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The anatomical architecture of the brain constrains the dynamics of interactions
between various regions. On a microscopic scale, neural plasticity regulates the
connections between individual neurons. This microstructural adaptation facilitates
coordinated dynamics of populations of neurons (mesoscopic scale) and brain
regions (macroscopic scale). However, the mechanisms acting on multiple timescales
that govern the reciprocal relationship between neural network structure and its
intrinsic dynamics are not well understood. Studies empirically investigating such
relationships on the whole-brain level rely on macroscopic measurements of structural
and functional connectivity estimated from various neuroimaging modalities such
as Diffusion-weighted Magnetic Resonance Imaging (dMRI), Electroencephalography
(EEG), Magnetoencephalography (MEG), and functional Magnetic Resonance Imaging
(fMRI). dMRI measures the anisotropy of water diffusion along axonal fibers, from
which structural connections are estimated. EEG and MEG signals measure electrical
activity and magnetic fields induced by the electrical activity, respectively, from various
brain regions with a high temporal resolution (but limited spatial coverage), whereas
fMRI measures regional activations indirectly via blood oxygen level-dependent (BOLD)
signals with a high spatial resolution (but limited temporal resolution). There are
several studies in the neuroimaging literature reporting statistical associations between
macroscopic structural and functional connectivity. On the other hand, models of
large-scale oscillatory dynamics conditioned on network structure (such as the one
estimated from dMRI connectivity) provide a platform to probe into the structure-
dynamics relationship at the mesoscopic level. Such investigations promise to uncover
the theoretical underpinnings of the interplay between network structure and dynamics
and could be complementary to the macroscopic level inquiries. In this article,
we review theoretical and empirical studies that attempt to elucidate the coupling
between brain structure and dynamics. Special attention is given to various clinically
relevant dimensions of brain connectivity such as the topological features and neural
synchronization, and their applicability for a given modality, spatial or temporal scale of
analysis is discussed. Our review provides a summary of the progress made along this
line of research and identifies challenges and promising future directions for multi-modal
neuroimaging analyses.

Keywords: neuroimaging, network dynamics, multi-modal connectivity, neuroanatomy, structure-dynamic
coupling
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INTRODUCTION

The structural and the dynamical complexities of mammalian
brains necessitate multi-modal and multi-scale analyses.
Understanding how the neural network dynamics emerge from,
and their optimal ranges are constrained by the underlying
structure is an important goal in brain sciences.

Brain regions consist of networks of neurons with remarkably
diverse structural and oscillatory profiles (Wheeler et al., 2015;
Komendantov et al., 2019). An isolated neuron’s activation
patterns are largely determined by the distributions of various ion
channels and their conductance densities along the membrane
(Druckmann et al., 2007) and relatively independent of the
neuron’s precise morphological features (Markram et al., 2015).
Furthermore, similar neuronal dynamics can result from various
combinations of ionic conductances distributed along the
neuronal structure, underscoring a many-to-one relationship
between structure and dynamics at the level of individual neurons
(Schulz et al., 2006; Marder, 2011; Rathour and Narayanan, 2014).

Neural plasticity is a hallmark of brain circuits. Plasticity in
the intrinsic ionic conductance of neurons and the coupling
conductance of synapses synergistically interact to achieve
optimal coordination in neural networks (Maffei and Fontanini,
2009; Lane et al., 2016). While activity-dependent synaptic
plasticity modifies the strength of existing synapses based on
the relative timing of pre- and post-synaptic neuronal firing
events (Hebb, 2005), other forms of activity-dependent plasticity
also occur in neural networks. Neurons maintain their target
activity level in a homeostatic manner by scaling existing
synapses (Turrigiano et al., 1998; Magee and Cook, 2000; Rathour
and Narayanan, 2014), changing dendritic spine numbers
(Trachtenberg et al., 2002), forming new synapses (Knott
et al., 2006; Bastrikova et al., 2008), eliminating existing ones
(Bastrikova et al., 2008), and even changing the axonal branching
patterns (De Paola et al., 2006). Such homeostatic regulatory
mechanisms are hypothesized to drive structural changes in
neural networks (Butz et al., 2009; van Ooyen and Butz-
Ostendorf, 2019). The mesoscopic network architecture, which
is characterized by the connectivity between diverse neuronal
types (Rees et al., 2016), also likely supports the emergence of
complex dynamics. Many-to-one relationship between structure
and dynamics exists at this level (Marder, 2011), and it may be
a characteristic feature of biological systems at multiple levels
(Edelman and Gally, 2001; Friston and Price, 2003).

Neuroimaging modalities including, but not limited to,
Diffusion-weighted Magnetic Resonance Imaging (dMRI),
Electroencephalography (EEG), Magnetoencephalography
(MEG), and functional Magnetic Resonance Imaging (fMRI)
enable brain-wide measurements of macroscopic structural
connectivity and neural activations. The dMRI measures the
movement of water along the axonal fibers. Tractography
techniques (Mori et al., 1999; Mori and van Zijl, 2002) aim to
reconstruct the trajectories of axonal projections based on the
fractional anisotropy of diffusion process. However, structural
connections estimated from the dMRI are undirected. EEG
records the electrical activity of neuronal populations and MEG
detects the magnetic fields induced by intracellular currents

(Singh, 2014). EEG and MEG signals record neural activity
at a high temporal resolution capturing neural oscillations
in high frequency bands such as the gamma (30–80 Hz)
(Figure 1B). However, their spatial coverage is limited to the
number of channels used for recording, which is typically
only in hundreds. fMRI, on the other hand, measures neural
activity indirectly via the blood-oxygen-level-dependent (BOLD)
signals, which reflect (delayed) hemodynamic responses to
neural activations (Hillman, 2014). Moreover, fMRI records
BOLD signals at a relatively high spatial resolution (hundreds
of thousands of voxels of recordings), though hemodynamic
responses are low-frequency (<0.25 Hz) convolutions of neural
oscillations (Figure 1C).

The last decade has seen several large-scale brain data
acquisition efforts (Alivisatos et al., 2012; Koch and Reid, 2012;
Markram, 2012; Van Essen et al., 2013). However, a relative lack of
progress toward conceptual understanding in the brain sciences is
also recognized (Frégnac, 2017). Theoretical investigations of the
relationship between network structure and emergent dynamics
are valuable, and they promise to fill the gap in our empirical
knowledge of the multi-scale mechanisms in the brain. In this
article, we first describe a few theoretical frameworks to interpret
empirically measured structural connectivity and functional
patterns in the brain. Then, we describe current knowledge of the
macroscopic brain structure-dynamics relationships. Finally, we
discuss methods that focus on a mechanistic understanding of the
coupling between brain structure and dynamics with a focus on
the brain-wide network models of spontaneous dynamics.

THEORETICAL FRAMEWORKS TO
INTERPRET EMPIRICALLY MEASURED
BRAIN CONNECTIVITY

Several network analysis techniques are used to characterize
brain connectivity estimated from neuroimages. Representing
neuroimaging data as a connectivity matrix is usually a
necessary step before many of these techniques can be
employed (Figure 1A). The connectivity matrix defines pairwise
relationships such as the strengths of the anatomical connections
and correlations in activations between brain regions (following
the terminology used in the literature, pair-wise regional
correlations in activations between brain regions will be
referred to as functional connectivity). In this section, we
briefly summarize some of the widely used techniques and
promising theoretical frameworks to quantitatively characterize
brain structure and dynamics. We limit our discussion to the
graph theoretic metrics commonly applied in neuroimaging
and the frameworks which emphasize synergistic dynamics in
complex systems.

Characteristic Measures of Network
Connectivity
A graph is a data structure that represents a network as
a set of nodes (vertices) and links (edges). The nodes and
links correspond to the brain regions and connections between
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FIGURE 1 | Neuroimaging modalities (A–C) and characteristic features (D,E) for brain network structure and dynamics. (A) Fiber tracts estimated from dMRI (left)
and connectivity matrix computed for brain regions that were parcellated according to Destrieux et al. (2010). (B) Recordings from MEG (10 representative channels,
left) and their power spectral densities (right). (C) Sample BOLD signals measured from resting-state fMRI (left). Time-varying vectors of (resting-state fMRI)
connectivity degrees showing intermittent similarities over time (right). dMRI and MEG data were obtained from CamCAN repository (Taylor et al., 2017) and fMRI
data were obtained from the connectomeDB lifespan cohort (Van Essen et al., 2013). (D) Features of a graph (from top to bottom): Highlighted node has a degree of
4, two representative paths between the highlighted nodes are given in green (solid green denotes the shortest path), central nodes in a graph form a hub, and a
graph is subdivided into two communities based on the intra- and inter-community connection densities. (E) Metastable attractors in a system of interacting
oscillators. Phase difference (mode) between two oscillators is stable over several cycles and endogenously switches between different modes. (F) A schema
illustrating the outcome of regression analysis that uses regional characteristic features to identify predictive markers of neurological disorders (color bar denotes
model coefficients).
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them, respectively, when the whole-brain structural neuroimage
is represented using a graph data structure. The entries of
connectivity matrix could be either binary, indicating the
presence/absence of connections between a pair of regions, or real
numbers indicating the strength of connections between regions.
It is worth pointing out that semantic networks were recently
introduced to represent connectomes as a knowledgebase of
brain regions that enable combining multimodal information
(Kopetzky and Butz-Ostendorf, 2018; Chen et al., 2021).

Representing the anatomical connectivity as a graph data
structure enables characterization of its global and local
properties using simple metrics. For example, node degree is a
local property, and it denotes the number of links connected to
the node (Figure 1D). Node degree is also referred to as degree
centrality (see next paragraph for other centrality measures).
At the core of several graph metrics is the notion of “shortest
paths” between nodes. A path is a sequence of unique nodes
visited by following their links (Figure 1D). Identification of the
shortest path between two nodes in a graph (i.e., a path that
consists of minimum number of visited nodes) is accomplished
through heuristic optimization algorithms. The average of the
shortest path lengths between all pairs of nodes in a graph
is termed as characteristic path length. The average of inverse
shortest path lengths is the global efficiency of a graph, and it
is widely used to characterize the integration of different brain
regions. Similarly, the local efficiency is the average of global
efficiencies computed on the subgraphs consisting only of the
immediate neighbors of nodes. The local efficiency is used to
characterize the segregation of nodes in the graph. The global
efficiency of the structural human brain connectivity increases
with age (Hagmann et al., 2010) suggesting an increase in
network integration and/or a decrease in local segregation in
aging brains (Dennis et al., 2013a). Such path-based metrics
have also been applied to functional connectivity, and reductions
in functional segregation have been reported with increasing
age (Chan et al., 2014; Geerligs et al., 2015). However, findings
from other functional connectivity studies are inconsistent with
these reports (Achard and Bullmore, 2007; Sala-Llonch et al.,
2014). It is worth mentioning that applicability of path-based
metrics for functional connectivity is questionable (Rubinov and
Sporns, 2010). Here, a functional path is merely a sequence of
statistically correlated brain regions, and it is unclear whether it
truly reflects the efficiency of “information transfer/integration,”
as it is often interpreted.

Betweenness centrality of a node is the fraction of all shortest
paths in the graph that visit the given node. Similarly, rich-club
coefficient quantifies the extent to which high-degree nodes are
also connected to each other (van den Heuvel and Sporns, 2011).
Brain regions with high centrality measures are often referred to
as hubs (Figure 1D), and they may be crucial in coordinating
functions of different brain regions (Schmidt et al., 2015).
Betweenness centrality and rich-club measures are closely related,
as 89% of all shortest paths visit one or more of rich-club nodes in
the human brain (van den Heuvel and Sporns, 2011). However,
a systematic network lesioning study revealed a core scaffold
of anatomical connections that are crucial to the integrative
properties of the human brain, and they were found to be distinct

from the connections between rich-club nodes in the brain
(Irimia and Van Horn, 2014). Similarly, eigenvector centrality
(Bonacich, 2007) measures a node’s influence on the network.
It favors nodes that are connected to other nodes with high
eigenvector centrality. Eigenvector centrality is also applicable for
the analysis of functional connectivity (Lohmann et al., 2010).
Both degree centrality and eigenvector centrality measures were
shown to be related to altered resting-state network connectivity
in individuals with type I diabetes (van Duinkerken et al., 2017).
However, in individuals with subjective memory complaints,
degree centrality was altered in bilateral hippocampus, left
fusiform and inferior parietal regions, and no changes in
eigenvector centrality was reported (Li et al., 2018). The rich-
club organization of the anatomical connectivity changes during
development and the rich-club coefficient increases with age
(Dennis et al., 2013b). The rich-club organization is also altered
in pathological conditions including Schizophrenia (van den
Heuvel et al., 2013), Alzheimer’s (Yan et al., 2018) and Parkinson’s
diseases (Liu et al., 2021).

Modularity is a measure that quantifies the extent to which
a network may be subdivided into non-overlapping groups or
communities (Figure 1D). A number of algorithms exist to
identify community structures in large networks (Pons and
Latapy, 2005; Newman, 2006; Reichardt and Bornholdt, 2006;
Rosvall and Bergstrom, 2007; Blondel et al., 2008), and the
method proposed by Blondel et al. (2008) is one of the
most widely used algorithms. It uses an optimization heuristic
that maximizes the number of within-community links and
minimizes the number of across-community links. Since many
community detection algorithms rely on greedy optimization,
repeated stochastic trials are necessary to robustly identify
community structures in large networks. This is because different
stochastic trials may identify distinct community structures that
are equally (but only locally) optimal for a given heuristic
metric. Therefore, optimization solutions from multiple trials
should be aggregated to derive consensus communities (Sporns,
2018). Metrics such as Rand index (Rand, 1971), which
quantifies the similarity between clusters, can be employed
to evaluate the solutions of modularity optimization (Betzel
et al., 2016). Another important consideration is that modularity
detection has a resolution limit, which depends on the number
of connections in the network, and community structures
smaller than this resolution might not be resolved (Fortunato
and Barthélemy, 2007). Performing modularity analysis across
multiple resolutions and subsequently identifying consensus
communities from hierarchically modular structures can address
this limitation (Jeub et al., 2018; Sporns, 2018). Modularity
analysis is also applicable to functional connectivity, however,
the dynamical nature of modular organizations in functional
connectivity should be noted (Betzel et al., 2016). Reductions in
modularity with increasing age have been consistently reported
(Onoda and Yamaguchi, 2013; Cao et al., 2014; Geerligs
et al., 2015) suggesting reductions in functional segregation.
This age-related reduction was also reported to be more
pronounced in individuals on the Autism Spectrum (Henry
et al., 2018). Modularity in resting-state networks was shown
to be reduced in Alzheimer’s disease due to increased coupling
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between frontoparietal and default-mode networks (Contreras
et al., 2019). Finally, the modularity metric was reported
to be negatively correlated with cognitive performance in
Parkinson’s disease (PD) patients with mild cognitive impairment
(Baggio et al., 2014).

Frameworks to Characterize Network
Dynamics
Description of functional connectivity that emphasizes temporal
evolution and collective dynamics maybe more meaningful
than the spatialized descriptions based on path-based graph
measures. Here, we briefly review the theoretical frameworks
of metastability, self-organized criticality and integrated
information theory, all of which emphasize synergistic transitory
dynamics in systems of interacting elements.

Metastability is a conceptual framework that characterizes the
temporal evolution of a system in terms of its integration and
segregation tendencies (Tognoli and Kelso, 2014). In a metastable
system, the elements show transiently fixed relationship with
each other (e.g., transiently synchronized activations of neural
populations in the brain). Coexistence of synchronized and
desynchronized behaviors in a system of interacting oscillators
is an indication of its metastable nature (Shanahan, 2010;
Kasatkin et al., 2019). Importantly, such behaviors are short-
lived, and the system endogenously transitions between different
attractor (synchronized) states, whose basins of attractions
can be arbitrarily close in the phase space (Tsuda, 2009).
Metastability is believed to be a necessary physical property
underlying the coordinated dynamics of spatially distributed
neuronal populations in the brain (Fingelkurts and Fingelkurts,
2004; Freeman and Holmes, 2005). Metastability in a system of
interacting oscillators can be quantified by using the oscillators’
instantaneous phases as variables of coordination (Shanahan,
2010; Tognoli and Kelso, 2014; Kasatkin et al., 2019; Venkadesh
et al., 2020; Figure 1E). Spatiotemporal recordings of neural
activity obtained from EEG and MEG, owing to their resolvability
of high frequency oscillations such as gamma frequency bands
(Figure 1B), allow for an interpretation of mesoscopic transitory
dynamics using the framework of metastability (Freeman and
Holmes, 2005). However, such a description might not be
straightforward with the BOLD signals measured in fMRI
because of its limitation in temporal resolution and precision
of recorded neural activity. Hemodynamic responses, which
follow the activation of local neural populations, are delayed
by a few seconds due to the underlying neurovascular coupling
mechanisms (Menon and Crottaz-Herbette, 2005). In addition,
different brain regions may have different hemodynamic
response profiles (Handwerker et al., 2004), making it challenging
to identify spatially distributed regions that may be oscillating in
a perfectly synchronized or phase-locked manner.

Another widely studied phenomenon that is applicable to
systems of many interacting elements is self-organized criticality
(SOC). It is hypothesized that the brain operates near the edge
of criticality poised between total order and disorder (Werner,
2007; Hesse and Gross, 2014; Ma et al., 2019). The occurrence
of mass events (e.g., temporal clusters of spikes in spatially

distributed neurons) in a critical system exhibit power law
distributions indicating spatiotemporal scale invariance. The
power law distribution (or any deviations from it) empirically
observed in neural ensembles is a way to characterize the critical
nature of the spontaneous cortical dynamics (Miller et al., 2009;
Petermann et al., 2009; Ma et al., 2019). However, it is also
recognized that power laws alone may not be sufficient criteria for
criticality (Beggs and Timme, 2012). Because abrupt transitions
in collective dynamics are characteristics of neural networks
operating near criticality (Werner, 2007), it is also possible
that SOC may facilitate the spontaneous transitions between
attractor states observed in metastable systems (Tognoli and
Kelso, 2014). See Werner (2007) for an extensive review of
various theoretical frameworks including SOC and metastability
that fall under the umbrella of non-linear dynamics. The SOC
is realized in a system only under certain conditions (Jensen
and Magnasco, 1999), and the structural determinants of SOC
have been investigated in a biologically plausible neural network
model of spontaneous dynamics (Rubinov et al., 2011). It was
shown that modular network structures with low-wiring costs, in
the presence of activity-dependent synaptic plasticity, enhanced
the regime for SOC. Modeling studies have also reported
the significance of inhibitory synaptic plasticity in stabilizing
networks near criticality (Stepp et al., 2015; Ma et al., 2019).
Similarly, homeostatic structural plasticity can alter axonal and
dendritic outgrowth to realize network criticality (van Ooyen
and Butz-Ostendorf, 2019). These studies suggest that SOC may
govern the network microstructural changes mediated through
various plasticity mechanisms acting on multiple timescales.

Integrated information theory (IIT) postulates the
properties of conscious physical systems that can account
for phenomenological experience (Tononi et al., 2016).
A moment of conscious experience is intrinsically irreducible
to its distinct spatial features (integration), and it differs from
all other realizable experiences (differentiation). The IIT defines
complexity measures that quantify to what extent a network
of elements is both integrated and differentiated (Oizumi
et al., 2014). In its version 3.0, the IIT defines metrics such
as cause-effect information, which measures the specificity of
a mechanism in a certain state in constraining the system’s
past and future states, and integration, which measures the
irreducibility of the information generated by the whole system
to the information generated by its parts. A network structure
is partitioned into all possible candidate subnetworks, and their
elements are perturbed into all possible states to identify local
maxima of information integration. Thus, the rules governing the
network structure-dynamics relationship are implicitly exploited
in IIT’s quantitative framework. Moreover, IIT postulates that
the global maximum of integrated information is specified
at a definite spatiotemporal resolution in conscious physical
systems. It was shown that such global maximum can occur at
a coarser-grained level in space (grouped network elements)
and time (grouped timesteps) in simple systems (Hoel et al.,
2016). While IIT attempts to comprehensively characterize the
necessary properties of conscious physical systems, application
of its methods is limited to small and simple systems due
to combinatorial complexities. It was also suggested that the
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temporal resolution at which the information integration reaches
a maximum in the brain would correspond to the timescale
of metastable attractors (Tononi, 2012). In a separate line
of inquiry, it was hypothesized that a moment of conscious
experience is intrinsically irresolvable in time, and the transitions
between metastable attractor states in the brain coincide with
moment-to-moment changes in conscious experience (Freeman,
1999). In the context of brain structure-dynamics relationship, it
is worth pointing out that these frameworks treat consciousness
as not a function of the brain, but a phenomenon that coexists
with the dynamics of the brain. Finally, the mathematical
relationship between integrated information and metastability
has been examined in systems of coupled oscillators (Mediano
et al., 2016), and this topic remains as a promising direction for
future investigations.

MACROSCOPIC RELATIONSHIPS
BETWEEN STRUCTURAL AND
FUNCTIONAL CONNECTIVITY

The Default Mode Network (DMN) (Raichle et al., 2001) is one
of the functional networks identified from PET and resting-state
fMRI that consists of a number of anatomical hub regions such as
the precuneus and posterior cingulate cortex. These hub regions
have been suggested to be involved in self-referential processing
(Northoff and Bermpohl, 2004; Cavanna and Trimble, 2006).
Hagmann et al. (2008) reported a high degree of correspondence
between the structural and functional connectivity of these
regions in human brains. Shen et al. (2015) reported similar
findings in macaque brains. Furthermore, these anatomical hub
regions also showed higher degrees of synchronized activations
in a whole-brain model conditioned on the dMRI connectivity
(Schmidt et al., 2015). These studies highlight a strong link
between the network topology and emergent functional patterns
and suggest the role of anatomical hubs in functional integration.

The agreement between macroscopic structural connectivity
and the functional connectivity that is estimated from low-
frequency fluctuations has also been increasingly recognized.
In a large-scale neural network model of the macaque
cortex (Honey et al., 2007), intermittent synchronization
was observed between regions on a (fast) time scale of
hundreds of milliseconds. However, at the slowest time
scale of minutes, the average of functional connections
showed agreement with the underlying structural connections.
Similar results showing agreement between structural and
functional connections (only) on slow time scales were also
reported in systems of coupled non-linear maps (Rubinov
et al., 2009). Shen et al. (2015) empirically examined the
influence of the anatomical architecture on the resting-
state fMRI connectivity of macaque brains. They observed
increasing similarity between structural and functional
connectivity, when the size of the window to estimate
functional connectivity was increased. Their results suggested
that the functional connectivity estimated from the lowest
frequencies of BOLD fluctuations best reflects the underlying
structural connectivity.

Plasticity in the brain has been empirically observed
in multiple timescales. Restoration of neuronal activations,
following a lesion or monocular deprivation, can occur on
a much longer timescale than the synaptic plasticity (Butz-
Ostendorf and van Ooyen, 2017). Note that the Hebbian
synaptic plasticity (Hebb, 2005) and synaptic scaling (Turrigiano
et al., 1998) only adjust the strengths of existing synapses,
and they facilitate activity restoration on a timescale of hours
to a few days (Hengen et al., 2013; Barnes et al., 2015).
However, other forms of structural plasticity that rewire synaptic
connections (see section “Introduction”) can take place over
weeks (Brown et al., 2009) or months (Giannikopoulos and
Eysel, 2006) to restore circuit functions following lesions. Such
structural adaptations can be viewed as brain’s compensatory
responses to circuit damage. Thus, the relationship between
brain structure and dynamics is governed by the mechanisms
taking place over multiple timescales. Animal models are also
useful in elucidating the plasticity mechanisms in the brain. In
a mouse model of PD, a month of intense treadmill exercise
was shown to increase dendritic spines and arborization in
the striatum medium spine neurons, thereby reversing their
loss of structural connections (Toy et al., 2014). Another study
combined histological analysis with dMRI to examine structural
plasticity induced by learning and memory in rats (Blumenfeld-
Katzir et al., 2011). Their study reported increased fractional
anisotropy in dMRI that was accompanied by an increase in the
Myelin basic protein expression in certain regions, suggesting a
neuronal basis for the white matter changes observed in dMRI
that may be useful for indirectly localizing synaptic plasticity.
It is worth noting that animal models allow experimental
manipulations that are not possible in humans, and they
can be valuable tools for translational research by identifying
early biomarkers of neurological disorders (Gorges et al., 2017;
Muñoz-Moreno et al., 2018).

Combined analyses of macroscopic structural and
functional connectivity can reveal useful information about
their relationships in pathological conditions. The structural
connectivity enables a range of dynamics in the brain, and this
has implications in neurodegenerative disorders such as Multiple
Sclerosis (MS) and PD. A healthy brain exhibits a rich repertoire
of dynamical configurations, which is revealed in the low
similarity between structural and functional connectivity (Braun
et al., 2015). At the onset of MS, the similarity between structural
and functional connectivity is low, but as the disease progresses
disconnecting structural pathways, they become highly similar,
indicating reduced range of dynamical configurations (van Dam
et al., 2021). Persson et al. (2006) investigated cognitive decline
in aging and reported structural and functional alterations
associated with declining memory performance in older subjects.
The dMRI of these subjects showed reduced fractional anisotropy
in anterior corpus callosum, and the fMRI showed increased
activation in left prefrontal cortex. Increased activation in right
prefrontal cortex was also reported for the subjects with the
greatest memory decline. However, whether such increased
activations are neural compensatory responses to the structural
alterations is not clear, and models mechanistically integrating
brain structure and dynamics (see section “Mechanistic Models
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of Brain Structure-Dynamics Relationship”) can reveal insights
in this regard. Similarly, Poston et al. (2016) investigated
neural compensatory mechanisms in PD, where the loss of
dopamine neurons in basal ganglia is believed to be at least
partially responsible for the motor symptoms. Despite severe
neurodegeneration in the basal ganglia, many PD patients
remain cognitively intact. Poston et al. (2016) reported increased
activation of the putamen in the fMRI of cognitively intact PD
patients compared to the healthy group during working memory
tasks. Their study suggested that the hyperactivation of the
putamen is a compensatory response to the loss of dopamine
neurons to maintain normal cognition in PD. Such neural
compensatory mechanisms are bound by the structure-dynamics
relationship of the brain.

MECHANISTIC MODELS OF BRAIN
STRUCTURE-DYNAMICS
RELATIONSHIP

The synaptic plasticity mechanisms that mediate structure-
dynamics coupling at the micro- and mesoscopic level are
largely elusive in the connectivity estimated from neuroimaging
modalities such as diffusion-weighted and functional MRI
[although see Blumenfeld-Katzir et al. (2011)]. Thus, the
mesoscopic dynamics of neural ensembles are of special interest
to investigate the reciprocal relationship between the network
structure and dynamics. Models of whole-brain oscillatory
dynamics aim to simulate multiscale mechanisms (Schmidt et al.,
2018; Shen et al., 2019) and enable perturbational methods of
inquiries (Deco et al., 2015) to probe into their relationships.
However, achieving the right balance between abstraction and
biophysical details to describe various elements of neural
networks is challenging, and it is an important methodological
consideration in large-scale models of brain dynamics.

Large-scale neural network simulations aiming to
capture biophysical details in a comprehensive manner are
computationally demanding. Such simulations typically describe
rules governing various neuronal ion-channel kinetics to account
for the electrophysiological diversity of neuronal populations
(Morgan and Soltesz, 2008; Markram et al., 2015; Bezaire et al.,
2016). Morphologically detailed Hodgkin-Huxley type models
of individual neurons (Hodgkin and Huxley, 1952) specify
hundreds of differential equations for each neuron limiting the
scalability of network simulations. On the other hand, simpler
phenomenological models such as the Quadratic Integrate and
Fire (Izhikevich, 2003) and Adaptive Exponential Integrate
and Fire (Naud et al., 2008) have been recently shown to
quantitatively capture the diversity of neural excitability patterns
using powerful optimization techniques (Teeter et al., 2018;
Venkadesh et al., 2019). These simpler neuronal models can
significantly reduce the computational demands of large-scale
network simulations (Izhikevich and Edelman, 2008).

Model reduction techniques for the network dynamics have
also been proposed. One approach to simplify the network
model complexity is via dynamic mean-field (DMF) reduction
(Wong and Wang, 2006). Here, neural population dynamics

are reduced to single units that approximate the input-output
relation (e.g., current – frequency curves) of the population. Such
generalizations significantly reduce the number of differential
equations that describe the temporal evolution of the model.
It is worth noting that the DMF techniques that capture
population firing frequencies in single unit approximations
do not account for the emergent self-organizing patterns of
interacting neurons. For example, selectively recruited individual
pyramidal neurons in the CA1 and CA3 area of the rodent
hippocampus not only collectively fire in theta-modulated-
gamma frequencies, but their firing occurs at different phases of
the background theta oscillations, correlating with the location
of the animal in an environment (O’Keefe and Recce, 1993;
Dragoi and Buzsáki, 2006). These temporal features underscore
the dynamical complexity at the level of individual neurons.
Such temporal structures emerge from neuronal interactions
mediated by the microcircuit connectivity and single-unit
approximations of population dynamics lack explanatory power
at this level. However, DMF models constrained by macroscopic-
neuroanatomical connectivity showed agreement with the
resting state functional connectivity that was viewed as a
static map of interactions between regions (Deco et al., 2013;
van Hartevelt et al., 2014).

Several computational studies have investigated the
relationship between empirically measured structural and
resting-state functional connectivity by simulating large-scale
network dynamics. Population dynamics of local brain regions
can be described by mutually interacting excitatory pyramidal-
type neurons and inhibitory interneurons, and the connections
between (pyramidal neurons of) the brain regions can be
specified using the empirically measured structural connectivity
(Deco and Jirsa, 2012; Deco et al., 2013). It is worth mentioning
that the most prominent inhibitory interneurons such as the
Parvalbumin positive Basket cells typically have higher frequency
profiles than the pyramidal neurons. The differences in their
intrinsic excitability could induce bursting dynamics when they
mutually interact (Izhikevich, 2007), and bursting dynamics
maybe crucial to realize metastable complexity in neural
networks (Venkadesh et al., 2020) (see section “Frameworks
to Characterize Network Dynamics” for a discussion on
metastability). This suggests an importance of capturing
mesoscopic neural diversity in large-scale network simulations.

Alternative to the DMF techniques, coupled phase oscillators
such as Kuramoto models have also been used to reduce
the network model complexity. Here, oscillators represent
brain regions, and they are coupled according to the cerebral
connectome to investigate the emergent synchronization
patterns. Using Kuramoto oscillators, Schmidt et al. (2015)
showed that the high-degree hub regions in the brain anatomical
connectivity (van den Heuvel and Sporns, 2011) synchronized
at a higher level than other regions and were also crucial in
achieving intermodular synchronization. Similarly, pulse-
coupled phase oscillators have been simulated using a
fully-connected network with synaptic plasticity (Kasatkin
et al., 2019). Here, oscillators self-organized into multiple
volatile domains of synchronized and desynchronized activity
called itinerant chimeras, a special case of metastability. More
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importantly, the plasticity rules enabled the emergence of positive
structural connections within the coherent domains and negative
connections across domains, highlighting an interaction between
the network structure and the itinerant/metastable dynamics.
Similarly, Rubinov et al. (2009) simulated spontaneous cortical
dynamics on structural connectivity networks with activity-
dependent plasticity rules. Not only did modular functional
patterns emerged from initial structural networks with random
connectivity, but the connectivity was also rewired toward more
modular structures corresponding to the functional patterns.

The resting-state fMRI paradigm provides additional
empirical ground to fit the simulated large-scale oscillatory
dynamics to the correlations in the BOLD activity between brain
regions. As mentioned before, BOLD signals represent regional
activations convolved by low frequency hemodynamic responses.
A hemodynamic model (Friston et al., 2003) can be specified
to obtain simulated BOLD activity from the population firing
rates of neurons. This approach revealed that the time-averaged
resting-state functional connectivity emerged from slow and
stable linear firing activity close to a point of bifurcation (Deco
et al., 2013). A bifurcation is a qualitative change in a dynamical
system behavior and such bifurcation points are identified
by tuning a global coupling constant (bifurcation parameter).
Taking a similar approach, van Hartevelt et al. (2014) reported the
effects of long-term deep brain stimulation (DBS) of subthalamic
nuclei on structural and functional connectivity of a Parkinson’s
disease patient. Following 5 months of DBS, the dMRI showed
no notable change in global graph metrics, but significant
differences in local graph metrics for several regions were
observed. Moreover, the post-DBS structural connectivity shifted
the global bifurcation of the simulated functional connectivity
toward the healthy bifurcation. Such whole-brain computational
models of spontaneous dynamics are valuable tools to study the
effects of local alterations in structural connectivity on the global
brain dynamics. However, a limitation of such approaches is
that they do not take into account the dynamical topographic
organizations of the resting-state functional connectivity (Betzel
et al., 2016). Future whole-brain modeling studies should
attempt to capture such time-varying organizations in simulated
functional connectivity. Such models can potentially reveal novel
biomarkers for neurological disorders (Figure 1F) based on the
transient network dynamics (Lord et al., 2017).

DISCUSSION

At the mesoscopic level of neuron types, frameworks relating
neural diversity and emergent network complexity are in
urgent need of development. While considerable progress
has been made in characterizing different types of elements
of neural networks, how these diverse elements coordinate
with each other in a way that allows for the emergence of
coherent dynamics is still an open question. Comprehensively
mapping the many-to-one relationships between structural
network configurations of diverse neural elements and their
characteristic dynamical complexities in the nervous system
is an important milestone to achieve. This will require

formulating scalable mathematical characterizations of brain
dynamics and identifying distinct combinations of diverse
neural elements that could realize a precise dynamic given a
connectivity structure. This could be formulated as a search
problem in the space of parameters describing neural diversity
and connectivity. Powerful optimization techniques, such as
Evolutionary Algorithms (EA) (De Jong, 2016), can apply
selection pressure to these parameters using a fitness function
describing a dynamical complexity. By appropriately configuring
the exploration and exploitation tendencies, the EAs can,
in principle, identify multiple structural configurations that
could realize the given dynamical complexity. GPU-accelerated
simulations of network dynamics (Nowotny et al., 2014; Beyeler
et al., 2015) will also be integral to such computationally
demanding objectives. Such frameworks can make predictions
about the optimal combinations of diverse neural elements
in a network, which can be validated on large-scale datasets
that quantitatively characterize mesoscopic level neural diversity
and connectivity (Wheeler et al., 2015; Teeter et al., 2018;
Komendantov et al., 2019).

The macroscopic anatomical connectivity estimated from
dMRI is based upon the diffusion of water along axonal fibers.
The fiber orientation at each voxel is estimated by calculating
orientation distribution function, which is a distribution of
water diffusion at various orientations. Techniques that rely
solely on the local orientation information could result in false-
positive connections (Maier-Hein et al., 2017). Approaches that
supplement this local orientation information with a global
model of diffusion signals could improve the tractography
results. Streamline filtering based on spherical-deconvolution
(Smith et al., 2013) and combining microstructural features with
tractography (Daducci et al., 2015) are some of the approaches
that specify such global models, which are solved using powerful
optimization techniques. Note that the streamline/fiber counts
estimated from dMRI tractography are typically assumed to
represent the strength of connections between regions in
connectivity analyses. However, the fractional anisotropy, which
is used in tractography, is sensitive to features such as the
degree of myelination and curvature in axonal pathways
(Jones et al., 2013). Therefore, streamline counts estimated
from dMRI may only approximate the actual fiber counts
between brain regions. Moreover, the choice of the tractography
technique and its parameters can influence the computed graph
metrics. Duda et al. (2014) evaluated the reproducibility of
graph metrics using different tractography algorithms and their
sensitivities to different network sparsity levels. While global
and local efficiencies (see section “Characteristic Measures of
Network Connectivity”) were highly reproducible across fiber
tracking algorithms and network sparsity levels, characteristic
path length and rich club coefficient were sensitive to the
choice of fiber tracking algorithm. Their study also suggested
the importance of computing these metrics over a range of
network sparsity thresholds (and degree thresholds for rich-
club coefficient).

Obtaining comprehensive measurements of neural activation
patterns that cover both the breadth (i.e., whole-brain coverage)
and the depth (i.e., at a sufficient spatiotemporal resolution)
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of a human brain remains technologically challenging. While
EEG and MEG can record neural activations at a high
temporal resolution, they can only capture activations from
limited types of neurons. They can measure activities of
cortical pyramidal neurons, which have morphologies in
a laminar organization. Such neuronal architectures enable
dipole fields from populations of neurons to be detected at
the scalp. However, cortical interneurons that lack laminar
organization might not contribute significantly to the EEG or
MEG signals, if their dendrites and axons spatially overlap,
canceling out strong electromagnetic fields (Freeman et al.,
2009). Such structural features also make detecting neuronal
sources of activations in deeper brain regions by EEG and
MEG difficult, although recent efforts (Pizzo et al., 2019) show
promise in this regard. fMRI BOLD signal measurements,
on the other hand, rely on the hemodynamic responses to
neuronal activations and are not sensitive to neuronal structural
organizations, thereby enabling more spatially comprehensive
measurements of their activations. However, the BOLD signal
measurements are influenced by the underlying neurovascular
coupling mechanisms (Menon and Crottaz-Herbette, 2005).
The coupling between neuronal activation and subsequent
hemodynamic response involves complex pathways that include
astrocytes (Wolf and Kirchhoff, 2008) and neurotransmitters
such as glutamate and GABA (Muthukumaraswamy et al.,
2012). Understanding the mechanisms of neurovascular
coupling and incorporating those mechanisms in models
of hemodynamic responses (Hillman, 2014; Huneau et al.,
2015) are necessary to appropriately interpret the lagged
and negative correlations observed in fMRI time series.
The complementary nature of functional imaging modalities
EEG/MEG and fMRI maybe valuable to improve the
spatiotemporal resolution of recorded brain activity through
cross-modal integration (Freeman et al., 2009; Hall et al.,
2014; Cichy and Oliva, 2020). Such multimodal integration
is beneficial, for example, to identify the frequency bands
of neuronal activations that are reflected in hemodynamic
responses (Uono et al., 2017) and to improve the predictive
accuracies of biomarkers based on functional neuroimaging
(Engemann et al., 2020).

The mechanistic relationship between brain structure and
dynamics is mutual. While structural connectivity constrains
the range of emergent dynamics, the dynamics, in turn,
shapes the network microstructure on multiple timescales
to achieve optimal function. For instance, electrical activity
of neurons modifies synaptic strengths on short timescales
mediated by Hebbian plasticity (Hebb, 2005), and modifies
neuronal morphology on much longer timescales mediated by

intracellular calcium concentration (Butz and van Ooyen, 2013)
(see also section “Macroscopic Relationships Between Structural
and Functional Connectivity”). However, the principles of
interactions between various plasticity mechanisms acting
across timescales are unknown. The top-down influence
of collective neuronal dynamics, under the constraints of
anatomical connectivity, likely regulates such interactions (see
also discussion on SOC in section “Frameworks to Characterize
Network Dynamics”). Therefore, quantitative frameworks
characterizing multiscale dynamical complexities in neural
networks are of utmost importance. Such frameworks, when
numerically scalable, will enable interpretation and validation of
empirically observed structure-dynamics relationships.

Finally, the structural human connectome is incomplete
without the descriptions of neural connections in the spinal cord
and peripheral nervous system (Irimia and Van Horn, 2021).
The structure-function relationship in the nervous system, in its
broadest scope, concerns itself with an important question: what
are the mechanisms by which the whole-organism connectomes
realize autonomy in their actions? (see Albantakis et al. (2020)
for a discussion of autonomy) Neural constituents of these
mechanisms are shaped by the environmental inputs, which are
integrated into the brain dynamics via action and perception
(Freeman and Holmes, 2005). Delineating the multifaceted
relationship between neural structures and their intrinsic
dynamics in the brain is a necessary step toward a foundational
understanding of nervous system functions in normal and
aberrant conditions.
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