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Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders, which
brings enormous burdens to the families of patients and society. However, due to
the lack of representation of variance for diseases and the absence of biomarkers for
diagnosis, the early detection and intervention of ASD are remarkably challenging. In this
study, we proposed a self-attention deep learning framework based on the transformer
model on structural MR images from the ABIDE consortium to classify ASD patients
from normal controls and simultaneously identify the structural biomarkers. In our work,
the individual structural covariance networks are used to perform ASD/NC classification
via a self-attention deep learning framework, instead of the original structural MR data,
to take full advantage of the coordination patterns of morphological features between
brain regions. The self-attention deep learning framework based on the transformer
model can extract both local and global information from the input data, making it more
suitable for the brain network data than the CNN- structural model. Meanwhile, the
potential diagnosis structural biomarkers are identified by the self-attention coefficients
map. The experimental results showed that our proposed method outperforms most of
the current methods for classifying ASD patients with the ABIDE data and achieves
a classification accuracy of 72.5% across different sites. Furthermore, the potential
diagnosis biomarkers were found mainly located in the prefrontal cortex, temporal
cortex, and cerebellum, which may be treated as the early biomarkers for the ASD
diagnosis. Our study demonstrated that the self-attention deep learning framework is
an effective way to diagnose ASD and establish the potential biomarkers for ASD.

Keywords: autism spectrum disorder, individual morphological covariance brain networks, self-attention based
neural networks, deep learning, biomarker

INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disability that can affect significant
communications, behavior, and social interactions. The term “spectrum” in ASD is because of
the variation in the type and severity of symptoms people experience. The main symptoms of
ASD are abnormal emotional regulation and social interaction, limited interest, repetitive behavior,
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and hypo- or hyper reactivity to sensory stimuli (Guze, 1995).
Symptoms will hurt their ability to function properly in school,
work, and other areas of life. ASD has caused a severe burden
on patients and their families. Therefore, early diagnosis and
intervention of ASD are critical. However, the current clinical
diagnosis of ASD is mainly based on the doctor’s subjective
scale assessment and lacks objective diagnostic methods. The
diagnosis based on medical images, especially MRI images,
has a certain degree of objectivity, but lacks credible imaging
markers. Therefore, objective imaging-based diagnosis of ASD
and the provision of reliable imaging markers are significant
research trends.

Existing ASD diagnosis methods on structural MRI images are
mainly traditional machine learning methods. The handcrafted
features in these methods are extracted from morphological
structure, such as the cortical thickness of brain gray matter
and other geometric features at each cerebral vertex (Ecker
et al., 2010b; Sato et al., 2013; Zheng et al., 2019). Jiao et al.
(2010) constructed a small-scale dataset that contains 22 ASD
and 16 normal control subjects (NC), and defined voxel-based
and surface-based features. Four machine-learning techniques:
support vector machines (SVMs), multilayer perceptrons
(MLPs), functional trees (FTs), and logistic model trees (LMTs)
were employed to classify ASD. LMT achieved the best accuracy
of 87.0% for surface-based classification. Ecker et al. (2010a)
proposed a five-dimensional feature followed by SVM to
distinguish ASD from NC. It achieved the classification accuracy
of 79.0% in the left hemisphere, 65.0% in the right on a single-site
dataset. Although these methods reach a satisfactory diagnosis,
the handcrafted features they used mainly come primarily from
experience, also are bound by the experience.

Given the drawbacks of machine learning, some deep neural
networks automatically acquire effective feature representation
from sMRI data (Heinsfeld et al., 2018; Lian et al., 2018).
However, the conflict between a small sample size and huge
model parameters will lead to overfitting or other erratic model
behavior. Thus, it is necessary to outline critical features from the
MRI data before being fed into the networks. The morphological
brain networks measuring the intracortical similarities in the
gray matter play a crucial role in investigating abnormalities in
neurological diseases (He et al., 2007; Yu et al., 2018).

Kong et al. (2019) proposed a simple individual brain network
to express connectivity features between each pair of regions of
interest (ROIs). Then the connectivity features are ranked by
F-score in descending order. Finally, 3,000 top features were
selected to perform classification via a DNN network. It achieved
an accuracy of 90.39% in a subset of 182 subjects. However, it only
carried out bi-level (ASD/TC) classification, neither was a large
dataset from a multi-site included, nor the biomarker considered.
To fix the problems, (Gao et al., 2021) used a Res-Net and Grad-
CAM on individual structural covariance networks to perform
the ASD diagnosis and biomarker identification. They achieved
an accuracy of 71.8% on the ABIDE dataset and confirmed the
prefrontal cortex and cerebellum as the biomarkers for ASD.

Though these methods achieved remarkable performance,
they still have the following drawbacks: (1) The small sample
size leads to overfitting and generalization problems, not to

mention a small sample size from a single site. The single-
site datasets can neither represent the variance of disease
and control samples, nor establish stable generalization models
for replication across different sites, participants, imaging
parameters, and analysis methods (Nielsen et al., 2013). (2)
So far, most machine learning methods for ASD diagnosis on
sMRI data have considered morphological features extracted
at different ROIs independently, ignoring the integrality of
brain structure, and even in Gao et al. (2021), although
the individual structural covariance networks are fed into
the deep learning framework, the CNN framework only
extracts the local feature by the kernel, which is not suitable
for the brain network data. (3) The classification results
from the deep learning model are hard to interpret in the
absence of the contributions of the classification features
leading to a lack of clinical significance. Although some
biomarkers were found in Gao et al. (2021) by Grad-CAM
(Selvaraju et al., 2017), it is fit for CNN-based models to
produce the decisional explanations. The residual learning
in Gao et al. (2021) is not suitable for the covariance
networks, which leads to the biomarkers obtained from Grad-
CAM being narrowly acceptable. Furthermore, there still exist
gradient saturation and false confidence problems in Grad-CAM
(Wang et al., 2020).

In view of the drawbacks, to explore an efficient ASD
diagnosis method, we propose a self-attention deep learning
framework to diagnose ASD and identify biomarkers on a
multi-site dataset. This work is divided into two steps: first, we
construct the individual morphological brain network from sMRI
to characterize the interregional morphological relationship, and
then, the output of morphological networks, instead of sMRI,
is fed into a self-attention deep learning model to classify ASD
from NCs. Meanwhile, the regional biomarkers are identified by
the attention weight presenting the degree of contribution of the
corresponding regional feature.

In the following sections, we will present our materials and
methods in section “Materials and Methods,” results in section
“Results,” discussion in Section “Discussion,” and conclusion in
section “Conclusion.”

MATERIALS AND METHODS

The Dataset
The ABIDE dataset (Di Martino et al., 2014), a large open
access data repository, is used in this study, which is accessed
from 17 international sites with no prior coordination. It
includes structural MRI, corresponding rs-fMRI, and phenotype
information for individuals with ASD and TC, which allows
for replication, secondary analyses, and discovery efforts. Even
if all data in it were collected with 3T scanners, the sequence
parameters and the type of scanner varied across sites. In our
work, the structural MR images we used were aggregated from
all 17 international sites, which contain 518 ASD patients and 567
age-matched normal controls (ages 7–64 years, median 14.7 years
across groups). In addition, the data we used contains 926 males
and 159 females.

Frontiers in Neuroscience | www.frontiersin.org 2 October 2021 | Volume 15 | Article 756868

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-756868 October 12, 2021 Time: 10:37 # 3

Wang et al. ASD Detection and Biomarkers Identification

Data Preprocessing
We used DRAMMS (Ou et al., 2011) to process all structural
MR images in the preprocessing step, in which the cross-subject
registration, motion correction, intensity normalization, and
skull stripping are included. Furthermore, all T1W MRI images
were registered to the SRI24 atlas (Rohlfing et al., 2010) for
subsequent analysis. Then, We used the multiplicative intrinsic
component optimization (MICO) method (Li et al., 2014) to
segment the T1W images into the cerebrospinal fluid (CSF),
white matter (WM), and gray matter (GM).

Individual-Level Morphological
Covariance Brain Networks
In our study, the individual level morphological covariance brain
network (Wang et al., 2016) is used to extract interregional
structural variations to characterize the interregional
morphological relationship. The detailed procedures are
described below. First, a GM volume map was acquired for each
participant in the template space. Second, the individual-level
morphological covariance brain network was constructed from
their GM volume images, which refers to the literature (Wang
et al., 2016). Although the SRI24 atlas parcellates the whole brain
into 116 subregions, with 58 subregions in each hemisphere,
due to the low signal-to-noise ratio and blank values of the gray
matter volume in the Vermis, eight regions in the Vermis (the
cerebellar Vermis labeled from 108 to 115) were excluded to
ensure the reliability of our study. Finally, a 108 × 108 matrix
was obtained according to SRI24 atlas. That is, a vector Xp for
each region and a matrix X for the whole brain were obtained for
each subject for further analyses.

To be specific, the variation xpqis calculated as follows: the
probability density function (PDF) of the extracted GM volume
values is first estimated by the kernel density estimation (KDE)
(Parzen, 1962).

Then, the variation of the KL divergence (KLD) between the
region Pand Q is calculated subsequently from the above PDFs as
Eq. 1:

DKL(P,Q) =

N∑
i=1

(
P(i) log

P(i)
Q(i)
+ Q(i) log

Q(i)
P(i)

)
(1)

where P(i) and Q(i) are the PDFs of the region P and Q. N is the
number of PDF sample points. The element of variation matrix is
formally defined as the structural variation between two regions,
which is quantified by a KL divergence-based similarity (KLS)
measure (Kong et al., 2014) with the calculated variation of KLD.
Thus, the variation between the region P and Q can be defined as
Eq. 2:

xPQ = KLS(P,Q) = e−DKL(P,Q) (2)

Finally, the structural variation feature vector for the region P can
be described as Eq. 3:

Xp = (xp0, xp1, . . . , xp(M−1))
T
∈ RM×1 (3)

The structural variation matrix X can be described as Eq. 4:

X = (xpq) = (X0,X1, . . . ,XM−1) ∈ RM×M (4)

where M is the number of regions, which is set as 108 in our study.
In the classification task, the matrix X can be fed into the

neural networks to replace the structural MR images.

Self-Attention Neural Network Classifier
Transformer was first applied to machine translation tasks and
has achieved great success in the field of natural language
processing (Vaswani et al., 2017). The tremendous success in NLP
has led researchers to adapt it to computer vision, where it has
achieved great performance on the tasks of image classification
(Dosovitskiy et al., 2020) and general-purpose backbone for
computer vision (Liu et al., 2021). Especially, the transformer
is designed for sequence modeling and transduction tasks, and
the self-attention mechanism is notable for modeling long-range
dependencies in the data (Wang et al., 2018; Cao et al., 2019;
Liu et al., 2021). As the basis for powerful architectures, the
self-attention mechanism in transformer has displaced CNN
and RNN across a variety of tasks (Vaswani et al., 2017; Zhao
et al., 2020; Han et al., 2021; Liu et al., 2021; Radford et al.,
2021; Touvron et al., 2021; Wang et al., 2021; Yuan et al.,
2021).

Morphological brain network refers to the intracortical
variations in gray matter morphology. It is presented as
the structural variation matrix among brain regions. In our
work, the information of a brain region is represented by
a feature vector to characterize its variation with other
regions, and we expect to extract global information from the
feature vectors of brain regions for the diagnosis. Thus, an
optimal arrangement of data and feature extraction method
are important for our work. Gao et al. (2021) viewed all
region features as a matrix and fed it into a CNN framework.
However, the CNN model only utilizes the local representation
property of the extracted features by the convolution kernel;
neither the dependency relationships between non-local regions
are considered. The self-attention mechanism is adept at
handling non-local dependencies in the data, which is able
to take the place of the CNN model and extract the non-
local feature from the data. Thus, it is suitable for the
morphological brain network.

The output vectors of a self-attention layer are the weighted
sum of input vectors, and the weight assigned to each vector is
computed by the similarity of two vectors.

In the classification step, the vectors X = (X0,X1, . . . ,XM−1)
are first fed into the self-attention layer, and the query Qp, keys
Kp and values Vp for the region P are defined as Eqs 5–7:

Qp =WQXp (5)

Kp =WKXp (6)

Vp =WVXp (7)

where Xp is the variation feature vector for the region P, WQ , WK ,
and WV are the parameters to be learned.
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FIGURE 1 | The overall flow chart of our study. Briefly, the individual level morphological covariance brain network is first constructed according to the SRI24 atlas
and gray matter volume map of each subject. The above morphological covariance brain network is used to extract interregional structural variation vectors to
characterize the interregional morphological relationship. Then the vectors are fed into two self-attention layers classification neural networks. Meanwhile, the
contribution of each region for classification is obtained from the self-attention coefficients map of each layer. Finally, two heat maps are averaged to obtain a mean
output heat map for diagnosis biomarker identification.

TABLE 1 | Comparison of the classification performances between our method
and other methods.

Method Accuracy Sensitivity Specificity F1 score

Self-attention(ous) 0.7248 0.7581 0.6809 0.7581
RF 0.6091 0.4902 0.7119 0.5376

SVM 0.5818 0.3726 0.7627 0.4524

Xgboost 0.6091 0.5294 0.6780 0.5567

AE 0.6727 0.6875 0.8750 0.5714

2D CNN 0.7182 0.8125 0.6875 0.6869

3D CNN 0.5596 0.5714 0.4545 0.7000

SVM, support vector machine; XGB, Xgboost; AE, autoencoder. The bold values
indicate maximum value of each index.

Then, the self-attention coefficients αpq are computed via dot
product attention as Eq. 8:

αpq = Softmax

(
QT
pKq
√
dK

)
(8)

where dK is the dimension of Kq .
Finally, the output vector X1

p
of the region P after the self-

attention layer is computed as Eq. 9:

X1
p =

M−1∑
q=0

αpqVq (9)

Biomarker Identification Based on
Self-Attention Model
As the weight of the input feature vectors, the self-attention
coefficients α can indicate the contribution of the input vector
to the output. Therefore, the self-attention coefficient map can
be considered as the basis for the identification of biomarkers.
The larger the weight α of a feature vector is, the higher its
contribution to the classification task is, and the more likely the
corresponding brain region is the biomarker for ASD diagnosis.

Implementation
An overview of our proposed ASD/NC classification framework
is shown in Figure 1, and two self-attention layers were
adopted in the networks. First, we constructed an individual-
level morphological covariance brain network according to the
SRI24 atlas to obtain the structural variation feature vectors for
each region. Then, the vectors were fed into two self-attention
layers classification neural networks. In this work, the structural
variation feature vector Xp∈R108×1 covers 108 regions, and the
size of the output vectors X1

p
and X2

p
of each self-attention

layer is R32×1 . Meanwhile, the contribution of each region for
classification was obtained from the self-attention coefficients
map of each layer. After each self-attention layer, Leaky ReLU
activation and layer-normalization (Ba et al., 2016) were adopted
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FIGURE 2 | Comparisons between our method and other methods for classification. The area under the curve (AUC) values are used to assess the classification
performances for our method, 2D CNN, autoencoder (AE), RF, support vector machine (SVM), and Xgboost (XGB).

TABLE 2 | Comparison of the classification performances between the different
number of heads in the self-attention layer.

Method Accuracy Sensitivity Specificity F1 score

1-Head 0.7248 0.7581 0.6809 0.7581

2-Head 0.6881 0.7549 0.6154 0.7167

4-Head 0.6789 0.7000 0.6410 0.7369

8-Head 0.6697 0.6667 0.6786 0.7500

The bold values indicate maximum value of each index.

to ensure the training was stable and efficient. The negative
slope of the Leaky ReLU activation layer is settled as 1e−2, and
the input feature size of each linear layer is R32×1 . After the
first linear layer, a ReLU activation and a batch-normalization
(Ioffe and Szegedy, 2015) layer were adopted. We employed
an Adam optimizer (Kingma and Ba, 2014) with the learning
rate of 6e−6. A batch size of 32 and a weight decay of 0.01
are used. After initializing the weights randomly, the binary
cross-entropy loss is chosen to supervise the training for the
ASD/NC classification.

RESULTS

In this group of experiments, we compare our framework with six
competing methods in the task of ASD versus NC classification.
Four parameters, namely accuracy (ACC), sensitivity (SEN),
specificity (SPE), and F1 score, are calculated to evaluate

TABLE 3 | Comparison of our networks with the different number of
self-attention layers.

Number of Self-
Attention Layers

Accuracy Sensitivity Specificity F1 score

1 0.6697 0.6627 0.6923 0.7534

2 0.7248 0.7581 0.6809 0.7581

3 0.6606 0.6711 0.6364 0.7338

4 0.6147 0.6667 0.5435 0.6667

5 0.6055 0.7174 0.5238 0.6055

The bold values indicate maximum value of each index.

the performance of our proposed framework. The deep self-
attention neural networks used in our work achieved a mean
classification accuracy of 72.5%, mean sensitivity value of 75.8%,
specificity value of 68.1%, and F1 score of 0.758. Our results
improved the mean classification accuracy of the state-of-the-
art (Gao et al., 2021) from 71.8 to 72.5% in the ABIDE data.
To evaluate the performance of our work, the result of our
framework is compared with those of conventional machine
learning methods [i.e., RF (Ho, 1995), SVM (Vapnik et al.,
1998), and Xgboost (XGB) (Chen and Guestrin, 2016)] and
deep learning methods [i.e., autoencoder (AE), 2D CNN (Gao
et al., 2021) and 3D CNN]. Note that with the purpose of using
structural variation matrix X∈R108×108 for subject classification
by these conventional machine learning methods and AE, it is
first collapsed in a one-dimension vector Y∈R11664×1 . Specifically,
the dimension of the vector Y was first reduced by Principal
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FIGURE 3 | The histogram of the accuracy of the permutation test. The permutation test with 10,000 times was used to evaluate the significance of our method.
The accuracy of our method (0.725) is indicated by the red dotted line. The classification accuracy is higher than 96.4% of the permutated accuracy values.

Component Analysis (PCA) in SVM classification, and the
material sMRI images were fed into 3D CNN neural networks.
The comparisons are presented in Table 1. Furthermore, the
performance assessed by the area under the curve (AUC) values
of these classifiers is shown in Figure 2. Our proposed framework
has the best performances in classifying ASD from NC with
the highest ACC, F1 score, and AUC values compared with
the other methods.

In our work, the self-attention layer can be set as a multi-head
self-attention layer. Through comparison of the experiments in
Table 2, we found that the network with a single-head self-
attention layer achieved the best performance. There is the
same number of parameters to be learned in the experiments in
Table 2. In addition, through comparison presented in Table 3,
we found that our model with two self-attention layers achieved
the best performance.

Furthermore, we evaluated the significance of the classification
accuracy by the permutation test 10,000 times. During the
permutation testing, we changed 20% of the labels of the samples
randomly each time. The histogram of the accuracy of the
permutation test is shown in Figure 3. The accuracy of our
method (72.5%) is indicated by the red dotted line. As shown in
Figure 3, the 72.5% accuracy of our method is higher than 96.4%
of the permutated accuracy values.

In our proposed framework, the self-attention coefficients
α were obtained through the self-attention layer, which can
be seen as the contribution indicator of brain regions to
the ASD/NC classification. In order to make our proposed
model diagnose ASD more transparent and explainable, the
self-attention coefficients map is obtained according to the
following step. According to Eqs 8, 9, the self-attention coefficient
αpq indicates the contribution of the feature vector Xq to the
output feature vector X1

p
. Thus, the larger αpq is, the larger

the contribution of the region Q to the classification is. In
our result, we found that the self-attention coefficients maps
of the first and second layers are extremely similar, so we

average them to obtain a mean output coefficients map. In
our work, the self-attention coefficients were first ranked in
descending order. Then, the top coefficients were selected to
determine the biomarker of regions. Three typical individual and
final fused contributions supporting the correct classification of
ASD patients are shown in Figures 4, 5. In these subfigures,
the redder the regional color is, the more contribution the
brain region affords. We selected the largest contributions of
the regions by identifying the weights above the mean+3 SD.
Finally, 53 coefficients about 42 different regions were found
by the self-attention coefficients. The top 42 regions (see
Figure 6) are significant for ASD/NC classification. Specifically,
the feature vectors of these regions were selectively aggregated
into the output feature vectors of two especial regions, which
represent pallidum in the left and right hemispheres according
to SRI24 atlas. It indicates that not only the 42 regions are
significant for classification, but also the pallidum is more
significant and specific. As seen in our result, the structure
of pallidum has been found to be more significant than
other regions for ASD, which is identical with the result in
Turner et al. (2016).

DISCUSSION

In this manuscript, we propose a new framework for ASD
detection and structural biomarkers identification from multi-
site sMRI datasets by individual brain networks and self-
attention deep neural networks. Our method has achieved state-
of-the-art on ASD/NC classification task in the ABIDE data.
Compared with the majority of machine learning and deep
learning methods, our method has the following advantages:
First, our work is stable and generalized due to the multi-
site sMRI dataset with a large sample size, and the multi-
site dataset is able to overcome the inherent heterogeneity in
neuroimaging datasets.
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FIGURE 4 | The contribution of brain regions to the autism spectrum disorder/normal control (ASD/NC) classification. Three typical individual heat maps supporting
the correct classification of ASD patients were mapped by self-attention coefficients in our framework. The redder the color is, the more contributions the brain
region affords.

Second, interregional structural variations can be
extracted by the individual level morphological covariance
network to characterize the interregional morphological
relationship of the brain. Compared with the group-level
morphological network, the individual-level morphological
brain networks can better reflect individual behavior differences
in both typical and atypical populations (Gao et al., 2021).
Furthermore, the individual level morphological covariance

network provides further empirical evidence to support
the theory that the human brain has evolved to support
both specialized or modular processing in local regions
and distributed or integrated processing over the entire
brain (Bullmore and Sporns, 2012; Wang et al., 2016).
Thus, it provides an alternative method for researchers
to explore hubs of the brain under both healthy and
pathological conditions.
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FIGURE 5 | The fusion heat maps obtained by the average heat maps of all true negative subjects. The redder the color is, the more contributions the brain region
affords.

Third, the self-attention neural networks adopted in our
model can aggregate not only short-range but also long-range
dependencies in the data, which solves the local problem

in CNN (Wang et al., 2018; Cao et al., 2019; Fu et al.,
2019; Lee et al., 2019; Yin et al., 2020; Liu et al., 2021).
Meanwhile, the biomarkers are obtained from self-attention
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FIGURE 6 | The top 42 regions which have the largest contributions to correctly classifying ASD patients were identified. As seen in our result, the pallidum in the left
and right hemispheres have been found to be more significant and specific for ASD, which are drawn larger than other regions.

coefficients without model architectural changes or retraining
(Sarlin et al., 2020). Specifically, the heat maps of different
layers obtained by Grad-CAM in Gao et al. (2021) have a
clear hierarchical relationship, which is related to the feature
extraction method of CNN. With the increase of the number
of network layers, the receptive field becomes large, and the
features extracted by CNN change from simple and local
to complex and abstract (Wang et al., 2018). Therefore, the
heat maps of different layers in Gao et al. (2021) vary
greatly. However, the self-attention coefficients maps of the
first and second layers in our method are extremely similar,
which implies the consistency of the diagnosis. Furthermore,
the diagnosis biomarker identification method based on self-
attention coefficients is interpretable because the meaning
of coefficients can be clearly obtained in Eqs 5–9 (Sarlin
et al., 2020). In addition, due to the strong global feature
extraction ability, the self-attention networks can achieve
better performance than CNN with less training time and
parameters in our work.

Moreover, with the self-attention explanation approach,
the connectivity features of the morphological covariance
network having the greatest contribution to classification
were identified. The brain areas corresponding to these
important connectivity features mainly include the prefrontal
cortex, temporal cortex, and cerebellum. These brain
areas have been reported to be implicated in ASD in
previous studies indicating that the established classification
model using deep learning and individual morphological
covariance network may serve as a reliable tool to
facilitate clinical diagnosis. For example, anatomically
and functionally, there is considerable evidence that the

medial prefrontal cortex is involved in basic conscious
feelings, and the atypicality of it is associated with the
emotional–social domain in autism (Shalom, 2009). The
direct connections between the auditory association
areas of the superior temporal gyrus with the medial
temporal cortex have been demonstrated to underlie
recognition memory for sounds (Muñoz-López et al.,
2015). Furthermore, the cerebellum is not only involved in
motor coordination but that it also intervenes in cognitive
operations, emotion, memory, and language (Silveri and
Misciagna, 2000). Thus, the prefrontal cortex, temporal
cortex, and cerebellum may be related to social cognition
processing in ASD.

CONCLUSION

In this work, we propose a classification neural network
for ASD detection and structural biomarkers identification
from multi-site sMRI datasets, which is based on self-
attention neural networks and individual-level morphological
covariance brain networks. Comparison by experiments,
we found that our proposed method outperformed
other conventional machine learning and deep learning
classification methods for the classification of ASD.
Moreover, the biomarker identification method based on
self-attention coefficients is efficient and interpretable,
which provides a new solution to the black-box problems
of deep learning, and prefrontal cortex, temporal cortex,
and cerebellum found by this method provide a good
reference for ASD diagnosis. Meanwhile, the morphological
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alterations in the pallidum in autism are worthy of the
attention of researchers.
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