017). Fortunately,
disrupted circadian rhythms are treatable to improve sleep
(Dodson and Zee, 2010).

Given the major role of circadian rhythms in mediating sleep
patterns and behavior, methods to assess circadian rhythms
across the different manifestations of sleep disruption are
likely to be insightful. In chronic insomnia, circadian rhythm
factors may importantly contribute to the underlying etiology
and pathophysiology (Lack et al, 2008). Chronobiological
interventions, such as bright light therapy, have been
administered as a stand-alone treatment and combined
with CBT-I to moderate effect (Janku et al., 2020). Circadian
rhythms could also play a role in OSA (von Allmen et al,
2018) and comorbid insomnia and OSA (COMISA) (Sweetman
et al, 2021). Effects of circadian rhythms on respiratory
control (Stephenson, 2003; Yamauchi et al., 2014) and hypoxia
(von Allmen et al, 2018) have also been hypothesized and
supported by recent evidence of circadian modulation of
the key OSA endotypes (El-Chami et al, 2014, 2015; Puri
et al, 2020). Circadian rhythms also have an influential
effect on metabolism, diabetes, cardiovascular disorders,
obesity, and the efficacy of a range of pharmacological
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interventions; factors often applicable to sleep disorder cohorts
(Guo and Stein, 2003; Frazier and Chang, 2020; Ayyar and
Sukumaran, 2021). Therefore, strategies to better define sleep
disruption that incorporate circadian rhythm assessments
have significant potential to improve diagnostic and targeted
therapy outcomes.

Current and Emerging Methods to

Assess Circadian Rhythms

The current “gold standard” measure of circadian rhythms
is salivary or blood dim-light melatonin onset (Arendt et al,
1985; Benloucif et al., 2008). This method involves measuring
the concentration of melatonin (in pmol/mL) via a blood
draw or via half-hourly saliva samples for at least 3-4 h before
bedtime, under dim-light conditions (light intensity < 10 lux)
while the individual remains relatively stationary and avoids
consuming food and drinks (Sletten et al., 2018). Samples
are processed and analyzed to estimate the clock time of

melatonin rise onset (>10 pmol/mL), which is a marker
of circadian phase. Another common measure of circadian
rhythms in sleep research is core body temperature via an
ingestible capsule or rectal thermistor. Frequent sampling
of temperature across an extended period (>24 h), where
conditions and activities that affect body temperature are
controlled (e.g., air temperature, body movement, food
consumption, and hot drink consumption), enables assessment
of several aspects of the underlying core body temperature
rhythm, including circadian phase, amplitude, and period.
However, these assessments require carefully controlled
laboratory conditions and access to specialized equipment
generally infeasible for routine administration outside of
circadian rhythm-focused sleep research studies. Fortunately,
technologies and analytical methodologies are emerging that
promise to facilitate simpler and improved assessments of
circadian rhythms.

Emerging methods include advanced monitoring devices and
biomathematical modeling to infer circadian rhythm metrics
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(Reid, 2019). Newer technologies include skin temperature assessment from blood samples (Cogswell et al., 2020). As these
sensors incorporated into consumer sleep trackers that detect newer technologies mature, their implementation in clinical and
the peripheral temperature rhythm to estimate circadian phase research practice may result in new discoveries regarding the
(Hasselberg et al., 2013). Electronic chips that can be implanted role of circadian rhythms in sleep disorders and their health-
in body patches are also being developed to assess the related consequences.

cortisol rhythm via sweat (Upasham and Prasad, 2020), as

well as other important clinical indicators such as the cortisol

awakening response (Law and Clow, 2020). Rather than direct NOVEL MEASURES OF ENVIRONMENTAL
assessment of circadian rhythms, another approach is to infer FACTORS THAT CAN AFFECT SLEEP

circadian timing via the measurement of factors associated

with circadian rhythms. Sleep timing data collected from The sleeping environment affects sleep ability, but is minimally
wearable and non-wearable sleep trackers over an extended assessed in routine clinical practice. Consequently, sleep
period are being incorporated into biomathematical models to  disruption may be misattributed to endogenous factors alone,
infer circadian timing, since rest-activity rhythms are highly ignoring the potential impact of exogenous factors. These
correlated with circadian timing (Cheng et al, 2021). Light include noise, light, temperature, and other factors that
sensors incorporated into newer wearable devices are also impact comfort within the sleep context. In a laboratory
being used to infer circadian timing (Stone et al, 2020), environment, these factors are typically well-controlled
since light is the strongest exogenous influencer (zeitgeber) of and designed to be conducive for sleep. However, as the
circadian rhythms. This information, potentially coupled with assessment of sleep disruption shifts from the laboratory to
pupillometry assessment of an individual’s retinal responsiveness  the less well-controlled home environment, the assessment
to light, enables inference of circadian timing, which may and consideration of environmental factors becomes
be useful for the diagnosis of circadian disruption in sleep increasingly important to understand mechanisms of
disorders. More recent discoveries of genes with circadian sleep disruption.

oscillations (clock-controlled genes) raises the possibility that Potentially the strongest exogenous influencer of sleep
certain aspects of circadian rhythms may be amenable to is noise, which can adversely affect sleep attainment and
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FIGURE 6 | Schematic of novel and emerging approaches to monitor the sleeping environment and track key health measures via “the bedroom of the future.” Refer
to the text for further detail.
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maintenance and fragment sleep to reduce total sleep time and
quality (Muzet, 2007; Basner et al.,, 2014). The most common
self-reported outcomes in response to road, rail and aircraft noise
exposure are awakenings from sleep, increased sleep latency, and
disruption to sleep continuity (Basner and McGuire, 2018). For
example, patients in hospital intensive care units consistently rate
noise as the most sleep disturbing factor (Freedman et al., 2001;
Gabor et al,, 2003; Elliott et al., 2013) and polysomnography
results indicate poor and fragmented sleep, with a median of
only 5 h sleep/24 h, only 3 min of uninterrupted light sleep
and almost total abolition of deep and REM sleep (Elliott et al.,
2014). However, to date, noise is rarely assessed as a potential
sleep disturbing factor in either clinical or home setting contexts.
Studies that have investigated the effects of noise on sleep quality
have employed generalized metrics that focus on overall noise
levels only and/or do not consider specific noise characteristics
such as spectral content, time varying noise components, tonality
and noise intermittency. These factors are important contributors
to noise annoyance (loannidou et al., 2016; Schiffer et al,
2016; Oliva et al., 2017), are thus likely to contribute to sleep
disturbance, and warrant assessment to better inform clinical
decision-making.

SCALABLE APPROACHES TO MEASURE
SLEEP INCLUDING MULTI-NIGHT
ASSESSMENTS

There are two seemingly opposing challenges regarding sleep
monitoring and diagnostics. There is a need for greater in-depth
insight into the underlying neurobiology of sleep, yet there is also
a need for less intrusive and user-friendly technology. Detailed,
in-depth assessments and monitoring approaches as well as
smarter use of existing signals and information derived from
traditional polysomnography approaches are required to better
understand sleep pathology. Yet, given the burden of disease and
the scale of sleep disruption in the community, there is also a
pressing need for less intrusive sleep tracking technology that can
be readily and easily adopted in a home-based setting.

A plethora of technologies have emerged to track sleep
in the home setting (Figure 6). These include bedside
Doppler (Zakrzewski et al., 2015; Tuominen et al., 2019) and
instrumented mattresses for ballistographic assessment of heart
rate, respiratory rate and body movements/position, which
perform relatively well compared to polysomnography and
are considerably easier to implement and use (Laurino et al.,
2020). Similarly, wearable devices such as smart watches, rings,
simplified EEG headbands, and actigraphy devices also provide
similar performance in sleep/wake assessment (Griessenberger
et al, 2013; de Zambotti et al, 2018a; Arnal et al, 2020;
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