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The representation of the natural-density, heterogeneous connectivity of neuronal

network models at relevant spatial scales remains a challenge for Computational

Neuroscience and Neuromorphic Computing. In particular, the memory demands

imposed by the vast number of synapses in brain-scale network simulations constitute

a major obstacle. Limiting the number resolution of synaptic weights appears to be

a natural strategy to reduce memory and compute load. In this study, we investigate

the effects of a limited synaptic-weight resolution on the dynamics of recurrent spiking

neuronal networks resembling local cortical circuits and develop strategies for minimizing

deviations from the dynamics of networks with high-resolution synaptic weights. We

mimic the effect of a limited synaptic weight resolution by replacing normally distributed

synaptic weights with weights drawn from a discrete distribution, and compare the

resulting statistics characterizing firing rates, spike-train irregularity, and correlation

coefficients with the reference solution. We show that a naive discretization of synaptic

weights generally leads to a distortion of the spike-train statistics. If the weights are

discretized such that the mean and the variance of the total synaptic input currents are

preserved, the firing statistics remain unaffected for the types of networks considered in

this study. For networks with sufficiently heterogeneous in-degrees, the firing statistics

can be preserved even if all synaptic weights are replaced by the mean of the weight

distribution. We conclude that even for simple networks with non-plastic neurons and

synapses, a discretization of synaptic weights can lead to substantial deviations in the

firing statistics unless the discretization is performed with care and guided by a rigorous

validation process. For the network model used in this study, the synaptic weights

can be replaced by low-resolution weights without affecting its macroscopic dynamical

characteristics, thereby saving substantial amounts of memory.

Keywords: neuromorphic computing, spiking neuronal network, network heterogeneity, synaptic-weight

discretization, validation, activity statistics
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1. INTRODUCTION

Computational neuronal network models constrained by
available biological data constitute a valuable tool for studying
brain function. The large number of neurons in the brain,
their dense connectivity, and the premise that advanced brain
functions involve a complex interplay of different brain regions
(Bressler and Menon, 2010) pose high computational demands
on model simulations. The human cortex consists of more
than 1010 neurons (Herculano-Houzel, 2009), each receiving
about 104 connections (Abeles, 1991; DeFelipe et al., 2002).
The requirements for simulations of networks at this scale
by far exceed the limits of modern workstations. Even on
high-performance computing (HPC) systems that distribute
the work load across many compute nodes running designated
simulation software, neuronal networks larger than 10% of
the human cortex are not accessible to simulation to date
(Jordan et al., 2018). Studying downscaled networks with
reduced neuron and synapse numbers does not qualify as
an alternative to natural-density full-scale networks: while
parameter adjustments can compensate to preserve some
characteristics of the network dynamics such as firing rates, or
the sensitivity to small perturbations (Bachmann et al., 2020),
other features, such as the structure of pairwise correlations in
the neuronal activity cannot be maintained simultaneously (van
Albada et al., 2015).

The complexity of neuronal network models evaluated on
conventional HPC systems is limited by simulation speed

and hardware requirements. Routine simulations of large-scale
natural-density networks are still not a standard. Even with state-
of-the-art software and high-performance machines, simulations

of biological processes may take several hundred times longer
than the respective processes in the brain (Jordan et al.,
2018). Biological processes evolving on long time scales (hours,
days, up to years) such as learning and brain development

are therefore impossible to simulate in reasonable amounts
of time. In addition, the power consumption of large-scale
network simulations on HPC systems exceeds the demands of
biological brains by orders of magnitude (van Albada et al.,
2018). In this study, we address another factor obstructing large-
scale neuronal network simulations: the high memory demand
(Kunkel et al., 2012, 2014). In simulations performed with the
NEural Simulation Tool (NEST) (Gewaltig and Diesmann, 2007),
simulation software optimized for this application area, the
required memory is mainly used for the storage of synapses
(Jordan et al., 2018). While the network model by Jordan
et al. (2018) involves dynamic synapses undergoing spike-
time dependent plasticity, the problem persists also for the
simplest static synapse models characterized by a constant weight
and transmission delay. Using double-precision floating point
numbers, NEST requires 64 bit of memory for the weight
and 24 bit for the delay of each synapse (Kunkel et al.,
2014). In the mammalian neocortex, the number of synapses
exceeds the number of neurons by a factor of 104. Hence,
even small memory demands for individual synapses add up to
substantial amounts in brain-scale simulations. Reducedmemory
consumption leads to faster simulation because the network

model can be represented on fewer compute nodes, thereby
reducing the time required for communication between nodes.
Access patterns of synapses are highly variable due to the random
structure of neuronal networks and their sparse and irregular
activity. Therefore, also on the individual compute nodes, a
reducedmemory consumption helps asmemory access can better
be predicted andmore of the requiredmemory fits into the cache.

While these and other limitations may not be overcome
using conventional computers built upon the Von Neumann
architecture (Backus, 1978; Indiveri and Liu, 2015), the
development of novel, brain-inspired hardware architectures
promises a solution. Examples for these so-called neuromorphic
hardware systems with different levels of maturity are SpiNNaker
(Furber et al., 2013), BrainScaleS (Meier, 2015), Loihi (Davies
et al., 2018), TrueNorth (Merolla et al., 2014), and Tianjic (Pei
et al., 2019). All of these systems are designed after different
principles and with different aims (Furber, 2016), and they
employ different strategies for handling synaptic weights in an
architecture with typically little available memory. SpiNNaker,
for instance, saves the weights as 16-bit integer values (Jin et al.,
2009) and uses fixed-point arithmetic for the computations.
BrainScaleS, instead, utilizes a mixed signal approach where
the dynamics of individual neurons are implemented by analog
circuits embedded in a silicon wafer, and the weight of each
synapse is stored using only 6-bit (Wunderlich et al., 2019).
Similarly, GPUs (Knight andNowotny, 2018; Golosio et al., 2021)
and Field Programmable Gate Arrays (FPGAs) (Gupta et al.,
2015) are used for simulations of neural networks with reduced
numerical precision.

Simulation results obtained with different (neuromorphic)
hardware and software systems are hard to compare (Senk
et al., 2017; Gutzen et al., 2018; van Albada et al., 2018).
A number of inherent structural differences (e.g., numerical
solvers) may obscure the role of reduced numerical precision
for the network dynamics. Here, we systematically study the
effects of a limited synaptic-weight resolution in software-
based simulations of recurrently connected spiking neuronal
networks. We mimic a limited synaptic-weight resolution by
drawing synaptic weights from a discrete distribution with
a predefined discretization level. All other parameters and
dynamical variables are represented in double precision, and all
calculations are carried out using standard double arithmetic
in the programming language C++. An exception is the spike
times of the neurons which are bound to the time grid
spanned by the computation time step h. This artificially
increases synchronization in the network and introduces a
global synchronization error of first order (Hansel et al., 1998;
Morrison et al., 2007). The limitation can be overcome by
treating spikes in continuous time. This is more costly if
only a moderate precision is required but leads to shorter
run times of high-precision simulations (Hanuschkin et al.,
2010). However, in the models considered here, the errors
are dominated by other factors (van Albada et al., 2018).
Frameworks like NEST may support both simulation strategies
enabling the validation of grid-constrained results by continuous
time simulations with minimal changes to the executable
model description.
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In the field of machine learning, a number of previous
studies address the effects of low-resolution weights in artificial
neural networks (e.g., Dundar and Rose, 1995; Draghici, 2002;
Courbariaux et al., 2014; Gupta et al., 2015; Muller and Indiveri,
2015; Wu et al., 2016; Guo, 2018). For spiking neural networks,
competitive performance is reported with weights that can take
only binary values {+1, −1} in comparison to models with full-
precision weights (e.g., Lu and Sengupta, 2020; Jang et al., 2021;
Suarez-Ramirez et al., 2021). These studies, however, do not
provide any intuitive or theoretical explanation why a particular
weight resolution is sufficient to achieve a desirable network
performance. It is therefore unclear to what extent the results
of these studies generalize to other tasks or networks. It is
particularly difficult to transfer these results to neuroscientific
network models: while machine learning networks are typically
validated based on the achieved task performance, neuroscience
often also focuses on the idle (“resting state”) or task related
network activity. In this work, we address the origin of
potential deviations in the dynamics of neuronal networks with
reduced synaptic-weight resolution from those obtained with a
high-resolution “reference” of the same network, and develop
strategies to minimize these deviations. For some machine
learning algorithms, such as reservoir computing, the two views
on performance are related as the functional performance
depends on the dynamical characteristics of the underlying
neuronal network. In general, however, task performance is not a
predictor of network dynamics (and vice versa).

We demonstrate our general approach based on variants of
the local cortical microcircuit model by Potjans and Diesmann
(2014), the “PD model”. This model represents the cortical
natural-density circuitry underneath a 1mm2 patch of early
sensory cortex with almost 80, 000 neurons and ∼ 104 synapses
per neuron, and explains the cell-type and cortical-layer specific
firing statistics observed in nature. To account for the natural
heterogeneity in connection strengths, the synaptic weights
are normally distributed. The PD model may serve as a
building block for brain-size networks because the fundamental
characteristics of the cortical circuitry at this spatial scale are
similar across different cortical areas and species. In the recent
past, the PD model served as a benchmark for several validation
studies in the rapidly evolving field of Neuromorphic Computing
(Knight andNowotny, 2018; vanAlbada et al., 2018; Rhodes et al.,
2019; Heittmann et al., 2020; Kurth et al., 2020; Golosio et al.,
2021). With this manuscript, we aim to add the aspect of weight
discretization to the debate.

The manuscript is organized as follows: section 2 provides
details on the discretization methods, the validation procedure,
the network model, and the network simulations. The main
results of the study are presented in section 3 which, for
an overview, can be read without prior reading of section
2. Section 3.1 exposes the pitfalls of a naive discretization
of synaptic weights, and section 3.2 proposes an optimal
discretization strategy for the given synaptic-weight distribution.
For illustration, sections 3.1 and 3.2 are based on a variant
of the PD model with fixed in-degrees, i.e., a network where
each neuron within a population receives exactly the same
number of inputs. In section 3.3, in contrast, the in-degrees

are distributed (as in the original PD model), allowing for a
generalization of the results. Section 3.4 proposes an analytical
approach using mean-field theory to substantiate the simulation
results on the role of synaptic-weight and in-degree distributions.
Section 3.5 investigates the effect of the simulation duration
on the relevance of the employed validation metrics, and the
validation performance. The final section 4 summarizes the
results and discusses future work toward precise and efficient
neuronal network simulations.

2. METHODS

The general approach of this study is to compare simulations of
neuronal networks with differently discretized synaptic weights.
To assess whether the weight discretization influences the
network dynamics, the statistics of the spiking activity in
the networks with discretized weights are compared with the
statistics in the reference network with double precision weights.
Section 2.1 contains specifications of the neuronal network
models employed. The following sections describe the methods
used for discretizing the synaptic weights (section 2.2) and for
calculating and comparing the network statistics (section 2.3).

2.1. Description of Network Models
The present study uses the model of the cortical microcircuit
proposed by Potjans and Diesmann (2014), which mimics
the local circuit below 1mm2 of the cortical surface, as a
reference. Tables 1–4 provide a formal description according
to Nordlie et al. (2009). The PD model organizes the neurons
into eight recurrently connected populations; an excitatory (E)
and an inhibitory (I) one in each of four cortical layers: L2/3E,
L2/3I, L4E, L4I, L5E, L5I, L6E, and L6I. The identical current-
based leaky integrate-and-fire dynamics with exponentially
decaying postsynaptic currents describe the neurons of all
populations. Connection probabilities CYX for connections from
population X to population Y are derived from anatomical
and electrophysiological measurements. The weights for the
recurrent synapses are drawn from three different normal
distributions (Ndistr = 3): mean and standard deviation are

(w∞, 1w∞) = (87.8, 8.8) pA for excitatory and (w∞, 1w∞) =

(−351.2, 35.1) pA for inhibitory connections. The weights from
L4E to L2/3E form an exception as the values are doubled:

(w∞, 1w∞) = (175.6, 17.6) pA. To account for Dale’s principle
(Strata and Harvey, 1999), negative (positive) sampled weights
of connections that are supposed to be excitatory (inhibitory)
are set to zero. The resulting distributions are therefore slightly
distorted (for the weight distributions used in this study, this
distortion is negligible). Transmission delays are also drawn from
normal distributions with different parameters for excitatory
and inhibitory connections, respectively. Each neuron receives
external input with the statistics of a Poisson point process and a
constant weight of 87.8 pA. The simulations are performed with
a simulation time step of 0.1ms and have a duration Tsim of 15
biological minutes with exceptions in sections 2.3.2 and 3.5. For
all simulations, the first second Ttrans = 1 s is discarded from the
analysis. The actual observation time is therefore Tsim − Ttrans.
For easier readability, all times given in this manuscript always
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TABLE 1 | Description of the network model following the guidelines of Nordlie

et al. (2009).

Model summary

Structure Multi-layer excitatory-inhibitory (E-I)

network

Populations 8 cortical in 4 layers (L2/3, L4, L5, L6)

Connectivity Random, independent,

population-specific; fixed in-degree

models and fixed total number models

Neuron model Leaky integrate-and-fire (LIF)

Synapse model Exponentially shaped postsynaptic

currents with normally distributed static

weights

Input Independent fixed-rate Poisson spike

trains to all neurons (population-specific

in-degree)

Measurements Spikes

refer to the simulation duration Tsim. The initial membrane
potentials of all neurons are randomly drawn from a population-
specific normal distribution to reduce startup transients.

In the original implementation of the model, the total number
of synapses between two populations SYX is derived from an
estimate of the total number of synapses in the volume and
exactly SYX synapses are established. Section 3.3 uses this fixed
total number connectivity. The fixed in-degree network models
in sections 3.1 and 3.2 determine the in-degrees KYX by dividing
the total number of synapses by the number of neurons in the
target population and rounding up to the next larger integer,
shown in Equation (2). The rounding ensures that at least one
synapse remains for a non-zero connection probability. Table 3
summarizes the resulting values of SYX and KYX .

2.2. Discretization of Synaptic Weights
Computer number formats determine how many binary digits,
i.e., bits, of computer memory are occupied by a numerical
value and how these bits are interpreted (Goldberg, 1991). Both
the number of bits, Nbits, and their interpretation differ for
the various floating-point and fixed-point formats deployed in
software and hardware. A common format is the IEEE 754
double-precision binary floating-point format (binary64) which
allocates 64 bits of memory per value encoding the sign (1
bit), the exponent (11 bits), and the significant precision (52
bits). In general, the upper limit of distinguishable values that a
format can represent is 2Nbits . We here aim to identify a possible
lower limit for a bit resolution required to store the synaptic
weights in neuronal network simulations without compromising
the accuracy of the results. The network models studied in
this work assume weights to be sampled from continuous
distributions, yielding values in double precision in the respective
reference implementations.

Tomimic a lower bit resolution, we discretize the distributions
and systematically reduce the number of attainable values. On
the machine, the values are still represented in double precision,
but the degrees of discretization considered are by orders of

magnitude coarser than double precision. Our approach is
therefore independent of the underlying number format. For
generality and explicit distinction from the format-specific Nbits,
we define the weight resolution by the number of possible discrete
values, Nbins, that a discrete distribution is composed of. In the
studied network models, projections between different pairs of
neuronal populations are parameterized with weights sampled
from Ndistr distributions, for details refer to section 2.1. A weight
resolution of Nbins means that Nbins weight values are assumed
for each of the underlying distributions. The maximum total
number of different weights in a network model with discretized
weights are therefore Nbins · Ndistr in addition to potentially
different weights not sampled from a distribution, e.g., those used
to connect external stimulating devices.

After the reference weight values are sampled from the
continuous reference distribution, each one of these sampled
weights are subsequently replaced by one of the Nbins discrete
values which are computed according to a discretization
procedure as follows: first an interval [wmin, wmax] is defined.
Then, the interval is divided into Nbins bins of equal widths such
that the left edge of the first bin is wmin and the right edge of the
last bin is wmax. For each bin, indexed by i ∈ [1, ..., Nbins], the
center value vi is assumed as the discrete value for that bin:

vi = wmin +

(

1

2
+ i− 1

)

· wstep with wstep =
wmax − wmin

Nbins
.

(8)

All weights drawn from the continuous reference distribution
falling into a specific bin are replaced by the respective vi,
meaning that they are rounded to the nearest discrete value.
If a sampled weight coincides with a bin edge, the larger
one of the two possible vi is chosen. However, the probability
that a double precision weight drawn from a distribution
with a continuous probability density function falls exactly
onto the edge of one discrete bin is almost zero. Weights
outside of the interval [wmin, wmax] are rounded to the closest
discrete values, namely the values of the first or last bin. The
two discretization schemes used in this study (“naive” and
“moment-preserving”) differ in their choice of the boundaries of
the interval.

2.2.1. Naive Discretization of Normal Weight

Distribution
Without deeper considerations, it seems reasonable to choose
[wmin, wmax] such that the number of originally drawn weights
outside of this interval is negligible. As we are studying network
models in which the underlying continuous weight distributions
are normal distributions with mean w∞ and standard deviation
1w∞, a choice could be as follow:

[wmin, wmax] = [w∞ − 51w∞, w∞ + 51w∞] . (9)

2.2.2. Moment-Preserving Discretization of Normal

Weight Distribution
A better choice for the boundaries of the interval takes the
statistical properties of the discrete weights into account. If the
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TABLE 2 | Description of the network model (continuation of Table 1).

Connectivity

• Connection probabilities CYX from population X to population Y with

{X,Y} ∈
{

L2/3, L4, L5, L6
}

× {E,I}. Values are given in (Potjans and Diesmann, 2014, Table 5).

• Self-connections (autapses) are prohibited; multiple connections between neurons (multapses) are allowed.

Fixed total number models Total number of synapses (Potjans and Diesmann, 2014, Equation 1):

SYX =
log(1−CYX )

log((NYNX−1)/(NYNX ))
(1)

In- and out-degrees are binomially distributed.

Fixed in-degree models In-degree:

KYX =

⌈

SYX
NY

⌉

(2)

Neuron and synapse model

Neuron Leaky integrate-and-fire neuron (LIF)

• Dynamics of membrane potential Vi (t) for neuron i:

• Spike emission at times tis with Vi
(

tis
)

≥ Vθ

• Subthreshold dynamics with

τm = RmCm: τmV̇i = −Vi + Rm Ii (t) if ∀s : t /∈
(

tis, t
i
s + τref

]

(3)

• Reset + refractoriness: Vi (t) = Vreset if ∀s : t ∈
(

tis, t
i
s + τref

]

• Exact integration with temporal resolution h (Rotter and Diesmann, 1999)

Postsynaptic currents • Instantaneous onset, exponentially decaying postsynaptic currents

• Input current of neuron i from presynaptic neuron j:

Ii (t) =
∑

j Jij
∑

s e
−

(

t−t
j
s−dij

)

/τs
2

(

t− t
j
s − dij

)

(4)

Synaptic weights (reference distribution) • Normally distributed (clipped to preserve sign):

wij ∼ N
{

w∞,YX , 1w2
∞,YX

}

, w∞,YX = gYX · w∞ (5)

Spike transmission delays • Normally distributed (left-clipped at h):

dij ∼ N

{

dX , 1d2
X

}

(6)

Initial membrane potentials • Normally distributed:

Vij ∼ N

{

V0,X , 1V2
0,X

}

(7)

reference weights are independently generated according to a
probability distribution p(w), the distribution of the discrete
weights is a probability mass function p∗ (vi) = : p∗i with

p∗i =















F
(

wmin + wstep

)

− F (−∞) if i = 1
F

(

wmin + iwstep

)

− F
(

wmin + (i− 1)wstep

)

if i = 2,
. . . , (Nbins − 1)

F (∞) − F
(

wmin + (Nbins − 1)wstep

)

if i = Nbins

(10)

and F(w) =
∫ w
−∞

p
(

w′
)

dw′. The statistical properties of
the discrete weights are calculated as for any other discrete
random variable; mean and standard deviation of the discrete
weights are:

wNbins
=

Nbins
∑

i=1

vip
∗
i

1wNbins
=

√

√

√

√

Nbins
∑

i=1

v2i p
∗
i − w2

Nbins
. (11)

Due to the symmetry of the underlying normal distribution p(w),
the mean of the discrete distribution wNbins

is always equal to

the mean of the continuous reference distribution w∞ when
placing the bins symmetrically around w∞. On the contrary, the
standard deviation 1wNbins

of the discrete weights changes with
the number Nbins of bins (Figure 1A). According to Equations
(10) and (11), the standard deviation of the discretized version
depends on the parameters wmin, wmax and Nbins. For even
numbers of bins, increasing the interval [wmin, wmax] causes the
standard deviation to diverge to infinity, and for odd numbers
of bins, the standard deviation converges to zero (Figure 1B).
In the extreme case of a very wide interval and an odd number
of bins, all weights drawn from the normal distribution end up
in the central bin and yield identical discrete values causing a
standard deviation of zero, while for an even number of bins,
the two central bins contain most weights and with growing
intervals the discrete values vi of these two bins drift more and
more apart increasing the standard deviation. Therefore, using
even numbers of bins the standard deviation of the discrete
weights 1wNbins

matches the reference standard deviation 1w∞

only for one particular choice [wmin, wmax], while using odd
numbers of bins leads to a second crossing point. By chance,
the naive choice of the interval in Equation (9) is close to
the second intersection for three bins. For high numbers of
bins, the standard deviation is preserved for a wide range
of [wmin, wmax].
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TABLE 3 | Neuron, network, and simulation parameters.

Neuron and network parameters

Populations and external in-degree

Symbol Value Description

X L2/3E L2/3I L4E L4I L5E L5I L6E L6I Population name

NX 20, 683 5, 834 21, 915 5, 479 4, 850 1, 065 14, 395 2, 948 Size

KX,ext 1, 600 1, 500 2, 100 1, 900 2, 000 1, 900 2, 900 2, 100 External in-degree

In-degrees in fixed in-degree models

KYX from X

L2/3E L2/3I L4E L4I L5E L5I L6E L6I

L2/3E 2,200 1,080 980 468 160 0 110 0

L2/3I 2,991 861 704 290 381 0 61 0

L4E 160 35 1,118 795 33 1 668 0

to Y L4I 1,481 17 1,814 954 17 0 1,609 0

L5E 2,189 375 1,136 32 421 497 297 0

L5I 1,166 160 571 13 301 405 125 0

L6E 326 39 468 92 286 22 582 753

L6I 767 6 75 3 137 9 980 460

Total number of synapses in fixed total number models

SYX from X

L2/3E L2/3I L4E L4I L5E L5I L6E L6I

L2/3E 45,499,804 22,323,576 20,253,647 9,670,918 3,293,577 0 2,271,403 0

L2/3I 17,443,694 5,018,762 4,105,338 1,690,073 2,221,212 0 353,460 0

L4E 3,503,669 756,561 24,482,849 17,413,575 714,524 7,002 14,624,431 0

to Y L4I 8,114,253 92,831 9,933,537 5,223,271 87,836 0 8,810,905 0

L5E 10,613,575 1,817,058 5,507,804 151,900 2,040,738 2,407,889 1,438,969 0

L5I 1,241,436 169,424 607,666 12,851 319,601 430,443 132,414 0

L6E 4,681,225 556,108 6,727,569 1,320,233 4,112,224 305,028 837,2649 10,827,677

L6I 2,260,836 17,207 220,032 8,078 401,637 25,217 2,888,426 1,354,319

Connection parameters and external input

Symbol Value Description

w∞ 87.81 pA Reference synaptic strength. All synapse weights are measured in units of w∞.

gYX Relative synaptic strengths:

1 X ∈
{

L2/3E, L4E, L5E, L6E
}

−4 X ∈ {L2/3I, L4I, L5I, L6I}, except for:

2 (X,Y) =
(

L4E, L2/3E
)

1w∞,YX 0.1 · gYX · w∞ Standard deviation of weight distribution

dE 1.5ms Mean excitatory delay

dI 0.75ms Mean inhibitory delay

1dX 0.5 · dX Standard deviation of delay distribution

νext 8 s−1 Rate of external input with Poisson interspike interval statistics

wext w∞ Synaptic strength of external input

LIF neuron model

Symbol Value Description

Cm 250pF Membrane capacitance

τm 10ms Membrane time constant

EL −65mV Resistive leak reversal potential

Vθ −50mV Spike detection threshold

Vreset −65mV Spike reset potential

τref 2ms Absolute refractory period after spikes

τs 0.5ms Postsynaptic current time constant
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TABLE 4 | Neuron, network, and simulation parameters (continuation of Table 3).

Neuron and network parameters (cont.)

Initial membrane potentials

Symbol Value Description

X L2/3E L2/3I L4E L4I L5E L5I L6E L6I Population name

V0,X −68.28 −63.16 −63.33 −63.45 −63.11 −61.66 −66.72 −61.43 Mean in mV

1V0,X 5.36 4.57 4.74 4.94 4.94 4.55 5.46 4.48 Standard deviation in mV

Simulation parameters

Symbol Value Description

Tsim 15min Simulation duration

h 0.1ms Temporal resolution

Ttrans 1 s Startup transient

A B

FIGURE 1 | Distortion of synaptic-weight statistics by naive discretization. Dependence of the standard deviation 1wNbins
of naively discretized synaptic weights (for

excitatory connections) on the number Nbins of bins (A) and on the relative (half-)width
(

wmax − w∞

)

/1w∞ of the discretization interval (B). The horizontal black line

marks the standard deviation 1w∞ of the corresponding (normal) reference weight distribution.

The moment-preserving scheme uses the obtained knowledge
of the dependence on the standard deviation to improve the
discretization procedure: for each number of bins Nbins, different
interval boundaries are computed such that the standard
deviation is always preserved. This discretization method only
preserves the first and second moment, i.e., the mean and
standard deviation, respectively, of the underlying reference
weight distribution; higher-order moments could still be affected.

For Nbins = 2 the optimal choice for [wmin, wmax]
can be calculated analytically, yielding the interval

[w∞ − 21w∞, w∞ + 21w∞]. For any higher number of bins,
not only vi but also p∗i in Equation (11) depend on the interval,
therefore solutions are found numerically. Here, we use Brent’s
method implemented in scipy.optimize.root_scalar
to find the first intersection. Since the computational effort
increases and yields only negligible gain for higher numbers
of bins (Figure 1) the optimization is only performed for
Nbins < 216 and for higher numbers of bins the fixed
interval from Equation (9) is used. For Nbins = 1, this
optimization is not possible since the standard deviation is zero
by construction.

2.3. Validation Procedure
2.3.1. Statistics of Spiking Activity
We evaluate the effects of discretized synaptic weights on
network dynamics by employing the same statistical spiking-
activity characteristics used in previous studies: distributions of
single-neuron firing rates (FR), distributions of coefficients of
variation (CV) of the interspike intervals (ISI), and distributions
of short-term spike-count correlation coefficients (CC), see
Senk et al. (2017), Gutzen et al. (2018), Knight and Nowotny
(2018), van Albada et al. (2018), and Golosio et al. (2021). The
time-averaged firing rate

FRi =
Ni (Ttrans, Tsim)

Tsim − Ttrans
(12)

of neuron i is defined as the total number Ni (Ttrans, Tsim) of
spikes emitted by this particular neuron i during the time interval

[Ttrans, Tsim), normalized by the observation duration (Tsim −

Ttrans) (Perkel et al., 1967). The total simulation duration is Tsim,
but spike data from the initial interval [0, Ttrans) is not analyzed.
The ISIs are the time intervals between consecutive spikes
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of a single neuron. From the ISI distribution, the coefficient
of variation

CVi =
σISI,i

µISI,i
(13)

of each neuron i is computed as the ratio between the ISI standard
deviation σISI,i and its mean µISI,i (Perkel et al., 1967). The CV
is a measure of the spike-train irregularity. In addition to the
first-order (single-neuron) measures FRi and CVi, we quantify
the level of synchrony in the network on short time scales by the
Pearson correlation coefficient

CCij =
Cij (0)

√

Cii (0)Cjj (0)
(14)

for pairs of neurons i and j. Here,

Cij(τ ) =
〈(

xi (t, t + 1) − 〈xi (t, t + 1)〉t
)

×
(

xj (t + τ , t + 1 + τ) −
〈

xj (t, t + 1)
〉

t

)〉

t
(15)

denotes the covariance of the spike counts xi/j (t, t + 1), i.e.,
the number of spikes in a time interval [t, t + 1), for a time
lag τ (Perkel et al., 1967). The bin size 1 for the covariance
calculation matches the refractory period of the neurons in the
model networks (2ms). FR, CV, and CC are calculated using the
Python package NetworkUnit (Gutzen et al., 2018) which
relies on the package Elephant (Denker et al., 2018).

Note that FRi and CCij can only assume discrete values, as
the number of spikes Ni (Ttrans, Tsim) observed in a given time
interval of length D = Tsim − Ttrans as well as the spike counts
xi are integer numbers. The discretization of FRi with steps
1FRi = 1/D usually goes unnoticed if the observation duration
D is sufficiently large and the FR is not too small. As shown in the
following, finite observation times may however affect the shape
of the distribution of CCij across pairs of neurons, in particular,
if the distribution of FR is narrow (see, e.g., Figures 3F, 4F).
With a bin size 1, the spike counts xi form vectors of length
M = D/1. The scalar product Gij = xi · xj can be regarded as
the total spike coincident count for the two neurons i and j (for
small bin sizes 1 and hence binary vectors xi/j, it corresponds
to the number of bins containing a “1” in both xi and xj). With
the spike-count covariance Cij(0) = Gij/M − Ni/M · Nj/M and
variances Cii/jj(0) = Ni/j/M − N2

i/j/M
2, the CC is given by

CCij =
Gij − NiNj/M

√

NiNj(1− Ni/M)(1− Nj/M)
. (16)

As the coincidence count Gij is an integer number, the CC can
assume only discrete values with a discretization level

1CCij =
1

√

NiNj(1− Ni/M)(1− Nj/M)
. (17)

For large M (i.e., small bin sizes 1 or long observation
durations D or both) and small total spike counts Ni/j ≪ M,
the discretization level is given by 1CCij ≈ 1/

√

NiNj. For a

heterogeneous population of neurons with different firing rates
FRi = Ni/D, the discretization levels 1CCij are different for
each pair of neurons and will hardly affect the distribution of
CC. In homogeneous networks where all neurons fire with a
similar rate FR≈ FRi (∀i), however, the distribution of CC may
exhibit clear peaks at distances 1CC = 1/(FR · D). For large FR
and observation duration, the discretization level 1CC is small
and barely observable. For smaller rates, however, the effect can
become striking, even for a relatively long observation duration.
With an observation duration D = 15min and FR = 1/s,
for example, the CCs are discretized with 1CC ≈ 0.001. In
populations 2/3E and 6E in Figures 3F, 4F, this discretization
level is only marginally smaller than the population averaged
CC, and leads to a pronounced oscillatory pattern in the
distributions of CC. Note that the above derivation does notmake
any assumptions on the higher-order spike train statistics. The
discretization level is exclusively determined by the firing rates
and the observation duration and is independent of the total
coincidence counts. Further, the above arguments are not limited
to small bin sizes 1, but can immediately be generalized.

2.3.1.1. Comparison of Distributions
FR and CV are calculated for all neurons in each neuronal
population and the CC for all pairs of 200 distinct neurons
in each population. The model validation is based on the
distributions of FR, CV, and CC, obtained from these ensembles.
The distributions are depicted as histograms with bin sizes 2 ·
(

IQR /n1/3
)

that are determined using the Freedman-Diaconis
rule (Freedman and Diaconis, 1981) based on the inter-quartile
range IQR and the sample size n. For the histograms depicted
in Figures 2–5, the bin size is calculated for the data obtained
from the respective reference networks with continuous weight
distribution and then used for all shown distributions for one
population. In Figure 7, the histogram bin size is obtained from
either the longest simulation (60min; Figures 7A–C), or from the
last simulation interval (30–40min; Figures 7D–F). While visual
inspection of the histograms yields a qualitative assessment of the
similarity of two distributions p (x) and q (x), the Kolmogorov-
Smirnov (KS) score

DKS = sup
∣

∣P(x)− Q(x)
∣

∣ (18)

provides a quantitative evaluation. The KS score is the maximum
vertical distance between the cumulative distribution functions
P(x) =

∫ x
p
(

y
)

dy and Q(x) =
∫ x

q
(

y
)

dy (Gutzen et al., 2018)
and thereby is sensitive to differences in both the shapes and the
positions of the distributions.

The comparison of the distributions of FR, CV, and CC for
a network with continuous weights with those of a network
with discretized weights eliminates other sources of variability
by using the same instantiation of the random network model.
The two networks not only have the same initial conditions,
external inputs, connections between identical pairs of neurons,
and spike-transmission delays: one by one the weights in the
discretized network are the discrete counterparts of the weights
in the continuous network (section 2.2).

Frontiers in Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 757790

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dasbach et al. How to Reduce Weight Resolution

A B C

D E F

FIGURE 2 | Role of observation duration for the specificity of validation measures. Distributions of population-specific single-neuron firing rates, FR, (A,D), coefficients

of variation, CV, of the interspike intervals (ISI) (B,E), and spike-train correlation coefficients, CC (C,F). Black: fixed total number network model with reference weight

distribution. Gray: surrogate data with randomized spike times (see text). Top: observation duration Tsim = 10 s. Bottom: Tsim = 15min.

2.3.2. Observation Duration Determines Specificity of

Validation Measures
The criteria that are naturally used to validate a particular
model implementation are determined by those features the
model seeks to explain. The validation metrics should therefore
reflect the specifics of the model, rather than effects that
arise from other aspects not directly related to the model
under investigation. The example of this study, the model by
Potjans and Diesmann (2014), predicts that layer and population
specific patterns of FR, spike-train irregularities (ISI CVs), and
pairwise correlations are a consequence of the cell-type specific
connectivity within local cortical circuits. Distributions of these
quantities, therefore, constitutemeaningful validationmetrics for
this model. However, this holds only true if these distributions

are obtained such that they primarily reflect the model-specific
connectivity, and are not the result of some other trivial effects,
for example, those introduced by the measurement process. A
standard approach to disentangle such effects is to compare
the data generated by the model against those generated by an
appropriate null hypothesis where certainmodel-specific features
are purposefully destroyed (see Grün, 2009, for a review of
methods for spiking activity and their limitations).

As an example, consider the distributions of spike-train CCs.
The PD model predicts that pairwise spike-train correlations
are small and distributed around some population-specific non-
zero mean, and that these distributions are explained by the
specifics of the connectivity. Consider now the alternative
hypothesis (null hypothesis) according to which the correlation
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distributions are fully explained by the distributions of time-
averaged FRs and do not reflect any further characteristics of
the synaptic connectivity. An instantiation of this null hypothesis
is obtained by generating surrogate data from the model data,
where the spike times for each neuron are uniformly randomized
within the observation interval. Under this null hypothesis, the
distributions of FR are fully preserved (Figures 2A,D), but the
pairwise correlations on a millisecond timescale (as well as spike-
train regularities) are destroyed. For increasing observation time
Tsim → ∞, the distributions of CC approach delta-distributions
with zero mean. For finite sample sizes, i.e., finite observation
duration Tsim, however, spurious non-zero correlations remain.
The correlation distributions obtained under this null hypothesis
therefore have some finite width and may be hard to distinguish
from the actual model distributions. Indeed, the distributions
of spike-train CC obtained from Tsim = 10 s simulations of
the PD model cannot be distinguished from those generated
by the null hypothesis introduced above (Figure 2C). Only for
sufficiently long observation intervals do the empirical model
correlation distributions carry specific information about the
network connectivity which is not already contained in the rate
distributions (Figure 2F for Tsim = 15min).

We conclude that a model validation based on spike-train
correlation distributions should be interpreted with care: for
short observation duration (e.g., Tsim = 10 s as used by van
Albada et al., 2018, Knight and Nowotny, 2018, Rhodes et al.,
2019, and Golosio et al., 2021), any model implementation that
preserves the rates but destroys interactions between spike trains
would not differ from the reference model with respect to the
correlation distributions. Distributions of correlations obtained
from short observation periods may however still be useful to
rule out that some model implementation erroneously generates
correlations that are significantly larger than those generated by
the reference model (see e.g., Pauli et al., 2018).

In principle, the same is true for other validation metrics,
such as distributions of ISI and their CVs (definitions in section
2.3.1, Figures 2B,E). The surrogate data of this example may
suggest all CVs be one, but the finite sample sizes lead to
distributions of finite widths and eventually even a shifted
mean (as seen in the Tsim = 10 s case). In the face of finite
observation times, one needs to check to what extent these
metrics are informative about the specifics of the underlying
model, and whether there is actually any chance that some
imperfect implementation of the model can lead to deviations
from the reference. The comparison with appropriate surrogate
data is a straight-forward and established procedure to test this.
For our study on weight discretization, this analysis demonstrates
that with an observation duration of Tsim = 15min, the
employed spiking statistics reflect properties of the network
model by Potjans and Diesmann (2014).

2.4. Software Environment and Simulation
Architecture
The simulations in this study are performed on the JURECA
supercomputer at the Jülich Research Centre, Germany.
JURECA consists of 1,872 compute nodes, each with two

Intel Xeon E5-2680 v3 Haswell CPUs running at 2.5 GHz.
The processors have 12 cores and support 2 hardware threads
per core. Each compute node has at least 128 GB of memory
available. The compute nodes are connected via Mellanox
EDR InfiniBand.

All neural network simulations in this study are performed
using the NEST simulation software (Gewaltig and Diesmann,
2007). NEST uses double precision floating point numbers for
the network parameters and the calculations. The simulation
kernel is written in C++ but the simulations are defined via the
Python interface PyNEST (Eppler et al., 2009). The simulations
of the cortical microcircuit are performed with NEST1 compiled
from the master branch (commit 8adec3c). The compilations
are performed with the GNU Compiler Collection (GCC).
ParaStationMPI library is used for MPI support. Each simulation
runs on a single compute node with 1 MPI process and 24
OpenMP threads.

All analyses are carried out with Python 3.6.8 and the
following packages: NumPy (version 1.15.2), SciPy (version
1.2.1), Matplotlib (version 3.0.3), Elephant2 (version
0.5.0), and NetworkUnit3 (version 0.1.0).

For the source code, see the data availability statement.

3. RESULTS

In this study, the evaluation of the role of the synaptic weight
resolution is based on the model of a local cortical microcircuit
derived by Potjans and Diesmann (2014). The model comprises
four cortical layers (L2/3, L4, L5, and L6), each containing
an excitatory (E) and an inhibitory (I) neuron population.
An 8 × 8 matrix of cell-type and layer specific connection
probabilities provides the basis of the connectivity between
neurons (Table 5 in Potjans and Diesmann, 2014). Based on
this matrix, the present manuscript considers two different
probabilistic algorithms to determine which individual neurons
in any pair of populations are being connected. First, sections
3.1 and 3.2 use a fixed in-degree rule which requires for each
neuron of a target population the same number of incoming
connections from a source population. Second, in section
3.3, the total number of synapses between two populations
is calculated and synapses are established successively until
this number is reached. We refer to this latter procedure,
which was also employed in the original implementation by
Potjans and Diesmann (2014), as the fixed total number rule.
In both algorithms, synapses are drawn randomly; the exact
connectivity realization is hence dependent on the specific
sequence of random numbers required for the sampling process,
i.e., the choice and the seed of the employed pseudo-random
number generators.

In the PD model, a spike of a presynaptic neuron elicits,
after a transmission delay, a jump in the synaptic currents of
its postsynaptic targets which decay exponentially with time. In
the original implementation, the synaptic weights, the amplitudes

1https://github.com/nest/nest-simulator.
2https://python-elephant.org.
3https://github.com/INM-6/NetworkUnit.
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of these jumps, are drawn from normal distributions when
connections are established, and they remain constant for the
course of the following state-propagation phase. All excitatory
weights are sampled from a normal distribution with the same
(positive) mean and the same standard deviation, except for
connections from L4E to L2/3E where the mean and standard
deviation are doubled. All inhibitory weights are sampled with a
different (negative) mean and a different standard deviation.

This study compares the activity statistics obtained from
simulations of a reference model with continuous weight
distributions with those where the synaptic weights are drawn
from the same continuous distributions and subsequently
discretized. We refer to an “Nbins discretization” as the case
where the sampled weights are replaced by a finite set of
Nbins ∈ N

+ discrete values for each of the three weight
distributions. As validation measures, we use the time-averaged
single-neuron firing rates (FR), the coefficients of variation (CV)
of the interspike intervals as a spike-train irregularity measure,
and the short-term spike-train correlation coefficients (CC) as
a synchrony measure. We quantify the discretization error, i.e.,
the deviation between the discretized and the reference model,
by the Kolmogorov-Smirnov (KS) score DKS computed from
the empirical distributions of these statistical measures across
neurons. To evaluate the significance of the discretization error,
we recognize that the model is defined in a probabilistic manner:
valid predictions of this model are those features that are
exhibited by the ensemble of model realizations. Features that
are specific to a single realization are meaningless. Therefore,
deviations between realizations of a discretized and the reference
model are significant only if they exceed those between different
realizations of the reference model. In other words, if the
observed KS score between the discretized and the reference
model falls into the distribution of KS scores obtained from
an ensemble of pairs of reference realizations, the weight
discretization does not lead to significant errors with respect to
the considered validation measure.

3.1. Naive Discretization Distorts Statistics
of Spiking Activity
The connectivity of the PD model exhibits different sources
of heterogeneity: connections between pairs of neurons result
from a random process and distributions govern the creation
of their weights and delays. A number of previous studies have
shown how such heterogeneities influence neuronal network
dynamics (Golomb and Rinzel, 1993; Tsodyks et al., 1993; van
Vreeswijk and Sompolinsky, 1998; Neltner et al., 2000; Denker
et al., 2004; Roxin, 2011; Roxin et al., 2011; Pfeil et al., 2016). In
particular, distributed in-degrees, as implemented with the fixed
total number rule in the original version of the model by Potjans
and Diesmann (2014), can obscure the effects of altered weight
distributions which are the primary subject of this study. To
isolate the role of the weight distribution, we, therefore, start by
investigating a fixed in-degree version of the PD model. To assess
how discretization of the weights affects the spiking activity in the
network, we begin with a simple “naive” discretization scheme:
an arbitrary interval is defined around the mean value of the

underlying normal distribution (here: ±5 standard deviations)
and discretized into a desired number of bins. Each weight
sampled from the continuous distribution is replaced by the
nearest bin value (for details, see section 2.2).

We use similar measures and procedures as previous studies
(e.g., Knight and Nowotny, 2018; van Albada et al., 2018) to
compare the activity on a statistical level, but with the major
difference here that the network is simulated longer, in fact,
15 min of biological time (see section 3.5). The raster plots in
Figures 3A–C show qualitatively similar asynchronous irregular
spiking activity in all neuronal populations. The individual
spike times, however, are different in the networks with
synaptic weights using the reference implementation with double
precision in Figure 3A and in the networks with 1- and 2-bin
weights in Figures 3B,C, respectively. The dynamics of recurrent
neuronal networks similar to the PD model is often chaotic
(Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky,
1998; Monteforte and Wolf, 2010). Even tiny perturbations
(such as modifications in synaptic weights) can therefore cause
large deviations in the microscopic dynamics. Macroscopic
characteristics such as distributions of FR, spike-train regularity
and synchrony measures, however, should not be affected.
Preserving the spiking statistics upon weight discretization is,
therefore, an aim of this study.

The distributions of time-averaged FR obtained with 1-bin
weights have a similar mean as the reference distribution, but are
more narrow in all populations (Figure 3D). In homogeneous
networks with non-distributed 1-bin weights, analytical studies
predict that all neurons inside one population have the same FR
(Brunel, 2000; Helias et al., 2014), in contrast to the reference
network with distributed weights and expected rate distribution
of finite width. The remaining finite width of the rate distribution
obtained from network simulations with 1-bin weights is a
finite-size effect and decreases further for larger networks and
longer simulation times. For 2-bin weights generated by this
naive discretization scheme, the rate distributions are broader
than in the reference network (Figure 3D). For several neuronal
populations, such as L2/3E or L2/3I, the distributions of the
CV of the ISI obtained from networks with discrete weights
are similar to those of the reference network (Figure 3E). In
other populations, such as L6I, the CV distributions are narrower
for 1-bin weights and broader for 2-bin weights, while the
mean is preserved. The distributions of CC in the discretized
implementations are similar to the reference version for most
populations (Figure 3F). Only in L2/3E and L6E, we observe
an oscillatory pattern for 1- and 2-bin weights in the region of
small correlations. The same oscillatory pattern is also present
in the CC distributions of the reference network, but less
pronounced (not visible here). As shown in section 2.3.1, this
oscillatory pattern is an artifact of the finite observation duration
and becomes more eminent in populations with narrow FR
distribution with a small mean. The effect is most noticeable in
L2/3E and L6E because here the average FR are smallest. In the
reference and 2-bin weight networks, the effect is weaker because
the rate distributions are broader as compared to the network
with 1-bin weight discretization. In the Supplementary Material,
we show for the 1-bin case that the CC distributions of surrogate
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A B C

D E F

G H I

FIGURE 3 | Effect of naive weight discretization on the spike-train statistics in networks with fixed in-degrees. (A–C) Spiking activity (dots mark time and sender of

each spike) of 5% of all excitatory (blue) and inhibitory (red) neurons of the eight neuronal populations (vertically arranged) of the PD model with fixed in-degrees. Spike

(Continued)
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FIGURE 3 | times from simulations of the reference network (A) and of networks with naively discretized 1-bin (B) and 2-bin weights (C). Population-specific

distributions of single-neuron firing rates FR (D), coefficients of variation CV of the interspike intervals (E), and spike-train correlation coefficients CC (F) from

simulations of the reference network (black), as well as networks with 1-bin (blue) and 2-bin weights (yellow). (G–I) Mean (solid curves) and standard deviation (shaded

areas) of the Kolmogorov-Smirnov (KS) scores DKS obtained from distributions in (D–F) across five different network realizations. Red: Comparison of simulation

results with discretized (Nbins = 1, . . . , 224 ) and reference weights (with identical random-number generator seed). Black: Comparison of different random realizations

of the reference network.

data with randomized spike times exhibit the same oscillatory
pattern for the two populations (Supplementary Figure 1).

To quantify the differences in the resulting distributions, we
use the KS score. In each case, we compare the distributions of
FR, CV, and CC obtained from simulations of networks with
binned weights to the reference distributions. To assess the
significance of non-zero KS scores, we repeat the comparison
analysis for pairs of (random) realizations of the reference
network (i.e., different realizations of the connectivity, spike-
transmission delays, external inputs, and initial conditions). As
simulation results should not qualitatively depend on the specific
realization of the probabilistically defined model, all deviations
(KS scores) which are of the same size as or smaller than
this baseline are insignificant. For all three activity statistics
(FR, CV, and CC) the deviations are largest for one and two
bins (Figures 3G–I). For around 16 bins, the deviations in all
three activity statistics converge toward a non-zero KS score
and do not decrease further with any higher number of bins.
This residual deviation is the minimal possible deviation for
this simulation time. In the fixed in-degree network using the
naive discretization scheme, these deviations are smaller than
the baseline obtained using different network realizations from
16 bins onward. For the kind of network simulation studied
here and the specific choice of the binning, 16 bins are therefore
sufficient to achieve activity statistics with satisfactory precision.
For lower numbers of bins Nbins ∈ {1, 2, 3, 4}, a pattern appears
in almost all populations and for all three statistical measures
the deviations from the reference network do not decrease
monotonously with an increasing number of bins, but increase
from one to two bins, decrease from two to three, and increase
again from three to four bins (Figures 3G–I). These differences
are highly significant as in several neuronal populations three
bins achieve a score value better than the reference obtained using
different seeds while four bins do not. The weight discretization
procedure (section 2.2) reveals a hint on the origin of this
behavior. The naive discretization scheme changes the standard
deviation of the weight distributions depending on the number
of bins. Three bins achieve a good result by a mere coincidence
because due to the choice of the binning interval, the standard
deviation of the discrete weights is close to the standard deviation
of the reference distributions (see Figure 1). Comparing the
KS scores in Figure 3G with the discrepancies between the
standard deviation in Figure 1A exhibit the same pattern in
both measures.

3.2. Moment-Preserving Discretization
Preserves Statistics of Spiking Activity
Suspecting that a discrepancy between the standard deviation of
the weight distributions in the reference and the binned network

results in deviant activity statistics, we derive a discretization
method that preserves the standard deviation of the reference
weights for any number of bins. This method adapts the width
of the interval in which the discrete bins are evenly placed,
depending on the number of bins and the reference weight
distribution (section 2.2). If the discrepancy in the standard
deviation of the weight distributions is indeed the major cause
of the errors observed in the activity statistics, the moment-
preserving discretization method should substantially reduce
these errors. In the 1-bin case, the standard deviation is per
definition zero and the optimization procedure cannot be
applied. Similarly the optimization procedure is not applied in
the cases with 216 and 224 bins because the method becomes
more numerically demanding in these cases and no improvement
over the naive discretization is expected. Therefore, the shown
data for 1, 216, and 224 bins are the same in Figures 3, 4.
Already for two bins, the FR, CV, and CC distributions resulting
from the moment-preserving discretization visually match the
distributions from the reference network in all neuronal
populations in Figures 4D–F in contrast to Figures 3D–F. The
KS score confirms that the moment-preserving discretization
improves the accuracy of simulation with low numbers of bins
(Figures 4G–I). A discretization using two bins is sufficient to
yield scores of the same order as or even smaller than the baseline
resulting from the comparison of different realizations of the
reference network. Increasing the number of bins beyond two
does not lead to any further improvements for CV and CC. The
KS score for the FR decreases slightly (not visible here) up to
around 16 bins, from where it remains stationary for all higher
number of bins. For the fixed in-degree version of the PD model,
the accuracy of the simulation is therefore preserved with a 2-bin
weight discretization.

3.3. Minimal Weight Resolution Depends
on In-degree Heterogeneity
So far, we have studied the PD model with fixed in-degrees.
In this section, we move on to a model version in which
the neuronal populations are connected with the fixed total
number rule (as originally used by Potjans and Diesmann, 2014),
leading to binomial distributions of the numbers of incoming
connections per neuron in each population. In comparison to
the networks used in sections 3.1 and 3.2, this distribution of
in-degrees leads to a heterogeneity across neurons inside one
population independent of the weight distributions. We use the
moment-preserving discretization scheme and employ the same
statistical analysis as in the previous section to determine how
this additional network heterogeneity influences the accuracy of
network simulations subject to weight discretization.
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FIGURE 4 | Effect of moment-preserving weight discretization on the spike-train statistics in networks with fixed in-degrees. Same display as in Figure 3.
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FIGURE 5 | Effect of moment-preserving weight discretization on the spike-train statistics in networks with fixed total numbers of connections. Same display as in

Figure 3. Same reference data as in Figure 2.
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In Figures 5D–F, the distributions of FR, CV of the ISI and
CC using reference weights have different shapes and in most
populations increased widths compared to the distributions in
the previous fixed in-degree network in Figures 4D–F. For all
three statistics (FR, CV, and CC) the distributions of the binned
network match those of the reference network closely for one and
two bins (Figures 5D–F). As before, we quantify the deviations
of the simulations with the binned weights from the reference
using the KS score (Figures 5G–I). For CV and CC, the score
shows no systematic trend with varying number of bins. For the
FR, there is a small descend from one to around 16 bins and
a stationary score for all higher numbers of bins. Nevertheless,
for all three statistical measures, the score values are always
smaller or of similar order as the disparity between different
realizations of the reference network. Scores computed for the
binned and non-binned networks differ only in the synaptic
weights and can therefore be smaller than those comparing
different realizations of the reference network which have in
addition different realizations of the initial conditions, external
inputs, connectivity graph, and delays. We conclude that already
just one bin successfully preserves the activity statistics in the
PD model with distributed in-degrees and using the moment-
preserving discretizationmethod this remains true also for higher
numbers of bins.

3.4. Mean-Field Theory Relates Variability
of Weights, In-degrees, and Firing Rates to
Minimal Weight Resolution
Two weight bins preserve the activity statistics of the PD model
in the fixed in-degree network (section 3.2) and one weight bin is
sufficient for the network with heterogeneous in-degrees (section
3.3). This observation calls for a deeper look at the influence
of weight and in-degree heterogeneity on the firing statistics. In
mean-field theory using the diffusion approximation (Fourcaud
and Brunel, 2002; Schuecker et al., 2015), the stationary firing
response of a neuron i with exponential postsynaptic currents is
fully determined by the first two cumulants

µi = τs
∑

j∈Xi

wijνj, (19)

σ 2
i = τs

∑

j∈Xi

w2
ijνj, (20)

of its total synaptic input current. Here,Xi denotes the population
of neurons presynaptic to i, νj the stationary FR of presynaptic
neuron j, wij the synaptic weight, and τs the synaptic time
constant. The size of the presynaptic populationXi defines the in-
degreeKi = |Xi| of neuron i. Any heterogeneity inwij andKi (and
νj) leads to heterogeneous synaptic input statisticsµi and σ 2

i , and,
in turn, to heterogeneous firing statistics. Here, we, therefore,
argue that weight discretization preserves the firing statistics
across the population as long as it preserves the synaptic-input
statistics across the population. Rather than developing a full
self-consistent mathematical description of this statistics (van
Vreeswijk and Sompolinsky, 1998; Renart et al., 2010; Roxin et al.,
2011; Helias et al., 2014), we restrict ourselves to studying the
effect of weight discretization on the ensemble statistics of the

synaptic-input mean µi and variance σ 2
i , under the assumption

that the distributions of wij, Ki, and νj are known. For simplicity,
we limit this discussion to the first two cumulants of the ensemble
distributions, the ensemble mean 〈x〉 =

∑

i∈X xi/NX , and
variance

〈

δx2
〉

=
∑

i∈X (xi − 〈x〉)2 /NX of µi and σ 2
i (x ∈

{

µi, σ
2
i

}

) over all neurons i in a population X of NX neurons:

〈µ〉 = τs 〈K〉 〈w〉 〈ν〉 , (21)
〈

σ 2
〉

= τs 〈K〉
(

〈w〉2 +
〈

δw2
〉)

〈ν〉 , (22)
〈

δµ2
〉

= τ 2s
[〈

δK2
〉

〈w〉2 〈ν〉2 + 〈K〉 〈w〉2
〈

δν2
〉

+〈K〉
〈

δw2
〉 (

〈ν〉2 +
〈

δν2
〉)]

, (23)
〈

δ
(

σ 2
)2

〉

= τ 2s

[

(〈

δK2
〉

− 〈K〉
) (

〈w〉2 +
〈

δw2
〉)2

〈ν〉2

+〈K〉
〈

w4
〉 (

〈ν〉2 +
〈

δν2
〉)]

. (24)

The above expressions rely on Wald’s equation4 (Wald, 1944),
the Blackwell-Girshick equation4 (Blackwell and Girshick, 1946),
and general variance properties. Note that in previous works on

heterogeneous networks, the population variance
〈

δ
(

σ 2
)2

〉

of the

input variance is often neglected (Renart et al., 2010; Roxin et al.,
2011; Helias et al., 2014). Roxin et al. (2011) moreover neglect
the dependence of

〈

σ 2
〉

on the weight variance
〈

δw2
〉

. While the
ensemble measures in Equations (21)–(24) can be computed
for the whole neuronal network, it is more conclusive to use
population-specific ensemble measures computed individually
for each pair of source X and target population Y . With this
approach, 〈K〉 and

〈

δK2
〉

refer to the mean and the variance of
the number of inputs from population X across all neurons in
the target population Y , 〈w〉 and

〈

δw2
〉

refer to the mean and the
variance of the weights of all connections from X to Y , and 〈ν〉

and
〈

δν2
〉

refer to the mean and the variance of the FR across
neurons in the source population X. Deriving these population-
specific measures is possible becauseµ and σ 2 given in Equations
(19) and (20), respectively, decompose into the contributions of
the different source populations. Besides, we assume that Ki and
wij are drawn independently from their respective distributions,
and the rates νj are also assumed to be independent.

For each of the ensemble measures in Equations (21)–(24), we
define a discretization error

εNbins
(x) =

∣

∣x∞ − xNbins

∣

∣

∣

∣xNbins

∣

∣

(25)

as the normalized deviation of the measure xNbins
in a network

with Nbins weight bins from its counterpart x∞ in the network
with the reference weight distribution. In Table 5, we summarize
εNbins

for all four ensemble measures to assess deviations
introduced by weight discretization to one and two bins

4Let (Xn)n∈N be a sequence of real-valued, independent and identically distributed

random variables and let N be a non-negative integer-value random variable that

is independent of the sequence (Xn)n∈N. Suppose that N and the Xn have finite

expectations.

Wald’s equation:
〈

∑N
n=1 Xn

〉

= 〈N〉 〈X1〉.

Blackwell-Girshick equation:

〈

δ

(〈

∑N
n=1 Xn

〉)2
〉

=
〈

δN2
〉

〈X1〉
2 + 〈N〉

〈

δX2
1

〉

.
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TABLE 5 | Discretization error of the synaptic-input statistics for 1- and 2-bin

discretization.

x 〈µ〉
〈

σ 2
〉 〈

δµ2
〉

〈

δ
(

σ 2
)2

〉

ε1 (x) 0 j j · 1+f
k+f

j · (2+ j) ·
(

1+ 2 1+f
k+f

)

ε2 (x) 0 0 0 2j2

4j+ k+f
1+f (1+j)

2

Discretization error εNbins (x) as defined in Equation (25) for the four ensemble measures

Equations (21)–(24) (columns), for networks with Nbins = 1 and Nbins = 2 weight bins

(rows). The parameters j :=
〈

δw2
〉

/ 〈w〉2, f :=
〈

δν2
〉

/ 〈ν〉2 and k :=
〈

δK2
〉

/ 〈K〉 denote the

squared variation coefficients of the synaptic weights and the firing rates, and the Fano

factor of the in-degrees, respectively.

according to the moment-preserving scheme. In the 2-bin case,
〈w〉 and

〈

δw2
〉

are the same for the reference and binned
networks; in the 1-bin case, however, only 〈w〉 is preserved while
〈

δw2
〉

vanishes by definition. The term
〈

w4
〉

in Equation (24)

evaluates for the normal reference weight distribution to 〈w〉4 +

6 〈w〉2
〈

δw2
〉

+ 3
〈

δw2
〉2
, for one bin to 〈w〉4, and for two bins to

〈w〉4 + 6 〈w〉2
〈

δw2
〉

+
〈

δw2
〉2
. Therefore, the results in the fourth

column of Table 5 are only valid for a normal reference weight
distribution, while the first three columns are valid independent
of the shape of the weight, in-degree, or FR distribution. For
simplicity, the rate distributions are here assumed to be similar in
the reference and the binned networks. The mean-field theory, in
general, relates the fluctuating synaptic input to the distribution
of output spike rates by a self-consistency equation such that
any change of parameters changes both. Here, we go with the
assumption of similarity as we are interested in finding binned
networks yielding similar spiking statistics as the reference.
Consequently, ε1 (〈µ〉) = ε2 (〈µ〉) = ε2

(〈

σ 2
〉)

= ε2
(〈

δµ2
〉)

= 0,
since all these measures only depend on quantities that are the
same in networks with the reference weight distribution and their
binned counterparts. Non-zero table entries result from cases
where the respective quantities do not cancel.

Conventional mean-field theory captures the mean and the
variance of the input fluctuations to describe the dynamical
state of a recurrent random spiking neuronal network. This is
sufficient to predict characteristics of network dynamics like the
mean spike rate, the pairwise correlation between neurons, and
the power spectrum. Therefore, if the deviations in Table 5 of µ

and σ 2 are small, the activity statistics in the network are expected
to be preserved. Right off the bat, the 2-bin discretization seems
more promising, because three of the four ensemble averages
considered here evaluate to zero by definition. This holds true
for any in-degree, weight or FR distribution as long as the 2-
bin discretization preserves mean and standard deviation of
the weight distribution. In the 1-bin case, the deviation of

〈

σ 2
〉

still depends on the spread of synaptic weights without any
further additive terms or scaling. In particular, the term does
not depend on whether the in-degrees are distributed or not. In
networks with a large spread of synaptic weights, a 1-bin weight
discretization is therefore always insufficient. The third column
of Table 5 considers

〈

δµ2
〉

, the variance of the means of the
membrane potential across the population. Again, the deviation
of this value from the reference evaluates to exactly zero for
the 2-bin case. For a single bin, however, a more complex term
remains. For small or no variability in the number of incoming
synapses, the deviation of

〈

δµ2
〉

in the 1-bin case depends on

A

B

FIGURE 6 | Statistics of spiking activity and discretization errors of the

synaptic-input statistics. (A) Mean over all neuron populations of the DKS

scores (for one fixed network realization) calculated as in Figures 4, 5 for FR

(dark blue), CV (light blue), and CC (turquoise). Mean reference is shown in

black. (B) Mean over all pairs of source and target populations of ε values

calculated as in Table 5 for the averaged input mean 〈µ〉 (green), averaged

input variance
〈

σ 2
〉

(olive green), the population variance of the input mean
〈

δµ2
〉

(rose), and the population variance of the input variance
〈

δ
(

σ 2
)2

〉

(purple). Logarithmic y-axis used for ε. First column: fixed in-degree network

with 1-bin weights. Second column: fixed in-degree network with 2-bin

weights. Third column: fixed total number network with 1-bin weights. Fourth

column: fixed total number network with 2-bin weights. All ε values vanishing

by construction are marked as “0” without decimals, all others are rounded to

two decimal places.

the width of the weight distribution, but the more the in-degrees
are distributed, the smaller this dependence becomes; for a high
variability of the in-degree k → ∞ with k :=

〈

δK2
〉

/ 〈K〉

the deviation goes to zero even in the 1-bin case. In that case,
the variability of the mean membrane potentials caused by
the distributed in-degrees is so large that the variability of the

weight distribution does not matter. The deviations of
〈

δ
(

σ 2
)2

〉

,

which quantify the variability of the magnitude of the membrane
potential fluctuations across the population, are non-zero for
both 1- and 2-bin discretization. For one bin, a high in-degree
variability k → ∞ leads to a residual deviation j ·

(

2+ j
)

that only depends on the relative spread j : =
〈

δw2
〉

/ 〈w〉2 of
the reference weight distribution. For two bins, the respective
deviation declines with an increasing variability of the in-degrees.

For a direct comparison of the theoretical approach and
results obtained from analyzing simulated data, we evaluate
the terms in Table 5 with parameters and simulation results
of our tested network models with moment-preserving weight
discretization (Figures 4, 5). The contributions of the firing
rates are numerically computed based on measured FR from
simulations with the reference weight distribution. Figure 6

is arranged such that the KS scores of the simulated spiking
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activity in Figure 6A can be directly compared to the computed
deviations in the neuron input fluctuations in Figure 6B for
the fixed total number and fixed in-degree networks with one
and two weight bins. Both the KS scores and the ε values
are here averaged over populations. The ε values for each
individual pair of source and target population are shown in the
Supplementary Material (Supplementary Figure 2). In the PD
model (Potjans and Diesmann, 2014), the standard deviations of
the weights are 10% of the mean values, resulting in j = 0.01.
With fixed total number connectivity (multapses allowed), the
in-degrees are binomially distributed with a mean of SYX/NY

and a variance of SYX/NY (1− 1/NY), where SYX is the total
number of synapses between source X and target population
Y and NY is the number of neurons in the target population
(Senk et al., 2020b). The Fano factor of the in-degrees is,
therefore, k = 1 − 1/NY . The fixed in-degree scenario simplifies
k = 0 as

〈

δK2
〉

= 0.
In the fixed total number network with one weight bin,

the normalized deviations of all of the considered ensemble
measures are very small (ε1 < 0.1). This is in line with the
corresponding KS scores of the spiking activity being all below
the reference. In contrast, the fixed in-degree network using one
weight bin exhibits large discretization errors: values above 1

for
〈

δµ2
〉

and even above 10 for
〈

δ
(

σ 2
)2

〉

are observed in some

populations. These deviations explain the differences in spiking
statistics seen in Figure 6A. Using two weight bins, all considered
ensemble averages have negligible deviations corroborating the
respective observations of negligible deviations in simulation
activity statistics.

3.5. Observation Duration Determines
Validation Performance
The dynamical characteristics of any neuronal network model
are exposed only if the observation duration is sufficiently
long. As shown in section 2.3.2, an observation duration of
15min is sufficient to ensure that the distributions of spike-
train correlation coefficients of the PD model are distinguishable
from those obtained for uncorrelated spike trains. So far,
however, it remains unclear whether the distributions of the
statistical measures are converged, and if our results on the
role of quantized synaptic weights are robust with respect
to the observation duration. To investigate the convergence
behavior of our validation metrics, we analyze simulated data
of up to one hour of the model time of the PD model
(Figures 7A–C). A completely converged distribution is defined
as independent of time when its shape does not change any
more if more data is added. FR distributions converge fast;
no difference is visible if analyzing only 5min of the data
or the full hour. In contrast, the shape of the distributions
of CC still changes after 40min for all populations and
appears not to have converged for the entire data recorded.
The behavior of the CV distributions is population-specific: a
higher average firing rate leads to more spike data entering the
computation of the CVs which results in a faster convergence
with simulated model time. The convergence of distributions
from low-firing neurons in L2/3E, L2/3I, and L6E, for instance,
is slow.

To rule out that the underlying network dynamics change
qualitatively over time, which would have been a simple
explanation for changes in the distributions, we compare data
from two 10min intervals separated by 20min: the distributions
match for all three metrics (Figures 7D–F). Convergence of the
network dynamics to a stationary state happens in fact on a
much smaller time scale in the PD model network, and we avoid
distortions due to startup transients by always excluding the very
first Ttrans = 1 s of each simulation from the data analyzed. To
achieve the same interval lengths, also the first second of the
[30, 40]min interval is excluded.

These findings make it apparent that only comparisons
between simulations of equal model time intervals are
meaningful. Choosing a sufficient length for the time intervals
such that model specifics are not overshadowed by finite-data
effects is a non-trivial task that depends on the network model
itself but also on the statistical measures applied, as shown
in Figures 2, 7. There are a couple of possible approaches for
this endeavor:

1. The conceptually easiest way is to simulate for very long
periods of biological times (e.g., more than one hour) until
all calculated statistical distributions are converged. Because
most complex neuronal network simulations require wall-
clock times much longer than the model time simulated
on modern HPC systems, this approach is unfeasible until
accelerated hardware is available (Jordan et al., 2018).

2. Otherwise one can restrict the analysis to statistics that are less
impacted by finite data biases (e.g., the time-averaged FR in
Figure 7A). The drawback of this approach is that a thorough
validation relies on a number of complementary metrics as
decisive model-specific differences may only become evident
with some measures and not others (Senk et al., 2017).

3. One can also derive analytical relations for the convergence
behavior of certain observables and fit them to a series of
differently long simulations. In this way, the true value of the
observable can be estimated without finite data biases, as was,
e.g., performed in Dahmen et al. (2019).

4. The strategy employed in this study is the following: if
qualitative findings are the important parts of the study,
then one can first guess a long enough simulation time and
perform the study with this. Afterward one has to confirm
that the specific measurements to uphold these findings are
already converged also for shorter time scales than employed
in the study. Figures 7G–I shows the KS scores obtained for a
network with fixed total number connections but for different
simulation durations. Also for shorter simulation times than
15min the score of a simulation with one bin is below the
reference and therefore has acceptable accuracy, while the
improvement in accuracy when going to a high number
of bins is only small. The qualitative finding that weight
discretizations with one bin are sufficient for this network can
therefore be upheld also for much shorter simulation times
and is unlikely to change for longer times. The drawback of
this approach is that one can only confirm in retrospect if the
chosen simulation time was sufficient enough, but if one finds
the opposite one would have to perform the analysis again for
longer simulation times.

Frontiers in Neuroscience | www.frontiersin.org 18 December 2021 | Volume 15 | Article 757790

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dasbach et al. How to Reduce Weight Resolution

A B C

D E F

G H I

FIGURE 7 | Dependence of validation performance on observation interval and duration. Population specific distributions of single-neuron FR (A,D), CV of the ISI

(B,E), and spike-train CC (C,F) for different observation durations (5, 15, 40, 60min; A–C) and different observation intervals ([0, 10]min, [30, 40]min) with identical

duration (D–F). Dependence of validation performance (KS score DKS of distributions obtained from simulations with discretized and double-precision weights) for

single-neuron FR (G), CV of the ISI (H), and spike-train CC (I) on observation duration Tsim with 1-bin (blue) and 224-bin weights (yellow). Black traces and gray band

represent the mean and standard deviation of KS scores computed with pairs of five random realizations of the reference model.
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4. DISCUSSION

This study contributes to the understanding of the effects of
discretized synaptic weights on the dynamics of spiking neuronal
networks. We found the lowest weight resolution that can
maintain the original activity statistics for two derivatives of the
cortical microcircuit model of Potjans and Diesmann (2014). In
general, the discretization procedure must preserve the moments
of the reference weight distributions. In networks where all

neurons within one population receive the same number of
synaptic inputs, the variability in synaptic weights constitutes
the dominant source of input heterogeneity. In this case, the
weight discretization has to account for both the mean and
the variance of the normal reference weight distributions. In
such networks, two discrete weights are sufficient for each
pair of populations to preserve the population-level statistics.
In networks where the neurons inside the same neuronal
population receive different numbers of inputs, the variability
in in-degrees may play a major role in the population-level
statistics. In the PD model with binomially distributed in-
degrees, the in-degree variability is dominating the weight
variability such that the original weights can be replaced
by their mean value without changing the population-level

statistics. The study outlines a mean-field theoretical approach
to relate synaptic weight and in-degree heterogeneities to
the variability of the synaptic input statistics which, in turn,
determines the statistics of the spiking activity. We show that
this relationship qualitatively explains the effects of a reduced
synaptic weight resolution observed in direct simulations.
Finally, the work sheds light on the convergence time of the
activity statistics. For a meaningful validation, the simulated
model time needs to be long enough such that the statistics
are not dominated by effects of finite sample sizes and instead
are sufficiently sensitive to distinguish model specifics from
random outcomes.

In our approach, synaptic weights are stored with the full

floating point resolution the computer hardware supports and
all computations are carried out using the full resolution of the

floating point unit of the processor. Discretization just refers to
the fact that a synaptic weight only assumes one of a small set
of predefined values. Thus, for the price of an indirection, only
as many bits are required per synapse as needed to uniquely
identify the values in the set: one bit for two values, 2 bit for
four values. In the cortical microcircuit model of Potjans and
Diesmann (2014), the recurrent weights are drawn from one of
three distinct distributions (section 2.1). As these weights can
be replaced by the respective mean weight without affecting
the activity statistics, it is sufficient to store only three distinct
weight values (one for each synapse type) rather than the weights
for all existing synapses. Based on the 64-bit required for the
representation of each weight of the 298, 880, 941 recurrent
connections in the cortical microcircuit model with fixed total
number connectivity, this reduces the memory demand of the
network by 2.39GB (about 15% of the full-resolution reference).
This reduction scales linearly with the number of synapses, such
that the memory saving potential increases for larger networks.
In NEST, this can be achieved by using three synapse models

derived from the static_synapse_hom_w class. If several
weights are required for each group of neurons, as is the case for
fixed in-degree connectivity, there exists at present no practical
implementation in NEST or neuromorphic hardware that can
fully utilize a similar memory saving potential. More research is
required on suitable interfaces for the user; the domain specific
language NESTML (Plotnikov et al., 2016) offers a perspective.

The synaptic weight resolution can be substantially reduced
if the discretization procedure accounts for the statistics of
the reference weights. Simulation architectures which allow
users to adapt the synaptic weight resolution to the specific
network model are therefore preferable to those where the weight
representation is fixed. This seems to advocate the use of a
mixed precision approach in neuromorphic hardware, in which
the synaptic weights are implemented with a lower resolution
while the computations are performed with higher numerical
precision. An opportunity for future development is to determine
which calculation precision is required. While it is possible to
achieve comparable network dynamics with 32-bit fixed point
arithmetic (van Albada et al., 2018), a minimum bit limit has not
been identified, yet.

This study is restricted to non-plastic neuronal networks that
fulfill the assumptions underlyingmean-field theory as presented,
e.g., in Brunel (2000), including heterogeneous networks as
studied in Roxin et al. (2011). In such networks, the distribution
of synaptic inputs across time can be approximated by a normal
distribution (diffusion approximation) such that the statistics
of the spiking activity is fully determined by the mean and
the variance of this distribution. In general, the approximation
becomes more applicable for larger networks or rather larger in-
degrees. The PD model has realistic in-degrees (on the order of
104) and we expect that our method is less applicable to a strongly
down-scaled version of the model. However, we assume that our
main results regarding weight discretization are transferable to
other, non-spiking network types which also fulfill the mean-
field assumptions, e.g., networks of binary or rate-based neurons;
for a mapping between spiking and rate-based neurons see Senk
et al. (2020a). Such a transfer requires to reconsider the validation
criteria since the CV distribution, for instance, is not defined
for rate neurons. The mean-field assumptions rule out spiking
networks with low FR, or correlated activity, as well as spiking
networks with strong synaptic weights. A number of recent
experimental studies revealed long-tailed, non-Gaussian synaptic
weight distributions in both hippocampus and neocortex. Here,
few individual synapses can be orders of magnitude stronger
than the median of the weight distribution (for a review, see
Buzsáki and Mizuseki, 2014). Theoretical studies demonstrate
that such long-tailed weight distributions can self-organize in
the presence of synaptic plasticity (Teramae and Fukai, 2014),
and result in distinct dynamics not observed in networks of the
type studied here (Teramae et al., 2012; Iyer et al., 2013; Kriener
et al., 2014). It remains to be investigated to what extent our
conclusions translate to such networks. The study by Teramae
and Fukai (2014) indicates that the overall firing statistics in
simple recurrent spiking neuronal networks with long-tailed
weight distributions can be preserved in the face of a limited
synaptic weight resolution, provided this resolution does not
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fall below 4 bit. Our study employs a uniform discretization
of synaptic weights with equidistant bins of identical size.
For asymmetric, long-tailed weight distributions, non-uniform
discretizations could prove beneficial. In this context, the k-
means algorithm may constitute a potential approach (Muller
and Indiveri, 2015).

The connectivity of the models considered in this study is
fixed and does not change over time. If, on a given hardware
architecture, memory is scarce but computations are cheap,
the connectivity of such static networks can be implemented
using an alternative approach: connectivity data such as weights,
delays, and targets do not need to be stored and retrieved
many times, but can be procedurally generated for each spike
during runtime using a deterministic pseudo-random number
generator. In particular, in the case where a single synaptic
weight is sufficient to describe the projection between two
populations, the effort reduces to the procedural identification of
the target neurons. This technique has been applied, for instance,
by Eugene M. Izhikevich to simulate a large thalamocortical
network model on an HPC cluster5, or more recently by
Knight and Nowotny (2021) to run a model of vision-related
cortical areas (Schmidt et al., 2018) on GPUs, as well as by
Heittmann et al. (2020) for a PDmodel simulation using the IBM
Neural Supercomputer (INC-3000) based on FPGAs. Network
models with synaptic plasticity, however, require the storage of
weights because they are updated frequently during a simulation.
Plastic network models are crucial to study slow biological
processes such as learning, brain adaptation, and rehabilitation
as well as brain development (Morrison et al., 2008; Tetzlaff
et al., 2012; Magee and Grienberger, 2020). The present study
focuses on the network dynamics at short time scales where
plasticity may be negligible. An earlier study already assessed the
effect of low weight resolutions in networks with spike-timing
dependent plasticity (Pfeil et al., 2012). Further studies need to
investigate to what extent a reduced synaptic weight resolution
compromises the dynamics and function of plastic neuronal
networks. Recent studies indicate that good model performance
could be achieved by weight discretization methods based on
stochastic roundings (Gupta et al., 2015; Muller and Indiveri,
2015). Stochastic rounding could be implemented in memristive
components with probabilistic switching, thus requiring no extra
random number generators (Muller and Indiveri, 2015). It would
also be interesting to study to what extent discrete weights
affect the memory capacity in functional networks (Gerstner
and van Hemmen, 1992; Seo et al., 2011). This problem is
closely linked to the question of whether weight discretization
limits the capabilities of neuronal networks to produce different
spatiotemporal activity patterns (Kim and Chow, 2018). The
capabilities for discretization in functional networks depend
highly on the discretization method (Senn and Fusi, 2005;
Gupta et al., 2015; Muller and Indiveri, 2015) and also the
neuron models involved. Recently, Cazé and Stimberg (2020)
showed that non-linear processing in dendrites enables neurons
to perform computations with significantly lower synaptic weight

5https://www.izhikevich.org/human_brain_simulation/why.htm.

resolution than otherwise possible. Therefore, a principled
approach to discretization methods and an adequate selection
of performance measures are necessarily dependent on the
respective tasks.

A large body of modeling studies treats synaptic weights
as continuous quantities that can assume any real number
within certain bounds. However, it is known for long
that neurotransmission in chemical synapses is quantized—a
consequence of the fact that neurotransmitters are released in
discrete packages from vesicles in the presynaptic axon terminals.
The analysis of spontaneous (miniature) postsynaptic currents,
i.e., postsynaptic responses to the neurotransmitter release from
single presynaptic vesicles, reveals that the resolution of synaptic
weights is indeed finite for chemical synapses. Malkin et al.
(2014), for example, show that the amplitudes of spontaneous
excitatory postsynaptic currents recorded from different types
of excitatory and inhibitory cortical neurons are unimodally
distributed with a peak at about 20 pA and a lower bound at
about 10 pA. Note that these results have been obtained despite a
number of factors that may potentially wash out the discreteness
of synaptic transmission, such as variability in vesicles sizes,
variability in the position of vesicle fusion zones, quasi-
randomness in neurotransmitter diffusion across the synaptic
cleft, and variability in postsynaptic receptor densities. For
evoked synaptic responses involving neurotransmitter release
from many presynaptic vesicles, and for superpositions of inputs
from many synapses, the discreteness of synaptic strengths is
obscured and unlikely to play a particular role for the dynamics
of the neuronal network as a whole. Hence, nature, too, relies to
a large extent on discrete network connection strengths. A better
understanding of how system-level learning in nature copes with
the discrete and probabilistic nature of synapses will guide us
toward effective discretization methods for synaptic weights in
neuromorphic computers.

To conclude, porting neuronal network models from multi-
purpose computing systems to neuromorphic hardware may
require adjustments to the original model description for
managing hardware constraints like limited available memory.
A rigorous validation procedure assesses the effect of potential
adjustments and avoids unwanted behavior. This study makes
use of common tools from computational neuroscience including
network simulation, statistical data analysis, and a mean-field
approach to challenge relevant performance measures of a
model under the assumption of a limited synaptic weight
resolution, and proposes a strategy for weight discretization
without compromising the dynamics. Future work needs to
investigate to what extent more complex networks are affected by
limiting the weight resolution. In particular, it remains an open
question whether synaptic or cell-intrinsic plasticity mechanisms
can compensate for this.
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